Simplifying matrix product with one unknown variable - r

I have to compute a product of 3 matrices D=ABC with:
A is a (1x3) matrix,
B is a (3x3) matrix,
C is a (3x1) matrix (and is equal to A', if it matters)
The result of this product is a simple value, and the calculation is very straightforward in R.
My problem is there is one unknown, namely X, inside A and C, and I would like to get the result as a formula: D = ABD = f(X).
Is there any way I could achieve this with R ?

Define D as shown below where argument B is the square matrix and A is a function of x returning a vector.
D <- function(B, A) function(x) t(A(x)) %*% B %*% A(x)
# test
A <- function(x) seq(3) * x
B <- matrix(1:9, 3)
Dfun <- D(B, A)
Dfun(10)
## [1] 22800

Related

A term in a loop contains itself

y <- rnorm(5)
X <- matrix(rnorm(15),5)
b <- rep(0, 3)
e <- y - X%*%b
w <- rep(0, 3)
A <- c(1,2,1)
for(i in 1:10){
for(j in 1:3){
e <- e + X[,j]*b[j]
xe <- sum(X[,j]*e)
w[j] <- xe
b[j] <- xe - (A%*%w - 1.5)
e <- e - X[,j]*b[j]
}
}
This is a dummy code that generate vector b. The problem here is that one of the vector in the loop is w which depends all the terms in b:
This w vector effects b as a vector not term by term. But the terms in w also depend on b[j]'s.
In the inner loop w vector is
1.78787 0.00000 0.00000 # first iteration
1.787870 -1.231099 0.000000 # second iteration
1.787870 -1.231099 7.507026 # Third iteration
respectively, for the first iteration over i.
According to theory, w should be in the form of third iteration not in the forms with zeros. This means for b[1], w has three zeros, for b[2], w has two zeros etc, but I need to use the same w for all b[j]'s.
I hope, I explained it properly. Maybe this is simple, but I'm confused.
What is the best way to code this situation: The iterations to estimate b depend all the terms in b?
A summary for math behind this is as following. b[j]'s are iterated until convergence.

Matrix dot-product in R

I am tring to figure out how to the dot product.
b = matrix(1:70, ncol=7)
g= matrix(1:48, ncol=6)
resulta = matrix(0,6,7)
for (c in 1:ncol(b)){
for (i in 1:ncol(g)){
resulta[i,c] <- sum((g[,i]) * (b[,c]))
}
}
Warning messages:
1: In (g[, i]) * (b[, c]) :
longer object length is not a multiple of shorter object length
2: In (g[, i]) * (b[, c]) :
longer object length is not a multiple of shorter object length
...........................Total 42 alike messages
Whenever you multiply matrices, you have to make sure that dimensions are such that #columns of first matrix is same as #rows of second i.e. if first matrix is a x b, second matrix has to be b x c (c and a may or may not be equal) so that the resultant matrix is a x c.
In your case, matrix b is 70 x 7 meaning matrix g should be a 7 x something matrix. In other words, matrix g should have exactly 7 rows.
Once you have fixed the dimensions, try this for quick matrix multiplication:
resulta <- b %*% g
resulta

How to square root a matrix in R

Suppose that there is a main matrix A.
We want to find a matrix B such that:
B %*% B %*% B %*% B = A
where %*% is the matrix product in R.
The desired outcome is the matrix B.
Have you try to google it out? There is a sqrtm function present in package expm.
Details
The matrix square root S of M, S=sqrtm(M) is defined as one (the “principal”) S such that SS=S2=M, (in R, all.equal( S %*% S , M )).
The method works from the Schur decomposition.
Examples
# NOT RUN {
library(expm)
m <- diag(2)
sqrtm(m) == m # TRUE
(m <- rbind(cbind(1, diag(1:3)),2))
sm <- sqrtm(m)
sm
zapsmall(sm %*% sm) # Zap entries ~= 2e-16
stopifnot(all.equal(m, sm %*% sm))
# }
Please check http://www.inside-r.org/packages/cran/expm/docs/sqrtm
Another helpful link : http://realizationsinbiostatistics.blogspot.com/2008/08/matrix-square-roots-in-r_18.html

how to calculate the Euclidean norm of a vector in R?

I tried norm, but I think it gives the wrong result. (the norm of c(1, 2, 3) is sqrt(1*1+2*2+3*3), but it returns 6..
x1 <- 1:3
norm(x1)
# Error in norm(x1) : 'A' must be a numeric matrix
norm(as.matrix(x1))
# [1] 6
as.matrix(x1)
# [,1]
# [1,] 1
# [2,] 2
# [3,] 3
norm(as.matrix(x1))
# [1] 6
Does anyone know what's the function to calculate the norm of a vector in R?
norm(c(1,1), type="2") # 1.414214
norm(c(1, 1, 1), type="2") # 1.732051
This is a trivial function to write yourself:
norm_vec <- function(x) sqrt(sum(x^2))
I was surprised that nobody had tried profiling the results for the above suggested methods, so I did that. I've used a random uniform function to generate a list and used that for repetition (Just a simple back of the envelop type of benchmark):
> uut <- lapply(1:100000, function(x) {runif(1000, min=-10^10, max=10^10)})
> norm_vec <- function(x) sqrt(sum(x^2))
> norm_vec2 <- function(x){sqrt(crossprod(x))}
>
> system.time(lapply(uut, norm_vec))
user system elapsed
0.58 0.00 0.58
> system.time(lapply(uut, norm_vec2))
user system elapsed
0.35 0.00 0.34
> system.time(lapply(uut, norm, type="2"))
user system elapsed
6.75 0.00 6.78
> system.time(lapply(lapply(uut, as.matrix), norm))
user system elapsed
2.70 0.00 2.73
It seems that taking the power and then sqrt manually is faster than the builtin norm for real values vectors at least. This is probably because norm internally does an SVD:
> norm
function (x, type = c("O", "I", "F", "M", "2"))
{
if (identical("2", type)) {
svd(x, nu = 0L, nv = 0L)$d[1L]
}
else .Internal(La_dlange(x, type))
}
and the SVD function internally converts the vector into a matrix, and does more complicated stuff:
> svd
function (x, nu = min(n, p), nv = min(n, p), LINPACK = FALSE)
{
x <- as.matrix(x)
...
EDIT (20 Oct 2019):
There have been some comments to point out the correctness issue which the above test case doesn't bring out:
> norm_vec(c(10^155))
[1] Inf
> norm(c(10^155), type="2")
[1] 1e+155
This happens because large numbers are considered as infinity in R:
> 10^309
[1] Inf
So, it looks like:
It seems that taking the power and then sqrt manually is faster than the builtin norm for real values vectors for small numbers.
How small? So that the sum of squares doesn't overflow.
norm(x, type = c("O", "I", "F", "M", "2"))
The default is "O".
"O", "o" or "1" specifies the one norm, (maximum absolute column sum);
"F" or "f" specifies the Frobenius norm (the Euclidean norm of x treated as if it were a vector);
norm(as.matrix(x1),"o")
The result is 6, same as norm(as.matrix(x1))
norm(as.matrix(x1),"f")
The result is sqrt(1*1+2*2+3*3)
So, norm(as.matrix(x1),"f") is answer.
We can also find the norm as :
Result<-sum(abs(x)^2)^(1/2)
OR Even You can also try as:
Result<-sqrt(t(x)%*%x)
Both will give the same answer
I'mma throw this out there too as an equivalent R expression
norm_vec(x) <- function(x){sqrt(crossprod(x))}
Don't confuse R's crossprod with a similarly named vector/cross product. That naming is known to cause confusion especially for those with a physics/mechanics background.
Answer for Euclidean length of a vector (k-norm) with scaling to avoid destructive underflow and overflow is
norm <- function(x, k) { max(abs(x))*(sum((abs(x)/max(abs(x)))^k))^(1/k) }
See below for explanation.
1. Euclidean length of a vector with no scaling:
norm() is a vector-valued function which computes the length of the vector. It takes two arguments such as the vector x of class matrix and the type of norm k of class integer.
norm <- function(x, k) {
# x = matrix with column vector and with dimensions mx1 or mxn
# k = type of norm with integer from 1 to +Inf
stopifnot(k >= 1) # check for the integer value of k greater than 0
stopifnot(length(k) == 1) # check for length of k to be 1. The variable k is not vectorized.
if(k == Inf) {
# infinity norm
return(apply(x, 2, function(vec) max(abs(vec)) ))
} else {
# k-norm
return(apply(x, 2, function(vec) (sum((abs(vec))^k))^(1/k) ))
}
}
x <- matrix(c(1,-2,3,-4)) # column matrix
sapply(c(1:4, Inf), function(k) norm(x = x, k = k))
# [1] 10.000000 5.477226 4.641589 4.337613 4.000000
1-norm (10.0) converges to infinity-norm (4.0).
k-norm is also called as "Euclidean norm in Euclidean n-dimensional space".
Note:
In the norm() function definition, for vectors with real components, the absolute values can be dropped in norm-2k or even indexed norms, where k >= 1.
If you are confused with the norm function definition, you can read each one individually as given below.
norm_1 <- function(x) sum(abs(x))
norm_2 <- function(x) (sum((abs(x))^2))^(1/2)
norm_3 <- function(x) (sum((abs(x))^3))^(1/3)
norm_4 <- function(x) (sum((abs(x))^4))^(1/4)
norm_k <- function(x) (sum((abs(x))^k))^(1/k)
norm_inf <- max(abs(x))
2. Euclidean length of a vector with scaling to avoid destructive overflow and underflow issues:
Note-2:
The only problem with this solution norm() is that it does not guard against overflow or underflow problems as alluded here and here.
Fortunately, someone had already solved this problem for 2-norm (euclidean length) in the blas (basic linear algebra subroutines) fortran library. A description of this problem can be found in the textbook of "Numerical Methods and Software by Kahaner, Moler and Nash" - Chapter-1, Section 1.3, page - 7-9.
The name of the fortran subroutine is dnrm2.f, which handles destructive overflow and underflow issues in the norm() by scaling with the maximum of the vector components. The destructive overflow and underflow problem arise due to radical operation in the norm() function.
I will show how to implement dnrm2.f in R below.
#1. find the maximum among components of vector-x
max_x <- max(x)
#2. scale or divide the components of vector by max_x
scaled_x <- x/max_x
#3. take square of the scaled vector-x
sq_scaled_x <- (scaled_x)^2
#4. sum the square of scaled vector-x
sum_sq_scaled_x <- sum(sq_scaled_x)
#5. take square root of sum_sq_scaled_x
rt_sum_sq_scaled_x <- sqrt(sum_sq_scaled_x)
#6. multiply the maximum of vector x with rt_sum_sq_scaled_x
max_x*rt_sum_sq_scaled_x
one-liner of the above 6-steps of dnrm2.f in R is:
# Euclidean length of vector - 2norm
max(x)*sqrt(sum((x/max(x))^2))
Lets try example vectors to compute 2-norm (see other solutions in this thread) for this problem.
x = c(-8e+299, -6e+299, 5e+299, -8e+298, -5e+299)
max(x)*sqrt(sum((x/max(x))^2))
# [1] 1.227355e+300
x <- (c(1,-2,3,-4))
max(x)*sqrt(sum((x/max(x))^2))
# [1] 5.477226
Therefore, the recommended way to implement a generalized solution for k-norm in R is that single line, which guard against the destructive overflow or underflow problems. To improve this one-liner, you can use a combination of norm() without scaling for a vector containing not-too-small or not-too-large components and knorm() with scaling for a vector with too-small or too-large components. Implementing scaling for all vectors results in too many calculations. I did not implement this improvement in knorm() given below.
# one-liner for k-norm - generalized form for all norms including infinity-norm:
max(abs(x))*(sum((abs(x)/max(abs(x)))^k))^(1/k)
# knorm() function using the above one-liner.
knorm <- function(x, k) {
# x = matrix with column vector and with dimensions mx1 or mxn
# k = type of norm with integer from 1 to +Inf
stopifnot(k >= 1) # check for the integer value of k greater than 0
stopifnot(length(k) == 1) # check for length of k to be 1. The variable k is not vectorized.
# covert elements of matrix to its absolute values
x <- abs(x)
if(k == Inf) { # infinity-norm
return(apply(x, 2, function(vec) max(vec)))
} else { # k-norm
return(apply(x, 2, function(vec) {
max_vec <- max(vec)
return(max_vec*(sum((vec/max_vec)^k))^(1/k))
}))
}
}
# 2-norm
x <- matrix(c(-8e+299, -6e+299, 5e+299, -8e+298, -5e+299))
sapply(2, function(k) knorm(x = x, k = k))
# [1] 1.227355e+300
# 1-norm, 2-norm, 3-norm, 4-norm, and infinity-norm
sapply(c(1:4, Inf), function(k) knorm(x = x, k = k))
# [1] 2.480000e+300 1.227355e+300 9.927854e+299 9.027789e+299 8.000000e+299
x <- matrix(c(1,-2,3,-4))
sapply(c(1:4, Inf), function(k) knorm(x = x, k = k))
# [1] 10.000000 5.477226 4.641589 4.337613 4.000000
x <- matrix(c(1,-2,3,-4, 0, -8e+299, -6e+299, 5e+299, -8e+298, -5e+299), nc = 2)
sapply(c(1:4, Inf), function(k) knorm(x = x, k = k))
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1.00e+01 5.477226e+00 4.641589e+00 4.337613e+00 4e+00
# [2,] 2.48e+300 1.227355e+300 9.927854e+299 9.027789e+299 8e+299
If you have a data.frame or a data.table 'DT', and want to compute the Euclidian norm (norm 2) across each row, the apply function can be used.
apply(X = DT, MARGIN = 1, FUN = norm, '2')
Example:
>DT
accx accy accz
1: 9.576807 -0.1629486 -0.2587167
2: 9.576807 -0.1722938 -0.2681506
3: 9.576807 -0.1634264 -0.2681506
4: 9.576807 -0.1545590 -0.2681506
5: 9.576807 -0.1621254 -0.2681506
6: 9.576807 -0.1723825 -0.2682434
7: 9.576807 -0.1723825 -0.2728810
8: 9.576807 -0.1723825 -0.2775187
> apply(X = DT, MARGIN = 1, FUN = norm, '2')
[1] 9.581687 9.582109 9.581954 9.581807 9.581932 9.582114 9.582245 9.582378
Following AbdealiJK's answer,
I experimented further to gain some insight.
Here's one.
x = c(-8e+299, -6e+299, 5e+299, -8e+298, -5e+299)
sqrt(sum(x^2))
norm(x, type='2')
The first result is Inf and the second one is 1.227355e+300 which is quite correct as I show you in the code below.
library(Rmpfr)
y <- mpfr(x, 120)
sqrt(sum(y*y))
The result is 1227354879.... I didn't count the number of trailing numbers but it looks all right. I know there another way around this OVERFLOW problem which is first applying log function to all numbers and summing up, which I do not have time to implement!
Create your matrix as column vise using cbind then the norm function works well with Frobenius norm (the Euclidean norm) as an argument.
x1<-cbind(1:3)
norm(x1,"f")
[1] 3.741657
sqrt(1*1+2*2+3*3)
[1] 3.741657

Weighted Pearson's Correlation?

I have a 2396x34 double matrix named y wherein each row (2396) represents a separate situation consisting of 34 consecutive time segments.
I also have a numeric[34] named x that represents a single situation of 34 consecutive time segments.
Currently I am calculating the correlation between each row in y and x like this:
crs[,2] <- cor(t(y),x)
What I need now is to replace the cor function in the above statement with a weighted correlation. The weight vector xy.wt is 34 elements long so that a different weight can be assigned to each of the 34 consecutive time segments.
I found the Weighted Covariance Matrix function cov.wt and thought that if I first scale the data it should work just like the cor function. In fact you can specify for the function to return a correlation matrix as well. Unfortunately it does not seem like I can use it in the same manner because I cannot supply my two variables (x and y) separately.
Does anyone know of a way I can get a weighted correlation in the manner I described without sacrificing much speed?
Edit: Perhaps some mathematical function could be applied to y prior to the cor function in order to get the same results that I'm looking for. Maybe if I multiply each element by xy.wt/sum(xy.wt)?
Edit #2 I found another function corr in the boot package.
corr(d, w = rep(1, nrow(d))/nrow(d))
d
A matrix with two columns corresponding to the two variables whose correlation we wish to calculate.
w
A vector of weights to be applied to each pair of observations. The default is equal weights for each pair. Normalization takes place within the function so sum(w) need not equal 1.
This also is not what I need but it is closer.
Edit #3
Here is some code to generate the type of data I am working with:
x<-cumsum(rnorm(34))
y<- t(sapply(1:2396,function(u) cumsum(rnorm(34))))
xy.wt<-1/(34:1)
crs<-cor(t(y),x) #this works but I want to use xy.wt as weight
Unfortunately the accepted answer is wrong when y is a matrix of more than one row. The error is in the line
vy <- rowSums( w * y * y )
We want to multiply the columns of y by w, but this will multiply the rows by the elements of w, recycled as necessary. Thus
> f(x, y[1, , drop = FALSE], xy.wt)
[1] 0.103021
is correct, because in this case the multiplication is performed element-wise, which is equivalent to column-wise multiplication here, but
> f(x, y, xy.wt)[1]
[1] 0.05463575
gives a wrong answer due to the row-wise multiplication.
We can correct the function as follows
f2 <- function( x, y, w = rep(1,length(x))) {
stopifnot(length(x) == dim(y)[2] )
w <- w / sum(w)
# Center x and y, using the weighted means
x <- x - sum(x * w)
ty <- t(y - colSums(t(y) * w))
# Compute the variance
vx <- sum(w * x * x)
vy <- colSums(w * ty * ty)
# Compute the covariance
vxy <- colSums(ty * x * w)
# Compute the correlation
vxy / sqrt(vx * vy)
}
and check the results against those produced by corr from the boot package:
> res1 <- f2(x, y, xy.wt)
> res2 <- sapply(1:nrow(y),
+ function(i, x, y, w) corr(cbind(x, y[i,]), w = w),
+ x = x, y = y, w = xy.wt)
> all.equal(res1, res2)
[1] TRUE
which in itself gives another way that this problem could be solved.
You can go back to the definition of the correlation.
f <- function( x, y, w = rep(1,length(x))) {
stopifnot( length(x) == dim(y)[2] )
w <- w / sum(w)
# Center x and y, using the weighted means
x <- x - sum(x*w)
y <- y - apply( t(y) * w, 2, sum )
# Compute the variance
vx <- sum( w * x * x )
vy <- rowSums( w * y * y ) # Incorrect: see Heather's remark, in the other answer
# Compute the covariance
vxy <- colSums( t(y) * x * w )
# Compute the correlation
vxy / sqrt(vx * vy)
}
f(x,y)[1]
cor(x,y[1,]) # Identical
f(x, y, xy.wt)
Here is a generalization to compute the weighted Pearson correlation between two matrices (instead of a vector and a matrix, as in the original question):
matrix.corr <- function (a, b, w = rep(1, nrow(a))/nrow(a))
{
# normalize weights
w <- w / sum(w)
# center matrices
a <- sweep(a, 2, colSums(a * w))
b <- sweep(b, 2, colSums(b * w))
# compute weighted correlation
t(w*a) %*% b / sqrt( colSums(w * a**2) %*% t(colSums(w * b**2)) )
}
Using the above example and the correlation function from Heather, we can verify it:
> sum(matrix.corr(as.matrix(x, nrow=34),t(y),xy.wt) - f2(x,y,xy.wt))
[1] 1.537507e-15
In terms of calling syntax, this resembles the unweighted cor:
> a <- matrix( c(1,2,3,1,3,2), nrow=3)
> b <- matrix( c(2,3,1,1,7,3,5,2,8,1,10,12), nrow=3)
> matrix.corr(a,b)
[,1] [,2] [,3] [,4]
[1,] -0.5 0.3273268 0.5 0.9386522
[2,] 0.5 0.9819805 -0.5 0.7679882
> cor(a, b)
[,1] [,2] [,3] [,4]
[1,] -0.5 0.3273268 0.5 0.9386522
[2,] 0.5 0.9819805 -0.5 0.7679882

Resources