It is my data:
> dput(data)
structure(list(foldchange = c(-0.17853057272962, 3.60013440830337,
0.648944710423407, 1.38528656859267, 2.38882890772698, 1.91371568283765,
1.77591931363495, -1.51447851175922, 3.1416903855924, 1.51711016957237,
3.14707703341916, -1.44751697381751, 1.23658565660726, -0.512829478520189,
1.68928069854351, 2.07214007434345, 1.24799276690488, 6.25149659558487,
6.35918877435554, 5.86088034655694, 6.38890659730165, 5.05510489389194,
4.62060389613534, 3.75508710774868, 4.18575763169519, 5.31627264153051,
5.87091236649665, 6.71464565321037, 5.24000610137973, 4.25821377851955,
7.32277714374523, 3.1963295806222, 7.26249808789293, 4.44427454088613,
6.21495395454133, 8.74469985969472, 7.49982946564144, 4.45020943795387,
5.66199031471621, 5.29959827685333, 8.65819317196484, 5.86664903755707,
4.5740575604176, 8.24504501687473, 5.7916074097308, 4.18199181353134,
6.73956641707995, 4.60357435173805, 5.9205153184753, 3.65014593638562,
3.25607795403669, 5.56919529940933, 5.76811109641351, 6.10600807588152,
5.69234974521511, 5.5102283323841, 4.71232921328194, 6.55727667796477,
6.19995053763513, 4.64209842048131, 2.29238227264409, 6.79465189260383,
7.51968952300944, 7.81695579226993, 6.29926703626301, 4.64687557749141,
-2.44220257171186, 5.33199370895397, 5.18820654974805, 5.03498241997507,
6.29395095024283, 6.27602377186869, 6.78363927671209, 2.93759015053983,
6.65061604346668, 5.671080311536, 8.45199131823131, 5.79230415012306,
6.3270025568739, 7.0934690916107, 3.53800869528685, 3.08683779646569,
6.82111375813946, 3.02729078403818, 5.36024214796805, 4.04778690916444,
5.74765756930797, 4.10788604670319, 6.39978058654016, 5.7746717387066,
2.9247167920294, 7.54315906042106, 4.2742172444481, 6.61121261965006,
3.77012175922873, 4.94407566887151, 7.93185716981795, 7.05304621480995,
5.59261760605766, 5.42381827536197, 4.22645498896606, 5.15806113482742,
4.15403623593809, 6.40153592433128, 7.38902001442131, 2.72654942454391,
3.28741231093207, 3.79334363176751, 5.86527050546341, 5.10320299162235,
3.99883612485974, 6.45475273104195, 4.85567883821983, 6.55055641729645,
5.03746875764267, 7.27660375171087, 3.30817125205364, 5.23766518187252,
7.6588755830143, 3.53552741086444, 5.66455197986778, 8.40623211540503,
3.93151438658523, 4.26875667827774, 4.38704995079332, 6.75232207417316,
3.76563594385214, 6.08008097541859, 2.40905905886796, 5.50981339395085,
5.78780269825563, 0.2322416329745, 5.69410860233132, 4.94656296117567,
4.20594226169741, 4.50293112094816, 6.07430576125864, 3.67684848946483,
5.825851099141, 5.22439201628482, 7.72829018644622, 5.24910611944979,
4.01783420322782, 6.3888069709767, 5.26066649741256, 4.81678726754752,
6.5683773907454, 4.86957242886115, 6.76705114368644, 4.45769029291236,
7.77607596853254, 6.85213457577069, 1.40150885676552, 5.43409652313493,
3.21738153172066, 6.23015085020594, 5.50091556711613, 3.99948543388746,
5.85816098688073, 4.33775608630599, 5.91715214825299, 5.45674826103132,
7.66790792082782, 6.63325838131012, 3.89631178894691, 2.38526575667126,
1.58661549426288, 4.76626341270591, 6.73426272316295, 5.54006035262931,
4.07996836453406, 7.12087390022358, 6.96007461543701, 5.68202490906633,
6.58504044389069, 5.41036820315057, 6.61076809589319, 1.23772469006557,
4.1661166499875, 2.94059625298825, 8.38336956160413, 4.84906289871508,
4.93787691221829, 6.82379835301371, 5.82520798412864, 4.87582657907206,
5.36621724700676, 8.91922991774938, 3.49025109999629, 5.1232073414505,
4.27193651596412, 5.07417945071012, 3.61930149745523, 2.7469092502892,
6.67162003616042, 4.86698118654996, 7.53876919017093, 4.58878989189686,
5.78956520376246, 3.98567045767003, 8.14934433289609, 6.88879716040936,
7.00251456012974, 5.05095662412332, 6.39777439550296, 7.96268799093557,
4.82826575143863, 8.31032763539508, 4.74493707321909, 6.8929416113222,
6.84202549278968, 8.20121430968127, 2.91031632522241, 4.86190488550545,
5.5516465446887, 7.74996457744065, 2.25505738807845, 5.71069872298306,
1.97493599527532, 5.60445326341706, 6.39297603198736, 7.16298115056911,
4.52688105225386, 6.46061751569601, 4.78104064111529, 2.84526825975018,
6.5537923066898, 6.98258253798747, 5.0967396817644, 6.64593966293456,
4.8990397150507, 4.59878411928317, 5.55158425631398, 2.1065660739172,
2.40396884881286, 6.45421536580342, 5.98567305090568, 6.48593538806214,
7.41313242816247, 5.99024340460149, 5.63812101302136, -1.43793573368627
), all_pvalue = c(0.818887590433193, 0.00892139546812015, 0.434133425685163,
0.0536266013313456, 0.0450933986128537, 0.0367856407800243, 0.0941222253709068,
0.213526299326008, 0.00855327289085924, 0.0449444491492238, 0.00465098209958804,
0.0369667514121697, 0.0910501610463896, 0.378892060498093, 0.0595757077704777,
0.031626850730261, 0.0878934608628569, 0.0124722939899662, 0.0249040599008334,
0.0150448394759397, 0.0104024068916351, 0.0340577599419123, 0.0244947271472485,
0.122485247246688, 0.0211309039009709, 0.0201043058824927, 0.0152779076456381,
0.00938733157248341, 0.013807428170544, 0.01948348499862, 0.0119978631408916,
0.0997968486684091, 0.00504808432168479, 0.041226720485986, 0.0127407583225205,
0.00709338243276709, 0.00383605674079435, 0.0399854589187244,
0.0163222001450531, 0.00909800553027099, 4.81144191594885e-06,
0.0105231068132293, 0.0377428014886314, 0.00709059633291303,
0.00743882656849872, 0.0696633906261403, 0.00568508439144595,
0.0142206230933159, 0.0183625193075117, 0.0818974933908099, 0.0609423408539195,
0.00581572852382799, 0.00603085345605447, 0.00684099077236254,
0.0194814381299995, 0.0325641567545152, 0.0404062983698557, 0.00626431765905907,
0.00287654691487974, 0.0183318967557602, 0.202860908663261, 0.0033395497287839,
0.00804091896430431, 0.00524635934550195, 0.0100089274728679,
0.00470611875383887, 0.361169323059008, 3.90129727113067e-06,
0.0205225005371219, 0.0120500045076898, 0.00732055098038156,
0.0229916087025324, 0.00544774481324614, 0.108252753362848, 0.00911923198666818,
0.0122812312739145, 0.00343585528287351, 2.06257208918569e-05,
0.000904993210532763, 0.0015065294739414, 0.102118204143709,
0.118350948568527, 0.0136202759386966, 0.15251012082679, 0.0428316882385798,
0.0752744217284719, 0.00632986043900174, 0.0269567937932686,
0.00707537967267082, 0.0149356605279715, 0.163005190656644, 0.00929612911973378,
0.0196453775259569, 0.0133262667903121, 0.114115405959882, 0.0189109801950218,
0.00590387539250432, 0.00802692325541374, 0.0184346327727756,
0.00104714399950925, 0.0554774130259537, 0.0084910975380844,
0.0349856904843115, 0.0124547169142572, 8.60050865459788e-07,
0.1188515828269, 0.133720711339729, 0.0641704698591151, 0.0075124796175742,
3.94432669779951e-07, 0.0740343932996142, 0.00160775849728933,
6.61326355967731e-06, 0.0106610228625055, 0.00539717052083514,
0.00492255859958016, 0.122531121480312, 0.0159768620962635, 0.00365780586610517,
0.0135086464724098, 0.0256265865459836, 0.00391215568816396,
0.0271580638871089, 0.0512876942387616, 0.0135566028247977, 0.0169110062500104,
0.0848247460082605, 0.0158705161056627, 0.176345767878009, 0.0124719098589431,
0.0152388258990332, 0.866066700538701, 0.042979313425954, 0.0160125031962862,
0.0441592105265668, 0.0124108545467876, 1.80875437447348e-06,
0.0704671677844812, 0.0111351361909711, 1.62883074487165e-07,
0.000694779973318456, 0.0120079549431507, 0.0196183531679123,
0.0100186493225724, 0.0173294242221405, 0.0573614373022037, 1.30612522568528e-07,
0.023898721968545, 0.00665918028588502, 0.06907634259105, 0.00518730999717143,
0.0109717740506543, 0.394662670743417, 0.0165847750353483, 0.0593829446004973,
0.000113216713641592, 0.0222583368635018, 0.0694462386106761,
0.00437955933335859, 0.0631677226779205, 0.00649674049335009,
1.10699021652115e-07, 0.00543997929535101, 0.00292890932795308,
0.021574456097881, 0.17997075681454, 0.279770535484078, 0.050945514039484,
0.0102923410906512, 0.0103389721465925, 0.112227938286441, 0.00398090342551613,
0.0428676019413789, 0.00337313863923396, 0.0092822848687081,
0.00778850900332348, 0.00146877357609246, 0.448950342618974,
0.0801294647165026, 0.0797698230881222, 3.72112644308374e-05,
0.00728653989704988, 0.0320006421510141, 0.000420503611946363,
0.0207086037412542, 0.0448889114898146, 6.94555482668648e-07,
0.000135994029220134, 0.0982385638169219, 0.0130399195487442,
0.0297056523919866, 0.0208455457844783, 0.104595177359326, 0.100684824982166,
0.00110472016462074, 0.0664329210478157, 0.0140428240948167,
0.0468861767036331, 0.0102813794498838, 0.0693803856754811, 0.00566014993761021,
0.00275831473628789, 0.00234550137829788, 0.0116252548991317,
0.0143153463606759, 0.00995352784254985, 0.00238257560505637,
0.00182950280683248, 0.013195116994233, 0.000640921917352429,
0.000171523469251389, 0.0087256530793244, 0.0989386901919075,
0.0321103798387662, 0.0222773975090858, 0.007943310795799, 0.171053950985746,
0.012874269835152, 0.38817395138115, 0.00787508757030877, 0.0114487159712535,
0.0187831808209386, 0.0452479566115196, 0.00640720682677851,
0.0315482155790946, 0.125132833439637, 0.0115284490664364, 0.00538397509568388,
0.00517772137814985, 0.00176762574966497, 0.0273122011845722,
0.0191341545126795, 0.0235413416908084, 0.270326642321866, 0.179926862630332,
0.008734949388329, 0.0138918131322944, 0.00507817315892406, 0.000173786133243839,
0.00225184544628237, 0.0181059516295825, 0.541544494598043),
probename = c("Mark_1", "Mark_2", "Mark_3", "Mark_4", "Mark_5",
"Mark_6", "Mark_7", "Mark_8", "Mark_9", "Mark_10", "Mark_11",
"Mark_12", "Mark_13", "Mark_14", "Mark_15", "Mark_16", "Mark_17",
"Mark_18", "Mark_19", "Mark_20", "Mark_21", "Mark_22", "Mark_23",
"Mark_24", "Mark_25", "Mark_26", "Mark_27", "Mark_28", "Mark_29",
"Mark_30", "Mark_31", "Mark_32", "Mark_33", "Mark_34", "Mark_35",
"Mark_36", "Mark_37", "Mark_38", "Mark_39", "Mark_40", "Mark_41",
"Mark_42", "Mark_43", "Mark_44", "Mark_45", "Mark_46", "Mark_47",
"Mark_48", "Mark_49", "Mark_50", "Mark_51", "Mark_52", "Mark_53",
"Mark_54", "Mark_55", "Mark_56", "Mark_57", "Mark_58", "Mark_59",
"Mark_60", "Mark_61", "Mark_62", "Mark_63", "Mark_64", "Mark_65",
"Mark_66", "Mark_67", "Mark_68", "Mark_69", "Mark_70", "Mark_71",
"Mark_72", "Mark_73", "Mark_74", "Mark_75", "Mark_76", "Mark_77",
"Mark_78", "Mark_79", "Mark_80", "Mark_81", "Mark_82", "Mark_83",
"Mark_84", "Mark_85", "Mark_86", "Mark_87", "Mark_88", "Mark_89",
"Mark_90", "Mark_91", "Mark_92", "Mark_93", "Mark_94", "Mark_95",
"Mark_96", "Mark_97", "Mark_98", "Mark_99", "Mark_100", "Mark_101",
"Mark_102", "Mark_103", "Mark_104", "Mark_105", "Mark_106",
"Mark_107", "Mark_108", "Mark_109", "Mark_110", "Mark_111",
"Mark_112", "Mark_113", "Mark_114", "Mark_115", "Mark_116",
"Mark_117", "Mark_118", "Mark_119", "Mark_120", "Mark_121",
"Mark_122", "Mark_123", "Mark_124", "Mark_125", "Mark_126",
"Mark_127", "Mark_128", "Mark_129", "Mark_130", "Mark_131",
"Mark_132", "Mark_133", "Mark_134", "Mark_135", "Mark_136",
"Mark_137", "Mark_138", "Mark_139", "Mark_140", "Mark_141",
"Mark_142", "Mark_143", "Mark_144", "Mark_145", "Mark_146",
"Mark_147", "Mark_148", "Mark_149", "Mark_150", "Mark_151",
"Mark_152", "Mark_153", "Mark_154", "Mark_155", "Mark_156",
"Mark_157", "Mark_158", "Mark_159", "Mark_160", "Mark_161",
"Mark_162", "Mark_163", "Mark_164", "Mark_165", "Mark_166",
"Mark_167", "Mark_168", "Mark_169", "Mark_170", "Mark_171",
"Mark_172", "Mark_173", "Mark_174", "Mark_175", "Mark_176",
"Mark_177", "Mark_178", "Mark_179", "Mark_180", "Mark_181",
"Mark_182", "Mark_183", "Mark_184", "Mark_185", "Mark_186",
"Mark_187", "Mark_188", "Mark_189", "Mark_190", "Mark_191",
"Mark_192", "Mark_193", "Mark_194", "Mark_195", "Mark_196",
"Mark_197", "Mark_198", "Mark_199", "Mark_200", "Mark_201",
"Mark_202", "Mark_203", "Mark_204", "Mark_205", "Mark_206",
"Mark_207", "Mark_208", "Mark_209", "Mark_210", "Mark_211",
"Mark_212", "Mark_213", "Mark_214", "Mark_215", "Mark_216",
"Mark_217", "Mark_218", "Mark_219", "Mark_220", "Mark_221",
"Mark_222", "Mark_223", "Mark_224", "Mark_225", "Mark_226",
"Mark_227", "Mark_228", "Mark_229", "Mark_230", "Mark_231",
"Mark_232", "Mark_233", "Mark_234", "Mark_235", "Mark_236",
"Mark_237", "Mark_238", "Mark_239", "Mark_240", "Mark_241",
"Mark_242")), row.names = c("Mark_1", "Mark_2", "Mark_3",
"Mark_4", "Mark_5", "Mark_6", "Mark_7", "Mark_8", "Mark_9", "Mark_10",
"Mark_11", "Mark_12", "Mark_13", "Mark_14", "Mark_15", "Mark_16",
"Mark_17", "Mark_18", "Mark_19", "Mark_20", "Mark_21", "Mark_22",
"Mark_23", "Mark_24", "Mark_25", "Mark_26", "Mark_27", "Mark_28",
"Mark_29", "Mark_30", "Mark_31", "Mark_32", "Mark_33", "Mark_34",
"Mark_35", "Mark_36", "Mark_37", "Mark_38", "Mark_39", "Mark_40",
"Mark_41", "Mark_42", "Mark_43", "Mark_44", "Mark_45", "Mark_46",
"Mark_47", "Mark_48", "Mark_49", "Mark_50", "Mark_51", "Mark_52",
"Mark_53", "Mark_54", "Mark_55", "Mark_56", "Mark_57", "Mark_58",
"Mark_59", "Mark_60", "Mark_61", "Mark_62", "Mark_63", "Mark_64",
"Mark_65", "Mark_66", "Mark_67", "Mark_68", "Mark_69", "Mark_70",
"Mark_71", "Mark_72", "Mark_73", "Mark_74", "Mark_75", "Mark_76",
"Mark_77", "Mark_78", "Mark_79", "Mark_80", "Mark_81", "Mark_82",
"Mark_83", "Mark_84", "Mark_85", "Mark_86", "Mark_87", "Mark_88",
"Mark_89", "Mark_90", "Mark_91", "Mark_92", "Mark_93", "Mark_94",
"Mark_95", "Mark_96", "Mark_97", "Mark_98", "Mark_99", "Mark_100",
"Mark_101", "Mark_102", "Mark_103", "Mark_104", "Mark_105", "Mark_106",
"Mark_107", "Mark_108", "Mark_109", "Mark_110", "Mark_111", "Mark_112",
"Mark_113", "Mark_114", "Mark_115", "Mark_116", "Mark_117", "Mark_118",
"Mark_119", "Mark_120", "Mark_121", "Mark_122", "Mark_123", "Mark_124",
"Mark_125", "Mark_126", "Mark_127", "Mark_128", "Mark_129", "Mark_130",
"Mark_131", "Mark_132", "Mark_133", "Mark_134", "Mark_135", "Mark_136",
"Mark_137", "Mark_138", "Mark_139", "Mark_140", "Mark_141", "Mark_142",
"Mark_143", "Mark_144", "Mark_145", "Mark_146", "Mark_147", "Mark_148",
"Mark_149", "Mark_150", "Mark_151", "Mark_152", "Mark_153", "Mark_154",
"Mark_155", "Mark_156", "Mark_157", "Mark_158", "Mark_159", "Mark_160",
"Mark_161", "Mark_162", "Mark_163", "Mark_164", "Mark_165", "Mark_166",
"Mark_167", "Mark_168", "Mark_169", "Mark_170", "Mark_171", "Mark_172",
"Mark_173", "Mark_174", "Mark_175", "Mark_176", "Mark_177", "Mark_178",
"Mark_179", "Mark_180", "Mark_181", "Mark_182", "Mark_183", "Mark_184",
"Mark_185", "Mark_186", "Mark_187", "Mark_188", "Mark_189", "Mark_190",
"Mark_191", "Mark_192", "Mark_193", "Mark_194", "Mark_195", "Mark_196",
"Mark_197", "Mark_198", "Mark_199", "Mark_200", "Mark_201", "Mark_202",
"Mark_203", "Mark_204", "Mark_205", "Mark_206", "Mark_207", "Mark_208",
"Mark_209", "Mark_210", "Mark_211", "Mark_212", "Mark_213", "Mark_214",
"Mark_215", "Mark_216", "Mark_217", "Mark_218", "Mark_219", "Mark_220",
"Mark_221", "Mark_222", "Mark_223", "Mark_224", "Mark_225", "Mark_226",
"Mark_227", "Mark_228", "Mark_229", "Mark_230", "Mark_231", "Mark_232",
"Mark_233", "Mark_234", "Mark_235", "Mark_236", "Mark_237", "Mark_238",
"Mark_239", "Mark_240", "Mark_241", "Mark_242"), class = "data.frame")
I would like to create a nice graph (publication wise) to represent a data stored in this data frame. In general I would like to create a scatterplot or volcano plot with colors/shapes indicating what is important in my data.
I would like to achieve something like that:
Or:
As a filter cutoff we can start with: foldchange > 4 & all_pvalue < 0.05. I would like to also have a possibility to highlight (different color/shape and with a label) only couple of rows. Lets say as a starting point I would like to highlight Mark_23 and Mark_65.
Is it doable in R ? I have already tried something with volcano plot:
volcano = ggplot(data = data, aes(x = foldchange, y = -1*log10(all_pvalue)))
volcano + geom_point()
Can someone help me with going further ?
Here is an attempt to show what's possible
data$zones := interaction(abs(data$foldchange)>4,data$all_pvalue<0.05)
library(ggplot2)
library(ggrepel)
ggplot(data = data, aes(x = foldchange, y = -1*log10(all_pvalue),color = zones))+
geom_point()+
theme_light()+
geom_label_repel(aes(label=ifelse(probename %in% c("Mark_23","Mark_65"),as.character(probename),"")),
box.padding = 0.35,
point.padding = 0.5,
segment.color = 'grey50',show.legend = FALSE) +
geom_hline(yintercept = -1*log10(0.05),linetype = "dashed")+
geom_vline(xintercept = 4,linetype = "dashed")+
scale_color_manual(labels = c("bad", "also bad","good","not sure"), values = c("gray50","green","blue", "red"))+
labs(x = "fold change",
y = expression(log[10](p)),
color = "meaning")
there are many things here. geom_label_repel from library(ggrepel) allow to link your few points you want to show with a label. The easiest way of having the different colours is to create a variable that says in what zone you are. That is what I did with the zones variable, that you use in colour to have a changing color. You can manualy change it with the scale_color_manual function.
In the labs function I used the expression function that allows you to do superscripts. You can of course change the theme including, margins, axis, text size etc.
You can for example add theme(legend.position="top") to your plot to have the legend on top.
Related
I have a dataframe with observations of a temporal event. I can easily plot the observations based on their Xand Y values, either in base R or ggplot2:
plot(df$Y ~ df$X)
ggplot(df, aes(x=X, y=Y)) +
geom_point()
What I'd like to do though is add in the temporal dimension by coloring the observations differently depending on the time they were made. This could be done by defining thresholds for different time steps and assigning discrete colors to each time step. But what I'm interested in is a continuous coloring where the flow of time can be directly read off the flow of colors or color hues or color transparencies. Any help is greatly appreciated.
Reproducible data (slightly shorter than data underlying shown graphs):
structure(list(X = c(171.000358830368, 171.453956550099, 171.075127685269,
171.140924277581, 171.271520544141, 171.582558980529, 171.23762532992,
171.70218914837, 171.318375693213, 170.939546828382, 171.70218914837,
171.779948757467, 171.809856299427, 172.066064242221, 171.603494259901,
171.718139837416, 171.947430992445, 171.930483385334, 172.002261486039,
172.153793031971, 122.654817251517, 171.710164492893, 172.012230666692,
171.395138384244, 171.750041215507, 171.631407965731, 171.927492631138,
172.059085815763, 171.816834725885, 170.787018364384, 170.328436054326,
170.083194210252, 170.405198745358, 170.505887469957, 170.429124778926,
171.187779426653, 171.00634033876, 170.984408141322, 170.731190952725,
170.924593057402, 170.570687144205, 170.751129314032, 170.539782684179,
170.561714881617, 170.461026157017, 170.631499146191, 170.686329639785,
170.863781055416, 170.782033774058, 170.655425179759, 170.645455999106,
170.612557702949, 170.658415933955, 170.514859732545, 170.382269629855,
170.167932245806, 170.187870607113, 169.841940038438, 175.365863038509,
190.973612269532, 206.626222813496, 214.924568789419, 214.509850874236,
211.538038121446, 209.610995501136, 207.007045514458, 204.585531533737,
202.489012842319, 200.693563406635, 199.331773329375, 198.61997383072,
198.494362154486, 202.238786407918, 205.8695620019, 206.616253632843,
207.53541208909, 208.81146721273, 209.850255836818, 210.903998231887,
211.630751501523, 211.825150524265, 211.487195300113, 210.759445112412,
209.407624215806, 207.816542983517, 205.843642132201, 203.585622714198,
201.110275157949, 198.862224920598, 196.914247020916, 195.676074783759,
195.283289066014, 196.015026925976, 197.60710507633, 200.479226022586,
204.110001616568, 207.405812740595, 210.878078362188, 214.015379513825,
216.768867210305, 218.423751198776, 219.404718575074, 219.467524413191,
218.760709504862, 217.317172146244, 215.572565531892, 213.46408382369,
211.338654508377, 209.181323814973, 207.720838849244, 206.537497105681,
205.904454134187, 205.898472625795, 205.953303119389, 206.365030280376,
206.977137972497, 208.319986606516, 209.067675155523, 209.547192744954,
210.106463779612, 210.356690214013, 210.602928976153, 210.692651602034,
210.849167738293, 210.88405987058, 210.998705448095, 211.037585252643,
210.902004395756, 210.895025969299, 210.958828725481, 210.92692734739,
210.975776332592, 211.201079815359, 211.164193846942, 211.304759294155,
210.646793371028, 198.816366689593, 179.579835700717, 164.568243472769,
159.956500502489, 159.636489803513, 159.535801078913, 159.997374143168,
160.238628314981, 160.281495791791, 160.576583539133, 160.637395541118,
156.724492134644, 153.810500629644, 153.846389679996, 154.022844177562,
154.29300897327, 154.442546683072, 154.536256981214, 154.665856329709,
154.665856329709, 154.833338564686, 156.847113056681, 176.676810294436,
177.112463488991, 176.71868085318, 176.042770404877, 175.822451512436,
175.75964567432, 176.817375741649, 176.028813551962, 176.347827332872,
176.622976718907, 182.215687065486, 118.910392998086, 174.380907989949,
171.889609744655, 168.855988071813, 164.924143222097, 160.275514283399,
156.671655477181, 154.165403460906, 107.676123319726, 107.769833617868,
108.581324923058, 109.676937876871, 109.244275436511, 110.393721965853,
161.248506315174, 163.97707106002, 165.507340290323, 166.298893234206,
168.008607716271, 169.06434394747, 170.018394536004, 170.41118025375,
170.202824378093, 170.201827460028, 121.025853132745, 117.483803246579,
120.870333914552, 166.984772863163, 166.489304584687, 168.118268703459,
181.382263562859, 196.653054487796, 135.095357788943, 135.297732156208,
202.44614536551, 203.460011037964, 204.440978414263, 205.227546767819,
205.43490572541, 204.935449774673, 203.891676560258, 202.264706277617,
199.827241607851, 176.081650209426, 194.729002621683, 194.670184455827,
191.186952735516, 190.463190220076, 190.508051533017, 191.482040482858,
186.606114225261, 171.208714706025, 158.889798172571, 149.82880987666,
152.986049389604, 156.597883540345, 159.647455902232, 161.754940692369,
162.893421122992, 114.542894953814, 162.976165322415, 114.268742485845,
160.762010299286, 159.259654774813, 157.995562667957, 156.561994489993,
155.638848361484, 154.469463470836, 154.00390273432, 154.431580584353,
154.255126086787, 155.244068807608, 157.058459686534, 159.101144802424,
161.906472238301, 165.29399982434, 120.406767014167, 172.028181355737,
175.03588315888, 177.740521870158, 179.910812498411, 181.483949205524,
181.988389746588, 181.854802725832, 180.508963337618, 178.901931416283,
176.58609075049, 173.537515306668, 170.679351213327, 167.374567826712,
164.487493109477, 162.203553821774, 160.569605112675, 159.562717866678,
159.828894990125, 159.632502131252, 160.2495944137, 161.450880682439,
162.705003608642, 164.622077048298, 166.212161362521, 167.468278124855,
168.602770883216, 169.155063491416, 169.462114255542, 169.404293007752,
169.003531945484, 168.422328713389, 167.728473739909, 166.825265972708,
165.984864043623, 169.386348482576, 183.504702123976, 200.99862033463,
214.553715269111, 218.552353629205, 217.590327696148, 217.000152201465,
216.115885877505, 215.405083296914, 214.675339273083, 214.063231580962,
213.56477254829, 212.972603217475, 212.488101037718, 212.097309156103,
211.685581995116, 211.786270719716, 211.46426618461, 210.97178866033,
210.657759469747, 210.36167480434, 210.032691842776, 209.635918452769,
209.435537921635, 209.197274504018, 209.046739876151, 208.712772324261,
208.585166811897, 208.3319496233, 203.956476234505, 189.73444311431,
179.21097601654, 176.815381905519, 177.826256823777, 175.90718954799,
175.461567172782, 177.582011897768, 177.488301599626, 177.463378647992,
177.577027307441, 177.676719113976, 177.633851637166, 177.843204430888,
177.995732894886, 177.92196095805, 176.699739409939, 176.824354168107,
176.859246300394, 176.68877331122, 175.325986315895, 176.695751737677,
174.103764767783, 176.520294158177, 178.304777495142, 176.684785638959,
176.697745573808, 177.861148956064, 176.614004456319, 176.121526932039,
176.364774939983, 173.25239673998, 176.064702602315, 174.207444246579,
174.133672309744, 173.831606135945, 174.066878799366, 174.03597433934,
175.830426856959, 174.100774013587, 174.019026732229, 173.965193156701,
173.955223976047, 174.028995912883, 173.886436629538, 174.420784712563,
179.872929611928, 198.741597834692, 208.031877285631, 208.418681494985,
208.232257816765, 247.112062365176, 207.772678588642, 207.722832685375,
207.639091567886, 207.613171698187, 207.569307303312, 207.722832685375,
207.850438197739, 208.002966661736, 208.157488961865, 208.43463218403,
208.722741504914, 209.112536468464, 209.628940026312, 210.13038981318,
211.046557515231, 211.660659043483, 212.448224315105, 213.349438246175,
212.024534137333, 215.36321273817, 216.563502088844, 217.81264042472,
217.271313915238, 218.686937568026, 220.266055783531, 221.81426953901,
223.14814591044, 224.246749618449, 225.106092990776, 225.724182191289,
226.127934007753, 226.088057285139, 225.885682917874, 225.557696874376,
225.048271742986, 257.697338382997, 223.992535511786, 223.464168937154,
223.130201385264, 222.831125965661), Y = c(150.561649721083,
150.067708443465, 150.155166858818, 149.178216605502, 149.407794945803,
148.660423032789, 148.913853668186, 148.276798619991, 148.487493893341,
147.692417390134, 148.3284785927, 147.692417390134, 147.963737246853,
147.216365333839, 147.264069924031, 145.992941364529, 145.626212327424,
144.316323788391, 144.345145311632, 143.45465962804, 118.779460351005,
143.071035215242, 143.299619709914, 142.858352250634, 142.574112400738,
141.615051368744, 141.139993158078, 140.643070343573, 140.190870582374,
140.33597204421, 140.341935117984, 139.946384557638, 140.207765958067,
139.045960417756, 139.269575684283, 138.122677828407, 138.177339338002,
137.268964433088, 137.874216421154, 137.406115129891, 138.076960929472,
137.840425669768, 138.343311558047, 137.691348825417, 138.413874597706,
137.837444132881, 138.70109598449, 138.061059399408, 138.395985376384,
137.616810403241, 138.267779290242, 137.52736429663, 138.054102480005,
137.291822882555, 137.941797923927, 137.242130601105, 137.811604146527,
137.343502855264, 137.326607479571, 135.242513195539, 137.238155218589,
138.312502343547, 139.236778778526, 138.86110513076, 139.273551066799,
138.584816045896, 138.903840492808, 137.509475075308, 137.144733729462,
135.697694493625, 135.567500716225, 134.488184363121, 135.142134787009,
134.959267191271, 135.420411563131, 134.819134957581, 135.649989903432,
135.13120248509, 136.041565081262, 135.646014520916, 136.444072561011,
135.969014350344, 136.521592520073, 135.799066747784, 136.416244883398,
135.748380620704, 136.195611153758, 135.349848523472, 135.534703810467,
134.372898270156, 134.413645940945, 133.470486439016, 133.743793986993,
133.129597388266, 133.61658174648, 133.007354375898, 133.341286507245,
132.799640639435, 133.348243426648, 132.845357538369, 133.241901944344,
132.396139314057, 132.584969983569, 131.617958186543, 131.839585761812,
130.896426259883, 130.981896983977, 129.944322147292, 129.993020583113,
128.968365739605, 128.960414974573, 127.798609434262, 128.082849284158,
127.096954420181, 127.450763464109, 126.738176148109, 127.149628238519,
126.326724057699, 127.023409843635, 126.595062377532, 127.240068190759,
126.893216066235, 127.574000322106, 127.072108279456, 127.73997254215,
127.304668156644, 128.098750814222, 127.663446428716, 128.521135206551,
128.014273935757, 128.852085801011, 128.420756798021, 129.41460242703,
128.987248806556, 129.867796033858, 129.49510392298, 129.345033233,
128.14148617627, 130.371675767766, 130.815924763933, 131.900210345182,
131.529505925561, 132.387194703396, 131.814739621087, 132.715163760969,
132.186437886336, 133.071954341783, 132.563105379731, 133.595710988271,
133.373089567373, 134.173135298725, 133.956476951601, 134.797270353743,
134.562722785297, 135.403516187438, 135.163005545218, 135.992866645441,
131.572241287609, 129.463300862852, 122.968519677278, 123.474387102444,
123.527060920781, 124.246605156184, 123.732786965986, 117.399008772312,
123.862980743386, 124.421521986889, 123.70893467089, 124.808127936574,
126.778923818898, 124.377792779213, 122.935722771521, 124.517925012903,
124.076657553623, 124.838937151073, 124.239648236781, 124.81210331909,
125.153986215469, 125.120195464083, 123.901740722918, 123.046039636341,
120.966914580454, 120.263271875116, 121.53241274336, 121.521480441441,
120.071459668717, 121.39228050967, 120.229481123729, 120.093324272555,
118.693989626911, 118.729768069555, 117.589827133082, 118.195079121148,
108.618382640018, 113.465367772695, 107.992259893742, 117.911833116881,
117.31055651133, 118.451491293432, 122.158535489636, 128.127572337464,
125.310019979223, 125.468041434236, 128.644372064548, 129.146264107198,
128.288575329363, 128.90376577372, 128.18124000143, 128.778541224465,
128.358144523394, 129.135331805279, 128.537036736615, 128.94351959888,
128.079867747271, 127.956630889274, 126.952846803975, 126.741157684996,
125.517733715686, 125.563450614621, 124.14026367388, 123.462460954896,
122.454701487081, 125.26330923466, 123.721854664067, 123.747694650421,
122.82639975233, 123.206048782611, 122.267858508827, 115.131053046914,
122.130707812024, 114.510893374412, 122.343390776632, 123.249777990288,
122.697199820559, 123.432645586025, 123.527060920781, 123.925593018014,
123.003304274293, 124.011063742109, 123.917642252982, 125.041681659391,
124.907512499475, 125.786072035519, 125.602210594152, 126.27603793062,
114.507911837525, 126.00571191953, 125.382570710141, 125.88446275279,
125.144047759179, 125.545561393298, 124.766386420155, 124.993977069198,
124.193931337846, 124.197906720362, 123.290525661077, 123.403824062784,
122.544147593691, 122.783664390282, 121.98361865893, 122.607753713948,
122.271833891343, 122.822424369814, 122.699187511817, 122.789627464057,
122.228104683666, 122.501412231644, 121.437997408604, 121.568191186005,
120.996729949324, 121.368428214574, 120.744293159556, 121.303828248688,
120.7800716022, 121.339606691332, 120.856597715634, 121.619871158713,
121.218357524593, 121.974674048269, 121.564215803488, 122.684279827382,
121.975667893898, 124.308223585182, 126.514560881582, 128.363113751539,
128.091793894819, 128.702015111031, 128.509209059003, 129.155208717859,
128.840159653463, 129.56566696264, 129.235710213809, 130.013891341323,
129.748534558377, 130.711570972887, 130.380620378427, 129.980100589936,
129.586537720849, 130.563487974165, 130.419380357958, 131.614976649656,
131.552364375028, 132.790696028774, 132.718145297856, 133.984304629213,
134.010144615568, 135.165987082105, 135.426374636905, 136.790924685535,
135.130208639461, 129.957242140469, 126.592080840645, 127.358335820611,
127.887061695243, 129.049861081184, 128.986254960927, 130.73840480487,
130.834807830884, 132.108917927273, 132.045311807017, 133.056052811719,
132.901012893594, 133.848147778039, 133.514215646692, 134.505079738814,
134.604464301715, 135.360780825391, 135.037780995963, 135.768257533284,
134.735651924744, 135.809999049703, 134.344076746915, 135.788134445865,
127.311625076047, 135.801054439042, 135.322020845859, 127.889049386501,
135.320033154601, 135.615205306417, 126.665625417191, 134.175122989983,
126.25616101804, 134.430541316638, 133.848147778039, 134.240716801498,
133.809387798508, 134.271526015997, 126.20547489096, 134.244692184014,
133.780566275267, 134.294384465464, 133.818332409169, 134.256618331562,
133.891876985716, 134.534895107684, 127.426911169012, 142.477709374724,
146.033689035318, 147.092134630213, 146.619064110804, 170.36998695286,
146.552476453661, 147.216365333839, 146.709504063044, 147.474765197381,
147.046417731278, 147.842488080114, 147.290903756014, 148.023367984594,
147.353516030642, 147.901124972226, 147.171642280533, 147.729189678407,
147.072257717632, 147.535389780751, 147.15474690484, 146.832740921041,
146.568377983725, 146.13207975259, 144.739702026348, 145.216747928273,
144.640317463447, 144.137431575169, 143.147561328676, 141.941032735059,
141.073405500934, 140.496975036109, 140.057695268087, 139.778424646336,
139.654193942709, 139.203981872768, 138.923717405388, 138.393997685126,
137.79868415335, 137.209333695347, 136.706447807069, 165.401752653445,
135.932242062071, 135.629119145223, 135.168968618992, 134.679002723891
), starttime_ms = c(310849, 310865, 310882, 310899, 310915, 310932,
310949, 310965, 310982, 310999, 311015, 311032, 311049, 311065,
311082, 311099, 311115, 311132, 311149, 311165, 311182, 311199,
311215, 311232, 311249, 311265, 311282, 311299, 311315, 311332,
311349, 311365, 311382, 311399, 311415, 311432, 311449, 311465,
311482, 311499, 311515, 311532, 311549, 311565, 311582, 311599,
311615, 311632, 311649, 311665, 311682, 311699, 311715, 311732,
311749, 311765, 311782, 311799, 311815, 311832, 311849, 311865,
311882, 311899, 311915, 311932, 311949, 311965, 311982, 311999,
312015, 312032, 312049, 312065, 312082, 312099, 312115, 312132,
312149, 312165, 312182, 312199, 312215, 312232, 312249, 312265,
312282, 312299, 312315, 312332, 312349, 312365, 312382, 312399,
312415, 312432, 312449, 312465, 312482, 312499, 312515, 312532,
312549, 312565, 312582, 312599, 312615, 312632, 312649, 312665,
312682, 312699, 312715, 312732, 312749, 312765, 312782, 312799,
312815, 312832, 312849, 312865, 312882, 312899, 312915, 312932,
312949, 312965, 312982, 312999, 313015, 313032, 313049, 313065,
313082, 313099, 313115, 313132, 313149, 313165, 313182, 313199,
313215, 313232, 313249, 313265, 313282, 313299, 313315, 313332,
313349, 313365, 313382, 313399, 313415, 313432, 313449, 313465,
313603, 313619, 313636, 313665, 313682, 313699, 313715, 313732,
313749, 313765, 313782, 313799, 313815, 313832, 313849, 313865,
313882, 313899, 313915, 313932, 313949, 313965, 313982, 313999,
314015, 314032, 314049, 314065, 314082, 314099, 314115, 314132,
314149, 314165, 314182, 314199, 314215, 314232, 314249, 314265,
314282, 314299, 314315, 314332, 314349, 314365, 314382, 314399,
314415, 314432, 314449, 314465, 314482, 314499, 314515, 314532,
314549, 314565, 314582, 314599, 314615, 314632, 314649, 314665,
314682, 314699, 314715, 314732, 314749, 314765, 314782, 314799,
314815, 314832, 314849, 314865, 314882, 314899, 314915, 314932,
314949, 314965, 314982, 314999, 315015, 315032, 315049, 315065,
315082, 315099, 315115, 315132, 315149, 315165, 315182, 315199,
315215, 315232, 315249, 315265, 315282, 315299, 315315, 315332,
315349, 315365, 315382, 315399, 315415, 315432, 315449, 315465,
315482, 315499, 315515, 315532, 315549, 315565, 315582, 315599,
315615, 315632, 315649, 315665, 315682, 315699, 315715, 315732,
315749, 315765, 315782, 315799, 315815, 315832, 315849, 315865,
315882, 315899, 315915, 315932, 315949, 315965, 315982, 315999,
316015, 316032, 316049, 316065, 316082, 316099, 316115, 316132,
316149, 316165, 316182, 316199, 316215, 316232, 316249, 316265,
316282, 316299, 316315, 316332, 316349, 316365, 316382, 316399,
316415, 316432, 316449, 316465, 316482, 316499, 316515, 316532,
316549, 316565, 316582, 316599, 316615, 316632, 316649, 316665,
316682, 316699, 316715, 316732, 316749, 316765, 316782, 316799,
316815, 316832, 316849, 316865, 316882, 316899, 316915, 316932,
316949, 316965, 316982, 316999, 317015, 317032, 317049, 317065,
317082, 317099, 317115, 317132, 317149, 317165, 317182, 317199,
317215, 317236, 317253, 317269, 317286, 317303, 317319, 317336,
317353, 317369, 317386, 317403, 317419, 317436, 317453, 317469,
317486, 317503, 317519, 317536, 317553, 317569, 317586, 317603,
317619, 317636, 317653)), row.names = c(123318L, 123324L, 123333L,
123343L, 123354L, 123363L, 123370L, 123373L, 123376L, 123384L,
123391L, 123399L, 123406L, 123414L, 123424L, 123434L, 123438L,
123440L, 123444L, 123446L, 123449L, 123459L, 123468L, 123477L,
123483L, 123491L, 123502L, 123505L, 123509L, 123516L, 123523L,
123526L, 123532L, 123538L, 123548L, 123556L, 123565L, 123570L,
123574L, 123576L, 123580L, 123586L, 123593L, 123602L, 123611L,
123617L, 123623L, 123627L, 123631L, 123640L, 123648L, 123652L,
123663L, 123671L, 123674L, 123677L, 123684L, 123691L, 123696L,
123706L, 123714L, 123725L, 123733L, 123735L, 123739L, 123741L,
123745L, 123751L, 123756L, 123766L, 123775L, 123777L, 123786L,
123794L, 123800L, 123807L, 123813L, 123816L, 123819L, 123823L,
123833L, 123842L, 123850L, 123861L, 123869L, 123876L, 123884L,
123892L, 123897L, 123904L, 123910L, 123912L, 123917L, 123926L,
123933L, 123939L, 123945L, 123949L, 123953L, 123956L, 123962L,
123968L, 123975L, 123981L, 123988L, 123996L, 124005L, 124015L,
124020L, 124023L, 124029L, 124036L, 124045L, 124054L, 124063L,
124069L, 124079L, 124085L, 124094L, 124103L, 124112L, 124117L,
124124L, 124127L, 124130L, 124137L, 124146L, 124158L, 124169L,
124177L, 124184L, 124189L, 124195L, 124203L, 124213L, 124220L,
124227L, 124234L, 124244L, 124252L, 124257L, 124259L, 124262L,
124265L, 124271L, 124279L, 124291L, 124299L, 124304L, 124312L,
124321L, 124324L, 124328L, 124337L, 124343L, 124347L, 124354L,
124363L, 124415L, 124424L, 124426L, 124435L, 124440L, 124446L,
124454L, 124461L, 124467L, 124469L, 124476L, 124486L, 124493L,
124496L, 124504L, 124510L, 124519L, 124524L, 124531L, 124539L,
124550L, 124555L, 124558L, 124560L, 124564L, 124569L, 124579L,
124586L, 124595L, 124599L, 124608L, 124617L, 124622L, 124629L,
124634L, 124636L, 124640L, 124645L, 124653L, 124660L, 124669L,
124681L, 124694L, 124700L, 124709L, 124716L, 124722L, 124727L,
124730L, 124733L, 124738L, 124743L, 124748L, 124755L, 124766L,
124774L, 124782L, 124786L, 124793L, 124801L, 124808L, 124812L,
124821L, 124831L, 124844L, 124852L, 124861L, 124867L, 124873L,
124877L, 124883L, 124890L, 124901L, 124912L, 124917L, 124921L,
124926L, 124934L, 124943L, 124948L, 124956L, 124958L, 124962L,
124968L, 124977L, 124986L, 124995L, 125005L, 125013L, 125015L,
125018L, 125025L, 125036L, 125046L, 125051L, 125056L, 125063L,
125072L, 125076L, 125078L, 125082L, 125084L, 125091L, 125100L,
125111L, 125118L, 125128L, 125135L, 125143L, 125147L, 125155L,
125165L, 125168L, 125170L, 125178L, 125188L, 125195L, 125203L,
125212L, 125217L, 125220L, 125222L, 125226L, 125238L, 125245L,
125252L, 125256L, 125262L, 125269L, 125278L, 125285L, 125288L,
125292L, 125296L, 125307L, 125319L, 125322L, 125325L, 125329L,
125334L, 125342L, 125351L, 125360L, 125372L, 125379L, 125386L,
125389L, 125392L, 125397L, 125402L, 125411L, 125421L, 125428L,
125436L, 125446L, 125451L, 125457L, 125459L, 125465L, 125470L,
125477L, 125483L, 125490L, 125499L, 125508L, 125515L, 125523L,
125526L, 125532L, 125540L, 125548L, 125550L, 125553L, 125558L,
125564L, 125570L, 125580L, 125588L, 125594L, 125600L, 125604L,
125610L, 125617L, 125624L, 125633L, 125640L, 125647L, 125655L,
125661L, 125669L, 125676L, 125679L, 125686L, 125695L, 125706L,
125716L, 125725L, 125733L, 125737L, 125743L, 125755L, 125758L,
125762L, 125764L, 125769L, 125775L, 125783L, 125790L, 125800L,
125808L, 125815L, 125823L, 125828L, 125834L, 125838L, 125845L,
125852L, 125864L, 125871L, 125880L, 125889L, 125893L, 125896L,
125899L, 125902L, 125904L, 125912L, 125920L, 125931L, 125936L,
125944L, 125952L, 125961L, 125963L, 125969L, 125978L, 125984L,
125991L, 126002L, 126009L, 126018L, 126025L, 126028L), class = "data.frame")
You could do:
library(ggplot2)
ggplot(df, aes(x = X, y = Y, color = starttime_ms)) +
geom_point() +
scale_color_gradientn(colors = c("red", "gold", "forestgreen"), name = "time")
An alternative that might help keep track of the motion better would be to use geom_segment:
df$X2 <- dplyr::lag(df$X)
df$Y2 <- dplyr::lag(df$Y)
ggplot(df, aes(x = X, y = Y, color = starttime_ms)) +
geom_segment(aes(xend = X2, yend = Y2), size = 1) +
scale_color_gradientn(colors = c("red", "gold", "forestgreen"), name = "time")
I am trying to create a stratigraphic plot of geochemical element data which should be possible using package tidypaleo.
I want multiple plots of the different element data with Depth (cm) downcore set as the y axis. The data look as follows.
Image of data
I am using this code:
ggplot(wapITRAX, aes(x =BrTi , y = wapITRAX$Depth))+
labs(y = "Depth (cm)")+
geom_lineh()+
theme_classic()+
scale_y_reverse()
However, this only plots one element and I am trying to achieve a plot like this Image of plot
> dput(head(wapITRAX))
structure(list(Depth = 0:5, IncCoh = c(6.049230907, 5.975282432,
5.736199822, 5.658584418, 5.659008377, 5.597103404), BrTi =
c(50.50197628,
22.09236453, 23.48370927, 18.62638581, 14.36924414, 17.48777896
), AlIncCOh = c(16.69633736, 8.200449193, 23.70907643, 20.32310407,
28.62692352, 26.44224866), BrCl = c(8.04090623, 4.306048968,
3.417836951, 3.156895904, 2.787628518, 2.059316731), FeTi =
c(332.715415,
235.9371921, 372.726817, 390.7871397, 396.986099, 495.2624867
), CaTi = c(4.071146245, 3.27955665, 4.395989975, 3.677383592,
3.028670721, 4.523910733), ZrRb = structure(c(363L, 447L, 407L,
395L, 450L, 410L), .Label = c("#DIV/0!", "0.447638604",
"0.478169284",
"0.54554134", "0.548501778", "0.561420163", "0.579454254",
"0.579498861",
"0.580801291", "0.589758019", "0.590194076", "0.590277778",
"0.591357754",
"0.592870544", "0.593851133", "0.598519653", "0.599931082",
"0.600979737",
"0.601426307", "0.611710677", "0.617065868", "0.618499405",
"0.621310093",
"0.627720871", "0.63775246", "0.64005168", "0.643958869",
"0.644371941",
"0.645605974", "0.645661658", "0.646672915", "0.647348952",
"0.651578947",
"0.652401176", "0.656186383", "0.657906264", "0.658835905",
"0.662074554",
"0.662361624", "0.669589393", "0.67103429", "0.671371769",
"0.674335863",
"0.674781688", "0.676097561", "0.676639083", "0.677849462",
"0.680497925",
"0.680610514", "0.680725971", "0.683906537", "0.68855859",
"0.689067202",
"0.692353115", "0.692732291", "0.695411392", "0.696067091",
"0.696794872",
"0.699376436", "0.701762744", "0.702015197", "0.702432938",
"0.70361991",
"0.705235754", "0.705426357", "0.708084164", "0.708258528",
"0.708925221",
"0.715226656", "0.715263314", "0.717828827", "0.718975706",
"0.719799305",
"0.720363636", "0.72476489", "0.725426857", "0.725461098",
"0.726030739",
"0.7267645", "0.726998188", "0.727170554", "0.727533265",
"0.730362368",
"0.731182796", "0.735042735", "0.735849057", "0.736184046",
"0.737214792",
"0.738692342", "0.742223591", "0.742639327", "0.742714724",
"0.744126167",
"0.745790081", "0.746207701", "0.746606335", "0.747041077",
"0.749019608",
"0.751204307", "0.751326495", "0.752443737", "0.752994012",
"0.753398969",
"0.754587869", "0.755151515", "0.755466053", "0.756316411",
"0.757107679",
"0.759175941", "0.76070965", "0.761635833", "0.763760166",
"0.763861189",
"0.764076577", "0.765001936", "0.765509391", "0.765795207",
"0.76598579",
"0.767080745", "0.767225748", "0.767262192", "0.770291777",
"0.771194699",
"0.772540984", "0.774533358", "0.77486376", "0.777252364",
"0.778319123",
"0.778445883", "0.779076739", "0.779310345", "0.782186577",
"0.78238342",
"0.782541093", "0.785497178", "0.787594824", "0.788230584",
"0.788916736",
"0.789033068", "0.789052737", "0.789177605", "0.789596048",
"0.790439133",
"0.791078234", "0.792993631", "0.794899978", "0.795265235",
"0.795432921",
"0.798130469", "0.79861957", "0.798894446", "0.799410029",
"0.799679487",
"0.800096223", "0.800119868", "0.800280899", "0.800947004",
"0.80293448",
"0.804118993", "0.804120112", "0.805092452", "0.806161301",
"0.81631016",
"0.816337149", "0.81638756", "0.81827622", "0.818899466",
"0.81993865",
"0.821925431", "0.825329202", "0.825608077", "0.826135414",
"0.826325411",
"0.827108292", "0.829798658", "0.832460733", "0.832814584",
"0.833845295",
"0.833908046", "0.833980583", "0.83741705", "0.837604457",
"0.838292367",
"0.838860231", "0.839741935", "0.846485664", "0.846740374",
"0.84679304
1",
"0.84734599", "0.850027518", "0.850077882", "0.854863613",
"0.85565883",
"0.85591192", "0.857095047", "0.858967536", "0.85897779",
"0.859192457",
"0.859239235", "0.860408412", "0.860505166", "0.8609918",
"0.862821134",
"0.867779204", "0.872207328", "0.872918493", "0.873888706",
"0.874140666",
"0.877452229", "0.879856851", "0.88003663", "0.880155093",
"0.881013197",
"0.882190156", "0.882319978", "0.883029342", "0.883316008",
"0.884908053",
"0.885431692", "0.885849846", "0.889082969", "0.89763062",
"0.898384089",
"0.898527865", "0.9", "0.900719424", "0.904636261", "0.904913848",
"0.905223479", "0.908485273", "0.911212059", "0.916470588",
"0.917162698",
"0.917470525", "0.917952884", "0.918054256", "0.918781726",
"0.922268448",
"0.925987182", "0.926287744", "0.933958724", "0.939701616",
"0.940987438",
"0.941196465", "0.943041526", "0.946832078", "0.947419907",
"0.948080043",
"0.949085366", "0.950099404", "0.950502912", "0.950704225",
"0.953596288",
"0.954868709", "0.95505992", "0.955361596", "0.956422018",
"0.95671509",
"0.959064327", "0.96165309", "0.964232489", "0.965528048",
"0.965874467",
"0.968717195", "0.970270821", "0.971573209", "0.973415133",
"0.974608081",
"0.974986972", "0.978223496", "0.97935022", "0.980142566",
"0.981730052",
"0.982819606", "0.987483236", "0.989587207", "0.991002571",
"0.991932655",
"0.995306859", "0.997555012", "1.001706485", "1.002357873",
"1.005146199",
"1.010493827", "1.011544012", "1.013038906", "1.013469577",
"1.015357613",
"1.01541976", "1.015544041", "1.015937059", "1.016162826",
"1.019393939",
"1.019529957", "1.019994873", "1.028932491", "1.029518072",
"1.030101225",
"1.032310705", "1.03344968", "1.036769138", "1.037322515",
"1.041150092",
"1.041459782", "1.041961577", "1.042347697", "1.047411444",
"1.048390581",
"1.057811121", "1.060218978", "1.065395654", "1.06921167",
"1.071509648",
"1.073730469", "1.076014602", "1.077266637", "1.079983072",
"1.083003953",
"1.086196504", "1.086445657", "1.0867266", "1.0905", "1.092152628",
"1.094730942", "1.095692666", "1.1074142", "1.109534807",
"1.111154446",
"1.111188325", "1.113985094", "1.114045618", "1.128810226",
"1.129375525",
"1.132705479", "1.154833837", "1.155201819", "1.158940397",
"1.161348047",
"1.162953533", "1.175788329", "1.178036097", "1.179280397",
"1.18116463",
"1.198506534", "1.203134068", "1.207592892", "1.208610568",
"1.212525667",
"1.212841855", "1.214403157", "1.216756112", "1.228462377",
"1.23305986",
"1.241758242", "1.258212878", "1.265571914", "1.265707797",
"1.272666444",
"1.279325988", "1.289559543", "1.291191103", "1.296541003",
"1.305111821",
"1.315201411", "1.342263532", "1.344827586", "1.347944377",
"1.352831595",
"1.377717391", "1.37771934", "1.385440181", "1.403358682",
"1.411889597",
"1.412269549", "1.412544902", "1.433843384", "1.444088526",
"1.473706353",
"1.50172117", "1.508521601", "1.53030303", "1.532658694",
"1.537642783",
"1.54340949", "1.558746736", "1.595342983", "1.596774194",
"1.596969697",
"1.630653266", "1.702558635", "1.70468948", "1.718568102",
"1.740819711",
"1.760157274", "1.775510204", "1.804859813", "1.814081408",
"1.816513761",
"1.849050827", "1.870188679", "1.880195599", "1.887061404",
"1.91858679",
"1.929152149", "1.944140197", "1.946996466", "1.986547085",
"2.007683864",
"2.070983811", "2.099778271", "2.156359393", "2.159613059",
"2.163963964", "2.25951087", "2.261603376", "2.329896907",
"2.402555911", "2.414500684",
"2.444075305", "2.450268817", "2.484520124", "2.51119403",
"2.515064562",
"2.526086957", "2.554", "2.609715243", "2.61965812", "2.643854749",
"2.704166667", "2.883275261", "3.013186813", "3.02739726",
"3.206896552",
"3.320930233", "3.411627907", "3.688931298", "3.709677419",
"3.748267898",
"3.878865979", "3.936440678", "3.994230769", "33.15909091",
"4.095854922",
"4.29330254", "4.390957447", "4.514634146", "4.6367713",
"4.847665848",
"5.284023669", "5.387755102", "6.171339564", "6.183908046",
"6.36121673",
"6.847826087", "7.003496503", "7.193220339", "8.160550459",
"8.751879699"
), class = "factor"), MnFe = c(0.012176723, 0.010329834,
0.009460859,
0.004488071, 0.0033725, 0.003435313), MnIncCoh = c(169.4430276,
331.1977339, 490.5686845, 279.5752228, 272.3091921, 286.0408118
), CuRb = c(0.392971246, 1.484304933, 0.735426009, 0.491651206,
1.142857143, 0.4345898)), row.names = c(NA, 6L), class =
"data.frame")
Using your posted data. This should approximate the desired design.
First step, Transform the data from a wide format to a long format using the pivot_longer function from tidyr.
Then plot the data using "depth" as the independent variable and the parameters' values as the dependent variables.
Then use facet_wrap() to separate the plots. coord_flip() will make the independent variable (Depth) appear on the y-axis.
#fixed 1 column of data.
originaldata$ZrRb <- as.numeric(as.character(originaldata$ZrRb))
library(tidyr)
#Make wide
wapITRAX<-pivot_longer(originaldata, -1, names_to="parameter", values_to = "value")
library(ggplot2)
ggplot(wapITRAX, aes(x = Depth , y = value))+
labs(x = "Depth (cm)")+
geom_line() +
theme_classic() +
coord_flip() +
scale_x_reverse() +
facet_wrap(vars(parameter), nrow=1, scales = "free_x")
I have the below results and I am trying to plot using ggplot the columns using the code below but ordered such that the first ranked plot on the legend will correspond to the highest score (taken from the last row in the data). So for example the plots would be ordered in the following way, which on the legend will look like;
train_auc_9 (result = 0.9939489)
train_auc_6 (result = 0.9870544)
train_auc_3 (result = 0.9699427)
train_auc_8 (result = 0.9662169)
train_auc_7 (result = 0.9662169) etc.
Should I sort the columns based on final row value first to make life easier?
ggplot code:
ggplot(result_train_auc, aes(ID)) +
geom_line(aes(y = train_auc_1, colour = "train_auc_1")) +
geom_line(aes(y = train_auc_2, colour = "train_auc_2")) +
geom_line(aes(y = train_auc_3, colour = "train_auc_3")) +
geom_line(aes(y = train_auc_4, colour = "train_auc_4")) +
geom_line(aes(y = train_auc_5, colour = "train_auc_5")) +
geom_line(aes(y = train_auc_6, colour = "train_auc_5")) +
geom_line(aes(y = train_auc_7, colour = "train_auc_6")) +
geom_line(aes(y = train_auc_8, colour = "train_auc_7")) +
geom_line(aes(y = train_auc_8, colour = "train_auc_8")) +
geom_line(aes(y = train_auc_8, colour = "train_auc_9"))
ggtitle("auc curves") +
labs(y="auc result", x = "rounds") +
theme_bw(base_size = 11, base_family = "")
Final row of the data.
0.9177697
0.9309705
0.9699427
0.9431463
0.9544374
0.9870544
0.9538312
0.9662169
0.9939489
100
data called result_train_auc.
structure(list(train_auc_1 = c(0.8713344, 0.8871179, 0.8928057,
0.8964518, 0.8976864, 0.8995532, 0.9001708, 0.9015733, 0.9022265,
0.9027288, 0.9031676, 0.9036361, 0.9040329, 0.9045184, 0.9048802,
0.9053402, 0.9055032, 0.9056735, 0.9061118, 0.9062926, 0.9064719,
0.9067036, 0.9069563, 0.9071833, 0.9074455, 0.907724, 0.907817,
0.9081296, 0.9082689, 0.9084679, 0.9086163, 0.9087718, 0.9091238,
0.9093731, 0.9095402, 0.909702, 0.909771, 0.9099373, 0.9101334,
0.9103078, 0.9104885, 0.9106456, 0.9107819, 0.9108925, 0.9111391,
0.9112471, 0.9114579, 0.9115598, 0.9116752, 0.9117411, 0.9118367,
0.9120177, 0.9121465, 0.9123075, 0.9125142, 0.9125989, 0.9127896,
0.9128665, 0.9129764, 0.9130837, 0.9132152, 0.9133399, 0.9135001,
0.9136408, 0.9137385, 0.9138751, 0.9139981, 0.9140897, 0.914189,
0.9142859, 0.9144037, 0.9145455, 0.9146629, 0.9147381, 0.9148613,
0.9149902, 0.9150876, 0.9151985, 0.9153009, 0.9154068, 0.915529,
0.9156637, 0.9157626, 0.9158646, 0.915995, 0.9161135, 0.9162173,
0.9163324, 0.91642, 0.9165297, 0.9166981, 0.9168092, 0.9169468,
0.9170768, 0.9171896, 0.9173152, 0.9174244, 0.9175383, 0.9176803,
0.9177697), train_auc_2 = c(0.8870459, 0.9021414, 0.9085472,
0.9114717, 0.9136837, 0.9148831, 0.9160633, 0.916577, 0.9175609,
0.918181, 0.9185195, 0.9189418, 0.919285, 0.9195346, 0.9197795,
0.9201756, 0.9205287, 0.9207205, 0.9208646, 0.9210185, 0.9211867,
0.9213273, 0.9214634, 0.9217073, 0.921851, 0.9220127, 0.9221905,
0.9224531, 0.9227193, 0.9228104, 0.9229566, 0.9231306, 0.9233425,
0.9234565, 0.9235739, 0.9237399, 0.9239113, 0.9240052, 0.9242447,
0.9243938, 0.9245815, 0.9247349, 0.92491, 0.9250047, 0.9251303,
0.9252628, 0.925474, 0.9256335, 0.9257628, 0.9258756, 0.9259525,
0.9260501, 0.9261603, 0.9262516, 0.926404, 0.9264811, 0.9266122,
0.9267074, 0.9268346, 0.9269162, 0.9270102, 0.9271369, 0.9272119,
0.9273092, 0.9274163, 0.9275176, 0.9276396, 0.9277829, 0.9278664,
0.927978, 0.928066, 0.9281753, 0.9283186, 0.928417, 0.9285194,
0.9286077, 0.9286985, 0.9287818, 0.9288713, 0.9289982, 0.9290624,
0.9291517, 0.929267, 0.9293397, 0.9294468, 0.9295616, 0.9296748,
0.9297741, 0.9298962, 0.929982, 0.9300875, 0.9301889, 0.9302799,
0.9303726, 0.9304612, 0.930582, 0.9306869, 0.9307636, 0.9308679,
0.9309705), train_auc_3 = c(0.920364, 0.9396713, 0.9477804, 0.9511932,
0.9533659, 0.9548309, 0.9560987, 0.9569889, 0.9577224, 0.9580906,
0.9585115, 0.9590348, 0.9592664, 0.9596969, 0.9600961, 0.9603775,
0.9605959, 0.9608837, 0.9611088, 0.9612673, 0.9614595, 0.9616898,
0.9618144, 0.961986, 0.9621864, 0.9623498, 0.9624878, 0.9626525,
0.9627835, 0.9628886, 0.9629866, 0.9631557, 0.9632875, 0.9634212,
0.9635417, 0.9636695, 0.9637814, 0.9638905, 0.9639689, 0.9640757,
0.964196, 0.9643034, 0.9644215, 0.9645278, 0.9646416, 0.9647334,
0.9648655, 0.9649719, 0.9650779, 0.9651884, 0.9653068, 0.9654192,
0.9655179, 0.9656188, 0.9657627, 0.965861, 0.9659789, 0.966077,
0.9661733, 0.966301, 0.9664198, 0.9664838, 0.9665656, 0.9666834,
0.9667807, 0.9668807, 0.9669509, 0.9670521, 0.9671343, 0.9672346,
0.967336, 0.9674322, 0.9675225, 0.9676096, 0.9677119, 0.9678031,
0.967893, 0.9679848, 0.9680899, 0.968179, 0.9682643, 0.9683379,
0.9684383, 0.9685187, 0.9686161, 0.9687164, 0.9688037, 0.9688999,
0.9689951, 0.9690893, 0.9691872, 0.9692667, 0.9693624, 0.9694321,
0.9695126, 0.9695981, 0.9696739, 0.9697611, 0.9698583, 0.9699427
), train_auc_4 = c(0.8719551, 0.8896184, 0.8948779, 0.898766,
0.9027315, 0.9049762, 0.9062427, 0.9073199, 0.9081683, 0.9092019,
0.9100824, 0.9109981, 0.9116318, 0.9123474, 0.9131612, 0.9138763,
0.9145007, 0.9152897, 0.9158685, 0.9166697, 0.9172174, 0.9179825,
0.9186526, 0.9193314, 0.9199804, 0.9205763, 0.9212371, 0.921792,
0.9223935, 0.9229936, 0.9234932, 0.9240162, 0.9245426, 0.9250783,
0.9256483, 0.9262044, 0.9267231, 0.9271653, 0.9276435, 0.9280976,
0.9284953, 0.9289266, 0.9293313, 0.9297668, 0.9301079, 0.9305796,
0.9309791, 0.9314001, 0.9317514, 0.932084, 0.9323953, 0.9326925,
0.9330121, 0.933329, 0.9335974, 0.9339083, 0.934189, 0.9344819,
0.934775, 0.9350779, 0.9353696, 0.9356319, 0.9358907, 0.9361598,
0.9364136, 0.936647, 0.9368967, 0.9370801, 0.9373547, 0.9375985,
0.9378257, 0.9380637, 0.9382862, 0.9385131, 0.9387194, 0.9389419,
0.9391624, 0.9393709, 0.939553, 0.9397668, 0.9399806, 0.9401861,
0.9403382, 0.9404968, 0.9406843, 0.9408617, 0.9410371, 0.9412126,
0.9413865, 0.9415654, 0.9417246, 0.9418873, 0.9420531, 0.9422337,
0.9423998, 0.9425335, 0.9426956, 0.9428642, 0.9429921, 0.9431463
), train_auc_5 = c(0.8894875, 0.9047447, 0.9105668, 0.9144695,
0.9172043, 0.9185459, 0.919896, 0.9209646, 0.9220889, 0.9229307,
0.923797, 0.9245408, 0.9252745, 0.9258488, 0.9264725, 0.9270811,
0.927705, 0.9283463, 0.9288456, 0.9293815, 0.9299636, 0.9305526,
0.9311112, 0.9317484, 0.9323305, 0.9328307, 0.9332667, 0.9338263,
0.9343498, 0.9348398, 0.9353667, 0.9358599, 0.9362733, 0.9367398,
0.9371676, 0.9376035, 0.9380137, 0.93843, 0.9388201, 0.9392386,
0.9396649, 0.9400335, 0.940358, 0.940702, 0.9410648, 0.9414072,
0.9417623, 0.9421251, 0.9424502, 0.9428179, 0.9431571, 0.9434742,
0.9438279, 0.9441624, 0.9444683, 0.944784, 0.9450568, 0.9453451,
0.9456379, 0.9459065, 0.9462062, 0.9464493, 0.9467355, 0.9469841,
0.9472465, 0.9475116, 0.9477762, 0.948027, 0.9482639, 0.9485123,
0.9487707, 0.9489929, 0.9492213, 0.9494459, 0.9497089, 0.9499556,
0.9501546, 0.9503753, 0.9505703, 0.9507616, 0.9509694, 0.9511743,
0.9513489, 0.9515396, 0.9517049, 0.9518854, 0.9520863, 0.9522618,
0.9524513, 0.9526601, 0.9528238, 0.9530262, 0.953238, 0.9534353,
0.9535989, 0.9537715, 0.953945, 0.9541034, 0.9542643, 0.9544374
), train_auc_6 = c(0.921898, 0.9414678, 0.9480329, 0.9519876,
0.9548386, 0.9567495, 0.9580347, 0.959306, 0.9603841, 0.9614684,
0.9623793, 0.9630147, 0.9637751, 0.964326, 0.9648042, 0.9653413,
0.9658432, 0.9664368, 0.9670508, 0.9675288, 0.9681021, 0.9685874,
0.969052, 0.9695682, 0.9699854, 0.9704805, 0.9708863, 0.97131,
0.9717166, 0.9721004, 0.9724803, 0.9728962, 0.9732809, 0.9736517,
0.9740503, 0.9744405, 0.974781, 0.9751438, 0.9754958, 0.9758019,
0.9761391, 0.9764902, 0.9768141, 0.9771417, 0.9774458, 0.9777964,
0.9780874, 0.9783719, 0.9786893, 0.9789502, 0.9792233, 0.9794795,
0.979716, 0.9799766, 0.9802053, 0.9804437, 0.9806533, 0.9808698,
0.9810933, 0.9813374, 0.9815627, 0.9817506, 0.9819429, 0.9821263,
0.9823146, 0.9824981, 0.9826867, 0.9828871, 0.9830589, 0.9832092,
0.9833926, 0.983539, 0.983694, 0.9838324, 0.9839557, 0.9841259,
0.9843032, 0.9844521, 0.9845934, 0.9847127, 0.9848563, 0.9849894,
0.9851023, 0.9852643, 0.9853757, 0.9854869, 0.9856046, 0.9857333,
0.9858394, 0.9859424, 0.9860531, 0.9861587, 0.986294, 0.9864175,
0.9865295, 0.9866261, 0.9867294, 0.986843, 0.9869372, 0.9870544
), train_auc_7 = c(0.8714998, 0.8904612, 0.8996561, 0.9041253,
0.9066398, 0.9086743, 0.910345, 0.9116165, 0.9130665, 0.914957,
0.9166201, 0.9180005, 0.9195517, 0.9207296, 0.9218763, 0.9230211,
0.9241087, 0.9252396, 0.9262592, 0.9271692, 0.9280938, 0.9289803,
0.9297884, 0.9305648, 0.9311738, 0.9317921, 0.9323804, 0.9329845,
0.933683, 0.9341942, 0.9347607, 0.9352553, 0.9357764, 0.9363214,
0.9367976, 0.9372965, 0.9377839, 0.9382045, 0.9386436, 0.9391153,
0.939509, 0.9399301, 0.9402878, 0.9405964, 0.9409411, 0.9413296,
0.9416693, 0.9419742, 0.9423106, 0.9426316, 0.9428824, 0.94322,
0.9435017, 0.9438152, 0.9440885, 0.9443691, 0.9446256, 0.9449214,
0.9451091, 0.945326, 0.9456083, 0.9458252, 0.9460603, 0.94633,
0.946581, 0.9468279, 0.9470671, 0.9473089, 0.9474984, 0.9477469,
0.9479721, 0.9482038, 0.9484291, 0.9486507, 0.9488756, 0.9490827,
0.9492949, 0.9494745, 0.9497085, 0.9499118, 0.9501382, 0.9503468,
0.9505637, 0.9507583, 0.9509843, 0.9512342, 0.9514627, 0.9516457,
0.9518377, 0.9520731, 0.9522473, 0.9524432, 0.9526339, 0.9528058,
0.9529749, 0.9531575, 0.9533158, 0.953497, 0.953663, 0.9538312
), train_auc_8 = c(0.8894918, 0.906573, 0.9133049, 0.9168864,
0.9194233, 0.9219299, 0.9237789, 0.9252068, 0.9265656, 0.9281103,
0.929274, 0.9307909, 0.9317895, 0.9328411, 0.933978, 0.9349498,
0.9358906, 0.936782, 0.9376891, 0.9385461, 0.9393091, 0.9401118,
0.940883, 0.941568, 0.9421953, 0.9427495, 0.9434112, 0.9439894,
0.944666, 0.9452999, 0.9457854, 0.9463698, 0.9468706, 0.9473643,
0.947829, 0.9482811, 0.9487576, 0.9492046, 0.9496415, 0.9500149,
0.9504884, 0.9509045, 0.9512969, 0.951719, 0.95214, 0.9525265,
0.9528557, 0.9531854, 0.9535102, 0.9537721, 0.9541137, 0.9544496,
0.9548184, 0.9551027, 0.955434, 0.9557073, 0.955989, 0.9563086,
0.9565974, 0.9569073, 0.9571664, 0.9574366, 0.9577329, 0.9580357,
0.9582985, 0.9585633, 0.9587903, 0.9590735, 0.9593316, 0.9596137,
0.9598677, 0.9600993, 0.9602947, 0.9605253, 0.9607954, 0.9610258,
0.9612257, 0.9614929, 0.9617122, 0.9619397, 0.9622056, 0.9624263,
0.9626628, 0.9628691, 0.9631282, 0.9633603, 0.9635655, 0.9638023,
0.9640161, 0.9642836, 0.9644966, 0.9646435, 0.9648045, 0.964987,
0.9652297, 0.9654192, 0.9655976, 0.9657743, 0.965976, 0.9662169
), train_auc_9 = c(0.9195993, 0.9417172, 0.949147, 0.9537538,
0.9565765, 0.9589093, 0.9607099, 0.962332, 0.9639256, 0.9652906,
0.9664848, 0.9675891, 0.9685598, 0.9695702, 0.9705377, 0.9713772,
0.9722889, 0.9730441, 0.9738743, 0.9745701, 0.9752537, 0.9759395,
0.9765657, 0.9772191, 0.9778215, 0.9783909, 0.9789667, 0.979504,
0.9799884, 0.9804533, 0.9808872, 0.9813206, 0.981738, 0.982081,
0.9824229, 0.9827401, 0.983044, 0.9833385, 0.9836874, 0.9840525,
0.9843545, 0.9845821, 0.984868, 0.985124, 0.9853725, 0.9855741,
0.9857704, 0.9860043, 0.986215, 0.9864325, 0.9865974, 0.9867876,
0.9870471, 0.9872346, 0.987455, 0.9877028, 0.9879157, 0.9880718,
0.9882622, 0.9884967, 0.9886666, 0.9888404, 0.9890087, 0.9891979,
0.9893628, 0.9895276, 0.9896856, 0.989821, 0.9899959, 0.9901792,
0.9903423, 0.9905105, 0.9906635, 0.9908151, 0.99095, 0.991091,
0.9912231, 0.9913755, 0.9914875, 0.9916226, 0.991765, 0.9919017,
0.9920161, 0.9921698, 0.9923023, 0.9924097, 0.9925314, 0.9926483,
0.9927896, 0.992922, 0.9930381, 0.9931279, 0.9932223, 0.9933255,
0.9934563, 0.99354, 0.9936327, 0.9937486, 0.9938403, 0.9939489
), ID = 1:100), .Names = c("train_auc_1", "train_auc_2", "train_auc_3",
"train_auc_4", "train_auc_5", "train_auc_6", "train_auc_7", "train_auc_8",
"train_auc_9", "ID"), row.names = c(NA, -100L), class = "data.frame")
EDIT: Added a picture for clarification.
Here is a way to do it. Notice that I reshape the data to use full power of plotting aesthetics:
library(tidyr)
library(ggplot2)
# reshape the data
df %>%
gather(trainauc, value, -ID) -> df
# get the order
df %>%
filter(ID == 100) %>%
arrange(desc(value)) %>%
.$trainauc -> leg_order
# plot
ggplot(df, aes(ID)) +
geom_line(aes(y = value, colour = trainauc)) +
scale_colour_discrete(breaks = leg_order) +
labs(title = "auc curves", y = "auc result", x = "rounds") +
theme_bw(base_size = 11, base_family = "") +
I am trying to find a point where a big change happens on a slope.
Tried to use ecp::e.divisive() function with different settings and couldn't make it identify the change the way I need.
Below code and plot should illustrate more. Grey lines are cutoffs coming from ecp package, and I am trying to it to plot blue line (which is at the moment plotted manually).
Please advise if there are better packages for this task.
library("ecp")
#get cutoff points
ecpOutput <- e.divisive(x, k=1)
ecpOutput$estimates
#plot
plot(x, bty = "n")
abline(h = 0, lty = "dashed", col = "grey")
#add ecp estimates
abline(v = ecpOutput$estimates, col = "grey", lty = 2)
#ideal line, doesn't have to be exact, anything around this line is OK
abline(v = 384, col = "blue", lty = 2)
Data: x is a sorted 1 column matrix (required structure by ecp).
x <- structure(c(-27.0409169663486, -26.129156710088, -24.7600585044449,
-24.3953228174759, -24.1577613311647, -23.5016667274094, -20.6947912955816,
-20.5608424516568, -20.2274448352933, -20.1776769950718, -20.0154244013066,
-19.9185729879804, -18.6495729388285, -18.5966280348446, -18.4877201244377,
-17.8697488852, -17.6964369055135, -17.4580050047899, -17.4503603253745,
-17.2138236467553, -17.1978137674216, -17.0883917900212, -17.0780609255085,
-16.5936774343097, -16.5302509987677, -16.5047064149008, -16.3610339293733,
-16.3179953827084, -15.8098489669017, -15.8017464582135, -15.7931978631991,
-15.7048014947664, -15.6438615495371, -15.5724025176269, -15.4769417976187,
-15.4566078151486, -15.3683766952941, -15.3598144860889, -15.2872530572521,
-15.2615773975834, -15.1553721281872, -15.1253479156971, -14.8574803029005,
-14.7886609612358, -14.7052679457918, -14.6700476095839, -14.4967591359077,
-14.3902100635321, -14.1344579537429, -14.1122694462137, -13.6977777268339,
-13.5002575880219, -13.3931536856711, -13.2720061859572, -13.1630633420915,
-13.120694599871, -13.0989354290794, -13.0305773443162, -13.0247860189105,
-12.9679198987695, -12.9339256928714, -12.7503935672128, -12.6086380226913,
-12.5204925937268, -12.5018027956008, -12.3362734240611, -12.2633206830352,
-12.2389866512024, -12.2261511983906, -12.2082248950284, -12.1988063383678,
-12.1625438078306, -12.105137364671, -12.0283612849999, -12.0207914207455,
-11.9569828730108, -11.9377135887775, -11.7974478043662, -11.7856404961775,
-11.7070359492143, -11.685818522575, -11.6150116648869, -11.5889351441476,
-11.5696939812167, -11.5218497980405, -11.4278460823336, -11.2616735602107,
-11.1371735315344, -11.1101486927449, -11.0545987008828, -11.0497610649959,
-10.9777305856557, -10.9538432991084, -10.8709063558819, -10.8321978567433,
-10.7154060103612, -10.6904665022414, -10.6728147078525, -10.6319097418566,
-10.6084139374132, -10.5435156393802, -10.4969417190754, -10.4910751521816,
-10.4076974735856, -10.1987743033507, -10.1084368444001, -10.067653486032,
-10.0184841375099, -10.0184804878766, -9.98796628047806, -9.92940612537163,
-9.79791464687017, -9.78385633218692, -9.74746828052048, -9.5340969261009,
-9.3872416240278, -9.34975526969295, -9.34350605265574, -9.33678121532548,
-9.28246068708019, -9.26231844050325, -9.24219935644902, -9.22973616812829,
-9.1945301757694, -9.18742543173638, -9.09818179983656, -8.84383892771356,
-8.71390231428188, -8.63727799501085, -8.62365985718404, -8.57368937545283,
-8.56896270190976, -8.51750651338242, -8.36994967607861, -8.34940777555791,
-8.24579609778514, -8.16499004491889, -8.13648089733029, -8.12443902872708,
-8.06884804631702, -8.01978044346555, -8.00857010892087, -7.98752833340474,
-7.98494612290397, -7.92263788171607, -7.92262794402356, -7.91254741704133,
-7.8612668717642, -7.85956255484269, -7.80614005087113, -7.78172738274975,
-7.76590807725416, -7.73362312192246, -7.73353827316045, -7.73074597208869,
-7.66932615651785, -7.63405189653259, -7.52008106079428, -7.4794467369495,
-7.37006671254996, -7.33891732414829, -7.28638734342099, -7.18383241390338,
-7.16967207372779, -7.12414638131948, -7.11845633549842, -7.10069950413643,
-7.08453272839936, -7.06225675561229, -7.01372949292662, -6.97700431366834,
-6.96221498775977, -6.95474531960413, -6.92853733102012, -6.87948984857266,
-6.81875907966932, -6.80049432153244, -6.74491178906506, -6.73722594655536,
-6.65241543109368, -6.64432866218849, -6.57471615362753, -6.538942870458,
-6.48556582657451, -6.44344567639388, -6.44142334658235, -6.40718664187937,
-6.37631310536975, -6.35766817597632, -6.33004629281548, -6.32243131413274,
-6.31465060236999, -6.30957529705468, -6.20042487075657, -6.19852760812695,
-6.19516991943952, -6.19169299941109, -6.14915041772936, -6.1341182105985,
-6.06886854629022, -6.03316938455024, -5.92620275477516, -5.915861751696,
-5.8993712054553, -5.8562854376353, -5.81203754357936, -5.81031989834777,
-5.79005016179402, -5.70715392727825, -5.64380201251138, -5.61822898444235,
-5.61198428778589, -5.55181215637224, -5.5414283688058, -5.51873245882438,
-5.51677200116567, -5.51551938308407, -5.50995967349956, -5.47456882908066,
-5.46182989367447, -5.34425037377986, -5.32571672656563, -5.24036884690065,
-5.2280272754873, -5.13269699736861, -5.13115055948407, -5.09522822858288,
-5.06292167413738, -5.05058297801937, -5.00080776299476, -4.99907315892117,
-4.96652519349395, -4.94319578011658, -4.93410325981468, -4.88778233710964,
-4.86817149761772, -4.86068237590916, -4.86018697766406, -4.79260202993216,
-4.78704006512903, -4.7697286436275, -4.74319640834353, -4.66791717712299,
-4.63451063153309, -4.55913300698176, -4.54773156325591, -4.5029917001588,
-4.50232432311584, -4.48448651461267, -4.48195952916376, -4.45942294767531,
-4.43684117621408, -4.39862573806896, -4.39218230499561, -4.32218627745706,
-4.29986813130089, -4.25622220689577, -4.24164586680005, -4.1312719357839,
-4.12513288512985, -4.07946940297387, -4.07261512152973, -4.01165511465604,
-3.95381138375493, -3.95044337911054, -3.92340302872436, -3.91833355363622,
-3.87865234740553, -3.84667242505411, -3.78315737709957, -3.76505984684618,
-3.76018864171568, -3.71684064078827, -3.70873189126336, -3.69375597807388,
-3.69325959119626, -3.6505984611436, -3.62183744181462, -3.58883235361055,
-3.52391205093927, -3.51617596119693, -3.51388800083065, -3.33813297717772,
-3.26837985172665, -3.25102638292739, -3.24658212799339, -3.22891542458543,
-3.17892565704276, -3.1283260157199, -3.04352634415322, -3.02299584335501,
-3.01373331291241, -2.99552385674378, -2.86372198270148, -2.83811475137176,
-2.77463274263238, -2.69783066358124, -2.69434624147968, -2.65941589188957,
-2.6221506974122, -2.57311913722599, -2.56672727866588, -2.56667581533302,
-2.55574357522681, -2.50395283367281, -2.49786830801457, -2.46604172470746,
-2.42877871397163, -2.4017493435186, -2.369794488014, -2.30769529142191,
-2.28289171086166, -2.24736457553032, -2.22224835097905, -2.21993628534018,
-2.21938775070459, -2.21330765240871, -2.1970203297687, -2.18405609540363,
-2.1707971627096, -2.16975015841871, -2.11020976431672, -1.75392661111203,
-1.73701872449349, -1.7094653013083, -1.68198644925752, -1.67745819232374,
-1.65515644561234, -1.57194744043552, -1.57116047214388, -1.51000042083035,
-1.50463279855355, -1.46346551065156, -1.44224216231154, -1.37311564470336,
-1.32779620730326, -1.32592791352896, -1.31204307149482, -1.27756472934721,
-1.23603794634302, -1.1702376900797, -1.16378397319292, -1.12499060545068,
-1.1088125112075, -0.939262072448041, -0.862163030101959, -0.858354175324213,
-0.654474645495292, -0.628257109630334, -0.606705081751156, -0.550295255225927,
-0.497332185765383, -0.482929007849059, -0.440957523688129, -0.360777543733516,
-0.305426972877309, -0.199639436822714, -0.108018704644053, 0.0346309488381769,
0.034746934017077, 0.0493559949320308, 0.192914632754347, 0.218667918037225,
0.245737147003821, 0.247527541956785, 0.333222558419853, 0.557256844844099,
0.669063496448389, 0.720955292473698, 0.767660102407662, 0.878291398784322,
0.946178076488395, 0.946467111772845, 1.11121506783806, 1.22835778244999,
1.24961769756564, 1.29790330264223, 1.30574614563616, 1.30823862002444,
1.35802473804966, 1.48779920673317, 1.6470804669896, 1.75657725379367,
1.91434060426954, 3.12793082392592, 4.05818631097523, 5.87762107232264,
7.87360999893622, 54.7844606150857), .Dim = c(389L, 1L))
Try:
e.divisive(diff(x), k = 1, min.size = 2)
I'm trying to plot a simple graph that show the increase in wealth for two different investment strategies. When using the standard graph from R it works, but when I try to use ggplot2 I get these weird spikes in the lines.
Does any have any idea what could be causing this?
I've tried to simply the code as much as possible:
For the standard graph
ind.ts = ts(cbind(ind.passive,ind.active), start=c(insample.endstart,1),frequency=12)
plot(log(ind.ts),type="lines", col=c("blue","red"))
legend(x="topleft", legend=c("Passive","Active"), col=c("blue","red"), lty=1)
For the ggplot graph
testers=data.frame(ind.ts)
ggplot(testers, aes(date)) +
geom_line(aes(y = log(ind.passive), colour = "Passive",size="1")) +
geom_line(aes(y = log(ind.active), colour = "Active",size="1"))
The Ind.ts data set
structure(c(1, 1.026669, 1.066102329621, 1.09764083483818, 1.13073909657189,
1.17422279926966, 1.201650295415, 1.24229131005623, 1.24436842112664,
1.29675757602449, 1.29281154272065, 1.34840890311535, 1.37447769243928,
1.42187380670767, 1.43432089001159, 1.44828830683852, 1.47037760009442,
1.50663270057995, 1.51269991046518, 1.44617893190248, 1.47609892782461,
1.55880475075062, 1.60230787373457, 1.72267003659376, 1.6884336922865,
1.7947931958647, 1.80827747714523, 1.73407842742553, 1.83823238001199,
1.94879470474019, 2.03637158997651, 2.19836698633073, 2.07500122615881,
2.18823196806907, 2.11573803119891, 2.21303659177769, 2.25083083069207,
2.27667036862841, 2.44006700098487, 2.56495939036328, 2.59127330874902,
2.54554769994283, 2.64902166839781, 2.62135793511473, 2.24229384954953,
2.38534322797539, 2.58003017155629, 2.73574015247005, 2.89313822640227,
3.01496249083961, 2.92082933195062, 3.03735873897812, 3.15584610338566,
3.08028252428619, 3.25121048184135, 3.15027015001163, 3.13383204036887,
3.04763285626648, 3.24152630621501, 3.30661615444381, 3.5011906754359,
3.32628169286315, 3.26271977599422, 3.58162126961968, 3.47465973202375,
3.4018482373392, 3.48660188432426, 3.43296051433394, 3.64465402445034,
3.45302176049876, 3.43920276741325, 3.16710336206381, 3.18321124976327,
3.29673729577483, 2.9957319937214, 2.80662641161774, 3.02543381329387,
3.04403720581181, 2.97111425050939, 2.94227958670819, 2.75683358891715,
2.53472102032527, 2.58379068455775, 2.78122846592754, 2.80549468429276,
2.76500859050373, 2.71079783207832, 2.81360212906206, 2.64401226073284,
2.62324090041252, 2.43641368348514, 2.24723834303094, 2.26148583412576,
2.01595857860056, 2.19346574740491, 2.32192606890168, 2.18514140418268,
2.12856372294559, 2.09571359900937, 2.1165869064555, 2.29149953181808,
2.41150994529845, 2.44221328992199, 2.48518647497146, 2.53301388868229,
2.50620193667058, 2.64742390960003, 2.6698343529948, 2.80897010046677,
2.86115795596334, 2.89979789415863, 2.85611823847891, 2.81197121886675,
2.84980347964538, 2.90496997540435, 2.80930350417434, 2.81972040156782,
2.85016210302314, 2.89418855702854, 3.00999951213804, 3.11183381563269,
3.03729294841303, 3.09892873421517, 3.04396923311387, 2.98710484387007,
3.08097760069353, 3.08499827646243, 3.20047593194697, 3.16912086924169,
3.19575099190593, 3.14371138275373, 3.25904157854143, 3.26071346687123,
3.3485896948034, 3.35499219829987, 3.3971510302637, 3.44342702159796,
3.34200432210381, 3.3473849490624, 3.36955802696499, 3.4464479715823,
3.53637269205683, 3.65311189099431, 3.71864871831875, 3.7710110109214,
3.82954087282191, 3.75144504580245, 3.79450413203817, 3.96444479409563,
4.09921609487092, 4.03197255405065, 3.90887240000293, 3.96507025849778,
4.11298323942078, 4.18000430130714, 4.00202389816178, 3.973681564915,
3.73688988046171, 3.6132997214452, 3.59812747591486, 3.77562310430174,
3.82238042082541, 3.50029900180582, 3.47233161278139, 3.52122551422096,
3.20811814149644, 2.67119786498117, 2.47785656351383, 2.50381211101664,
2.29590056094204, 2.04999813136234, 2.23149881591877, 2.44744541933286,
2.58359925545577, 2.59022877114527, 2.78828284344458, 2.88774646903593,
2.99667515359443, 2.94310059519847, 3.1174675330616, 3.17829867703423,
3.06610473373492, 3.15882374088307, 3.34981254190434, 3.40448483240076,
3.13064849939144, 2.96722864772321, 3.17659630110655, 3.0311907820197,
3.30193068028814, 3.42901538831107, 3.42659107443153, 3.65581631094671,
3.74411158648869, 1, 1.026669, 1.066102329621, 1.09764083483818,
1.13073909657189, 1.17422279926966, 1.201650295415, 1.24229131005623,
1.24436842112664, 1.29675757602449, 1.29281154272065, 1.34840890311535,
1.37447769243928, 1.42187380670767, 1.43432089001159, 1.44828830683852,
1.47037760009442, 1.50663270057995, 1.51269991046518, 1.44617893190248,
1.47609892782461, 1.55880475075062, 1.60230787373457, 1.72267003659376,
1.6884336922865, 1.7947931958647, 1.80827747714523, 1.73407842742553,
1.83823238001199, 1.94879470474019, 2.03637158997651, 2.19836698633073,
2.07500122615881, 2.18823196806907, 2.11573803119891, 2.21303659177769,
2.25083083069207, 2.27667036862841, 2.44006700098487, 2.56495939036328,
2.59127330874902, 2.54554769994283, 2.64902166839781, 2.62135793511473,
2.24229384954953, 2.2509042579318, 2.25833224198298, 2.39462710945113,
2.53239958556629, 2.63903386731532, 2.55663795191, 2.6586375796394,
2.76235103162114, 2.69620929852, 2.84582464870417, 2.75747033083585,
2.74308185064955, 2.66763064126559, 2.83734797029354, 2.89432191753704,
3.06463539645259, 2.91153540595201, 2.85589887587967, 3.13503728790702,
3.04141253434097, 2.97767973468385, 3.05186564759377, 3.00491269460554,
3.19021063591839, 3.02247255089243, 3.01037661574376, 3.02584995154869,
3.04040428981563, 3.05344762421894, 3.06587515604951, 3.07715757662378,
3.08709679559627, 3.09641982791897, 3.10543040961822, 3.1145293207184,
3.12325000281641, 3.13012115282261, 3.13575537089769, 3.14064714927629,
3.14507546175677, 3.14941566589399, 3.15395082445288, 3.15865021118131,
2.96826256970236, 2.97253686780273, 2.97675787015501, 2.98092533117323,
2.98494958037031, 2.98900911179961, 2.99295460382719, 2.99603734706913,
2.99900342404273, 3.00194244739829, 3.00488435099674, 3.00770894228668,
3.01053618869243, 3.16820398996663, 3.20854156316688, 3.26499906051237,
3.32783396743193, 3.29260884488666, 3.47814406068718, 3.5075865501609,
3.69038091563598, 3.75894450266758, 3.80970904817611, 3.75232340078343,
3.69432373797752, 3.74402716954827, 3.81650404749639, 3.69081893620424,
3.70450449281968, 3.74449832332416, 3.80233958892455, 3.95449020757537,
4.08827852027806, 3.99034789660332, 4.07132402646909, 3.99911909485966,
3.92441155104859, 4.04774010845184, 4.05302240929337, 4.20473514411804,
4.16354135391111, 4.19852759190803, 4.1301587686014, 4.28167777318631,
4.28387427388395, 4.39932468556512, 4.40773619436392, 4.4631238073823,
4.52392047988646, 4.39067292607189, 4.39774190948286, 4.42687255189128,
4.52788935665288, 4.64603104574667, 4.79940117659781, 4.88550243370598,
4.95429519347499, 5.03119080917292, 4.92858973500145, 4.9851600879798,
5.20842546768007, 5.38548589145385, 5.29714238089044, 5.13541532685947,
5.20924719301373, 5.40357295030192, 5.49162417152709, 5.25779630592764,
5.22056059248906, 4.90946738678263, 4.91815714405724, 4.9233212090585,
4.92863839596428, 4.93573563525447, 4.94338602548911, 4.95010903048378,
4.95718768639737, 4.96184744282258, 4.96462607739057, 4.96542041756295,
4.96556938017547, 4.96611559280729, 4.9673571217055, 4.9682512459874,
4.96889711864938, 4.96964245321718, 4.97038789958516, 4.9711334577701,
5.14846373047568, 5.34266893085295, 5.24715269570716, 5.55802550431702,
5.66647925598276, 5.46645253824657, 5.63175806300315, 5.97226541900844,
6.06973876291208, 5.58152539525601, 5.29016976962365, 5.2908574916937,
5.04867378086891, 5.04933010846042, 5.24366872567485, 5.2399614518858,
5.59049391317115, 5.72551552216206), .Dim = c(194L, 2L), .Dimnames = list(
NULL, c("ind.passive", "ind.active")), .Tsp = c(1995, 2011.08333333333,
12), class = c("mts", "ts", "matrix"))
The date data set
structure(c(1995.1, 1995.2, 1995.3, 1995.4, 1995.5, 1995.6, 1995.7,
1995.8, 1995.9, 1995.1, 1995.11, 1995.12, 1996.1, 1996.2, 1996.3,
1996.4, 1996.5, 1996.6, 1996.7, 1996.8, 1996.9, 1996.1, 1996.11,
1996.12, 1997.1, 1997.2, 1997.3, 1997.4, 1997.5, 1997.6, 1997.7,
1997.8, 1997.9, 1997.1, 1997.11, 1997.12, 1998.1, 1998.2, 1998.3,
1998.4, 1998.5, 1998.6, 1998.7, 1998.8, 1998.9, 1998.1, 1998.11,
1998.12, 1999.1, 1999.2, 1999.3, 1999.4, 1999.5, 1999.6, 1999.7,
1999.8, 1999.9, 1999.1, 1999.11, 1999.12, 2000.1, 2000.2, 2000.3,
2000.4, 2000.5, 2000.6, 2000.7, 2000.8, 2000.9, 2000.1, 2000.11,
2000.12, 2001.1, 2001.2, 2001.3, 2001.4, 2001.5, 2001.6, 2001.7,
2001.8, 2001.9, 2001.1, 2001.11, 2001.12, 2002.1, 2002.2, 2002.3,
2002.4, 2002.5, 2002.6, 2002.7, 2002.8, 2002.9, 2002.1, 2002.11,
2002.12, 2003.1, 2003.2, 2003.3, 2003.4, 2003.5, 2003.6, 2003.7,
2003.8, 2003.9, 2003.1, 2003.11, 2003.12, 2004.1, 2004.2, 2004.3,
2004.4, 2004.5, 2004.6, 2004.7, 2004.8, 2004.9, 2004.1, 2004.11,
2004.12, 2005.1, 2005.2, 2005.3, 2005.4, 2005.5, 2005.6, 2005.7,
2005.8, 2005.9, 2005.1, 2005.11, 2005.12, 2006.1, 2006.2, 2006.3,
2006.4, 2006.5, 2006.6, 2006.7, 2006.8, 2006.9, 2006.1, 2006.11,
2006.12, 2007.1, 2007.2, 2007.3, 2007.4, 2007.5, 2007.6, 2007.7,
2007.8, 2007.9, 2007.1, 2007.11, 2007.12, 2008.1, 2008.2, 2008.3,
2008.4, 2008.5, 2008.6, 2008.7, 2008.8, 2008.9, 2008.1, 2008.11,
2008.12, 2009.1, 2009.2, 2009.3, 2009.4, 2009.5, 2009.6, 2009.7,
2009.8, 2009.9, 2009.1, 2009.11, 2009.12, 2010.1, 2010.2, 2010.3,
2010.4, 2010.5, 2010.6, 2010.7, 2010.8, 2010.9, 2010.1, 2010.11,
2010.12, 2011.1, 2011.2), .Tsp = c(1995, 2011.08333333333, 12
), class = "ts")
The spikes are in your data, specifically in the crummy way the dates are stored. January, February, March 1995 are coded as 1995.10, 1995.20, 1995.30, but then October, November, and December are 1995.10, 1995.11, 1995.12. When you pass your time series to ggplot you maybe saw a warning like:
Don't know how to automatically pick scale for object of type ts. Defaulting to continuous
So ggplot just converted to numerics, giving October the same x value as January and inserting Nov and Dec before February, causing your spikes. Since your samples (as far as I checked) are spaced every month, you could add a new column to your data like this:
ind.df <- as.data.frame(ind.ts)
ind.df$date <- seq(as.Date('1995-01-01'), as.Date('2011-02-01'), by = "month")
Then, ggplot works best with long-format data, so we can melt it
library(reshape2)
ind.melt <- melt(ind.df, id.vars = "date")
ggplot(ind.melt, aes(x = date, y = value, color = variable) +
geom_line(size = 1)
And the spikes are gone.
One other note, in ggplot don't put anything inside aes() that isn't mapping to a data column. In your post, inside aes() you have size = "1". You don't need the quotes around 1, and since it applies to the whole layer you should put it outside of aes().
The following example illustrates that for a very simple example, the plots from the basic R plotting and ggplot2 are the same, i.e. basic plotting does not get rid of the spikes, nor does ggplot2 introduces spikes. You need to make your example more complete, i.e. provide us with a sample of your data that reproduces the issue you see.
x = 1:100
y = runif(100)
y[50] = 5
plot(x, y)
library(ggplot2)
qplot(x, y, geom = 'line')