If I am using Rijndael CBC mode, I have no idea why we would need salt.
My understanding is even if people know the password, but he cannot get the data without IV.
So from my perspective, password + IV seem to be sufficent secure.
Do I get anything wrong?
Yes, you need all of these things.
Salt (and an "iteration count") is used to derive a key from the password. Refer to PKCS #5 for more information. The salt and iteration count used for key derivation do not have to be secret. The salt should be unpredictable, however, and is best chosen randomly.
CBC mode requires an initialization vector. This is a block of random data produced for each message by a cryptographic random number generator. It serves as the dummy initial block of ciphertext. Like the key-derivation salt, it doesn't have to be kept secret, and is usually transmitted along with the cipher text.
The password, and keys derived from it, must be kept secret. Even if an attacker has the parameters for key derivation and encryption, and the ciphertext, he can do nothing without the key.
Update:
Passwords aren't selected randomly; some passwords are much more likely than others. Therefore, rather than generating all possible passwords of a given length (exhaustive brute-force search), attackers maintain a list of passwords, ordered by decreasing probability.
Deriving an encryption key from a password is relatively slow (due to the iteration of the key derivation algorithm). Deriving keys for a few million passwords could take months. This would motivate an attacker to derive the keys from his most-likely-password list once, and store the results. With such a list, he can quickly try to decrypt with each key in his list, rather than spending months of compute time to derive keys again.
However, each bit of salt doubles the space required to store the derived key, and the time it takes to derive keys for each of his likely passwords. A few bytes of salt, and it quickly becomes infeasible to create and store such a list.
Salt is necessary to prevent pre-computation attacks.
An IV (or nonce with counter modes) makes the same plain text produce different cipher texts. The prevents an attacker from exploiting patterns in the plain text to garner information from a set of encrypted messages.
An initialization vector is necessary to hide patterns in messages.
One serves to enhance the security of the key, the other enhances the security of each message encrypted with that key. Both are necessary together.
First things first: Rijndael does not have a "password" in CBC mode. Rijndael in CBC mode takes a buffer to encrypt or decrypt, a key, and an IV.
A "salt" is typically used for encrypting passwords. The salt is added to the password that is encrypted and stored with the encrypted value. This prevents someone from building a dictionary of how all passwords encrypt---you need to build a dictionary of how all passwords encrypt for all salts. That was actually possible with the old Unix password encryption algorithm, which only used a 12-bit salt. (It increased the work factor by 4096). With a 128-bit salt it is not possible.
Someone can still do a brute-force attack on a specific password, of course, provided that they can retrieve the encrypted password.
However, you have an IV, which does pretty much the same thing that a Salt does. You don't need both. Or, rather, the IV is your salt.
BTW, these days we call "Rijndael" AES.
A salt is generally used when using a hash algorithm. Rijndael is not a hash, but a two-way encryption algorithm. Ergo, a salt is not necessarily needed for encrypting the data. That being said, a salted hash of a password may be used as the Key for encrypting data. For what you're looking for, you might wish to look at hybrid cryptosystems.
The Key should be considered private and not transmitted with your encrypted data while the IV may be transmitted with the encrypted data.
Related
Normally a password would be arbitrary strings, such as "abc", "1234". But the encryption algorithm like DES requires a fixed length secret key. I'd like to know how to transform variable-length password to fixed length secret key with an acknowledged way.
Derive encryption keys from passwords with a Password Based Key Derivation Function: PBKDF2 (aka Rfc2898DeriveBytes). Use a random salt and an iteration count such that the derivation takes about 100ms of computation time.
The same salt and iteration count must be used for deriving the key for decryption, they can be prepended to the encrypted data since they do not need to be secret.
Just using a hash function is not sufficient and just adding a salt does little to improve the security.
The point is to make the attacker spend a lot of time finding passwords by brute force.
You need to use a salt value (in order to prevent dictionary attacks) and good key deviation function like scrypt, bcrypt or PBKDF2.
if you only use a hash function for generating the key, then there are a lot of chances that the generated keys are SHA256("abcd") or SHA256("password"). That is, this method is very vulnerable to brute-force attacks.
I need to encrypt two-way (symmetric) distinct tokens. These tokens are expected to be repeated (e.g. They are people first names), but I do not want an attacker to conclude which encrypted tokens came from the same original tokens. Salt is the way to go for one-way cryptography (hashing).
Is there a method that can work in symmetric cryptography, a workaround or an alternative?
Yes. Properly used, symmetric encryption does not reveal anything about the plaintext, not even the fact that multiple plaintexts are the same.
Proper usage means choosing a mode of operation that uses an initialization vector (IV) or nonce (that is, not ECB), and choosing the IV appropriately (usually random bytes). Encrypting multiple plaintexts with the same key and IV allows this attack pretty much just like with ECB mode, and using a static IV is a common mistake.
As mentioned above, properly utilizing a symmetric encryption scheme would NOT reveal information about the plaintext. You mention the need to protect the users against a dictionary attack on the hidden tokens, and a properly utilized encryption scheme such as GCM would provide you with this property.
I recommend utilizing GCM mode as it is an efficient authenticated encryption scheme. Performing cryptographic functions on unauthenticated data may lead to security flaws so utilizing an authenticated encryption scheme such as GCM is your best bet. Note that this encryption scheme along with other CPA-SECURE schemes will provide you security against an adversary that wishes to learn the value of an encrypted token.
For example, in correctly implemented GCM mode, the encryption of the same last name will result in a different ciphertext i.e GCM Mode is Non-Deterministic.
Make sure to utilize a secure padding scheme and fix a length for the ciphertexts to make sure an attacker can't use the lenght of the ciphertext to learn some information about the contents of what generated this token.
Be careful however, you can't interchangeably use hash functions and symmetric encryption schemes as they are created for very different purposes. Be careful with how you share the key, and remember that once an adversary has knowledge of the key, there is nothing random about the ciphertext.
-NOTE-
Using encryption incorrectly : If every user is utilizing the same key to encrypt their token then they can simply decrypt everyone else's token and see the name that generated it.
To be safe, every user must encrypt with a different key so now you have to somehow store and manage the key for each user. This may be very painful and you have to be very careful with this.
However if you are utilizing salts and hash functions, then even if every user is utilizing the same salt to compute hash(name||salt), a malicious user would have to brute force all possible names with the salt to figure out what generated these tokens.
So keep this into consideration and be careful as hash functions and symmetric encryptions schemes can't be used interchangeably.
Assuming that the only items to be ciphered are the tokens (that is, they are not embedded in a larger data structure), then Inicialization Vectors (IV's) are the way to go.
They are quite simple to understand: let M be your token, padded to fit the block size used in the symmetric ciphering algorithm (I'm assuming it's AES) and IV be a random array of bits also the size of the ciphering block.
Then compute C = AES_ENCRYPT(M xor IV, K) where C is the ciphered data and K the symmetric key. That way, the same message M will not be ciphered the same way multiple times since IV is randomly obtained every time.
To decrypt M, just compute M = (AES_DECRYPT(C, K) xor IV).
Of course, both IV and K must be known at decryption time. The most usual way to transmit the IV is to just send it along the ciphered text. This does not compromise security, it's pretty much like storing a salt value, since the encryption key will remain unknown for everybody else.
Right now, this is what I am doing:
1. SHA-1 a password like "pass123", use the first 32 characters of the hexadecimal decoding for the key
2. Encrypt with AES-256 with just whatever the default parameters are
^Is that secure enough?
I need my application to encrypt data with a password, and securely. There are too many different things that come up when I google this and some things that I don't understand about it too. I am asking this as a general question, not any specific coding language (though I'm planning on using this with Java and with iOS).
So now that I am trying to do this more properly, please follow what I have in mind:
Input is a password such as "pass123" and the data is
what I want to encrypt such as "The bank account is 038414838 and the pin is 5931"
Use PBKDF2 to derive a key from the password. Parameters:
1000 iterations
length of 256bits
Salt - this one confuses me because I am not sure where to get the salt from, do I just make one up? As in, all my encryptions would always use the salt "F" for example (since apparently salts are 8bits which is just one character)
Now I take this key, and do I hash it?? Should I use something like SHA-256? Is that secure? And what is HMAC? Should I use that?
Note: Do I need to perform both steps 2 and 3 or is just one or the other okay?
Okay now I have the 256-bit key to do the encryption with. So I perform the encryption using AES, but here's yet another confusing part (the parameters).
I'm not really sure what are the different "modes" to use, apparently there's like CBC and EBC and a bunch of others
I also am not sure about the "Initialization Vector," do I just make one up and always use that one?
And then what about other options, what is PKCS7Padding?
For your initial points:
Using hexadecimals clearly splits the key size in half. Basically, you are using AES-128 security wise. Not that that is bad, but you might also go for AES-128 and use 16 bytes.
SHA-1 is relatively safe for key derivation, but it shouldn't be used directly because of the existence/creation of rainbow tables. For this you need a function like PBKDF2 which uses an iteration count and salt.
As for the solution:
You should not encrypt PIN's if that can be avoided. Please make sure your passwords are safe enough, allow pass phrases.
Create a random number per password and save the salt (16 bytes) with the output of PBKDF2. The salt does not have to be secret, although you might want to include a system secret to add some extra security. The salt and password are hashed, so they may have any length to be compatible with PBKDF2.
No, you just save the secret generated by the PBKDF2, let the PBKDF2 generate more data when required.
Never use ECB (not EBC). Use CBC as minimum. Note that CBC encryption does not provide integrity checking (somebody might change the cipher text and you might never know it) or authenticity. For that, you might want to add an additional MAC, HMAC or use an encryption mode such as GCM. PKCS7Padding (identical to PKCS5Padding in most occurences) is a simple method of adding bogus data to get N * [blocksize] bytes, required by block wise encryption.
Don't forget to prepend a (random) IV to your cipher text in case you reuse your encryption keys. An IV is similar to a salt, but should be exactly [blocksize] bytes (16 for AES).
I am creating an encryption scheme with AES in cbc mode with a 256-bit key. Before I learned about CBC mode and initial values, I was planning on creating a 32-bit salt for each act of encryption and storing the salt. The password/entered key would then be padded with this salt up to 32 bits.
ie. if the pass/key entered was "tree," instead of padding it with 28 0s, it would be padded with the first 28 chars of this salt.
However, this was before I learned of the iv, also called a salt in some places. The question for me has now arisen as to whether or not this earlier method of salting has become redundant in principle with the IV. This would be to assume that the salt and the iv would be stored with the cipher text and so a theoretical brute force attack would not be deterred any.
Storing this key and using it rather than 0s is a step that involves some effort, so it is worth asking I think whether or not it is a practically useless measure. It is not as though there could be made, with current knowledge, any brute-force decryption tables for AES, and even a 16 bit salt pains the creation of md5 tables.
Thanks,
Elijah
It's good that you know CBC, as it is certainly better than using ECB mode encryption (although even better modes such as the authenticated modes GCM and EAX exist as well).
I think there are several things that you should know about, so I'll explain them here.
Keys and passwords are not the same. Normally you create a key used for symmetric encryption out of a password using a key derivation function. The most common one discussed here is PBKDF2 (password based key derivation function #2), which is used for PBE (password based encryption). This is defined in the latest, open PKCS#5 standard by RSA labs. Before entering the password need to check if the password is correctly translated into bytes (character encoding).
The salt is used as another input of the key derivation function. It is used to prevent brute force attacks using "rainbow tables" where keys are pre-computed for specific passwords. Because of the salt, the attacker cannot use pre-computed values, as he cannot generate one for each salt. The salt should normally be 8 bytes (64 bits) or longer; using a 128 bit salt would give you optimum security. The salt also ensures that identical passwords (of different users) do not derive the same key.
The output of the key derivation function is a secret of dkLen bytes, where dkLen is the length of the key to generate, in bytes. As an AES key does not contain anything other than these bytes, the AES key will be identical to the generated secret. dkLen should be 16, 24 or 32 bytes for the key lengths of AES: 128, 192 or 256 bits.
OK, so now you finally have an AES key to use. However, if you simply encrypt each plain text block with this key, you will get identical result if the plain text blocks are identical. CBC mode gets around this by XOR'ing the next plain text block with the last encrypted block before doing the encryption. That last encrypted block is the "vector". This does not work for the first block, because there is no last encrypted block. This is why you need to specify the first vector: the "initialization vector" or IV.
The block size of AES is 16 bytes independent of the key size. So the vectors, including the initialization vector, need to be 16 bytes as well. Now, if you only use the key to encrypt e.g. a single file, then the IV could simply contain 16 bytes with the value 00h.
This does not work for multiple files, because if the files contain the same text, you will be able to detect that the first part of the encrypted file is identical. This is why you need to specify a different IV for each encryption you perform with the key. It does not matter what it contains, as long as it is unique, 16 bytes and known to the application performing the decryption.
[EDIT 6 years later] The above part is not entirely correct: for CBC the IV needs to be unpredictable to an attacker, it doesn't just need to be unique. So for instance a counter cannot be used.
Now there is one trick that might allow you to use all zero's for the IV all the time: for each plain text you encrypt using AES-CBC, you could calculate a key using the same password but a different salt. In that case, you will only use the resulting key for a single piece of information. This might be a good idea if you cannot provide an IV for a library implementing password based encryption.
[EDIT] Another commonly used trick is to use additional output of PBKDF2 to derive the IV. This way the official recommendation that the IV for CBC should not be predicted by an adversary is fulfilled. You should however make sure that you do not ask for more output of the PBKDF2 function than that the underlying hash function can deliver. PBKDF2 has weaknesses that would enable an adversary to gain an advantage in such a situation. So do not ask for more than 256 bits if SHA-256 is used as hash function for PBKDF2. Note that SHA-1 is the common default for PBKDF2 so that only allows for a single 128 bit AES key.
IV's and salts are completely separate terms, although often confused. In your question, you also confuse bits and bytes, key size and block size and rainbow tables with MD5 tables (nobody said crypto is easy). One thing is certain: in cryptography it pays to be as secure as possible; redundant security is generally not a problem, unless you really (really) cannot afford the extra resources.
When you understand how this all works, I would seriously you to find a library that performs PBE encryption. You might just need to feed this the password, salt, plain data and - if separately configured- the IV.
[Edit] You should probably look for a library that uses Argon2 by now. PBKDF2 is still considered secure, but it does give unfair advantage to an attacker in some cases, letting the attacker perform fewer calculations than the regular user of the function. That's not a good property for a PBKDF / password hash.
If you are talking about AES-CBC then it is an Initialisation Vector (IV), not Salt. It is common practice to send the IV in clear as the first block of the encyphered message. The IV does not need to be kept secret. It should however be changed with every message - a constant IV means that effectively your first block is encrypted in ECB mode, which is not properly secure.
When passing symetrically encrypted data in a URL or possibly storing encrypted data in a cookie, is it resonable and/or nessassary and/or possible to also pass the Symetric Encryption IV (Salt) in the same URL? Is the idea of using Salt even valid in a stateless environment such as the web?
(I understand how salt works in a database given a list of names or accounts etc. but we can't save the salt given that we are passing data in a stateless environment.
Assuming a server side password that is used to encrypt data and then decrypt data, how can Salt be used? I guess a separate IV could be passed in the query string but is publicly exposing the salt ok?
Or can one generate a key and IV from the hash of a "password". Assuming the IV and Key come from non-overlapping areas of the hash, is this ok? (I realize that the salt / key will always be the same for a given password.)
EDIT: Typically using AES.
It is encouraged to generate random IVs for each encryption routine, and they can be passed along safely with the cipher text.
Edit:
I should probably ask what type of information you're storing and why you're using a salt with AES encryption, since salts are typically used for hashing, not symmetric encryption. If the salt is publicly available, it defeats the purpose of having it.
What you really need to do is ensure the strength of your key, because if an attacker has the salt, IV, and cipher text, a brute-force attack can easily be done on weaker keys.
You should not generate an initialization vector from the secret key. The initialization vector should be unpredictable for a given message; if you generated it from the key (or a password used to generate a key), the IV will always be the same, which defeats its purpose.
The IV doesn't need to be secret, however. It's quite common to send it with the ciphertext, unprotected. Incorporating the IV in the URL is a lot easier than trying to keep track of the IV for a given link in some server-side state.
Salt and IVs have distinct applications, but they do act in similar ways.
Cryptographic "salt" is used in password-based key derivation algorithms; storing a hashed password for authentication is a special case of this function. Salt causes the same password to yield different hashes, and thwarts "dictionary attacks", where a hacker has pre-computed hash values for common passwords, and built a "reverse-lookup" index so that they can quickly discover a password for a given hash. Like an IV, the salt used is not a secret.
An initialization vector is used with block ciphers like DES and AES in a feedback mode like CBC. Each block is combined with the next block when it is encrypted. For example, under CBC, the previous block cipher text is XOR-ed with the plain text of the current block before encryption. The IV is randomly generated to serve as a dummy initial block to bootstrap the process.
Because a different IV is (or should be, at least) chosen for each message, when the same message is encrypted with the same key, the resulting cipher text is different. In that sense, an IV is very similar to a salt. A cryptographic random generator is usually the easiest and most secure source for a salt or an IV, so they have that similarity too.
Cryptography is very easy to mess up. If you are not confident about what you are doing, you should consider the value of the information you are protecting, and budget accordingly to get the training or consultation you need.