I have 2 columns
one is date :
2011-04-13
2013-07-29
2010-11-23
the other is time :
3
22
15
I want to make a new column contains date time
it will be like this
2011-04-13 3:00:00
2013-07-29 22:00:00
2010-11-23 15:00:00
I managed to combine them as string
but when i convert them to datetime i get only date the time disappears
any idea how to get date and time in one column?
my script
data <- read.csv("d:\\__r\\hour.csv")
data$date <- as.POSIXct(paste(data$dteday , paste(data$hr, ":00:00", sep=""), sep=" "))
as example you can use ymd_hm function from lubridate:
a <- c("2014-09-08", "2014-09-08", "2014-09-08")
b <- c(3, 4, 5)
library(lubridate)
library(tidyverse)
tibble(a, b) %>%
mutate(time = paste0(a, " ", b, "-0"),
time = ymd_hm(time))
output would be:
# A tibble: 3 x 3
a b time
<chr> <dbl> <dttm>
1 2014-09-08 3 2014-09-08 03:00:00
2 2014-09-08 4 2014-09-08 04:00:00
3 2014-09-08 5 2014-09-08 05:00:00
found this fixed the problem
data$date <- as.POSIXct(strptime(paste(data$dteday , paste(data$hr, ":00:00", sep=""), sep=" "), "%Y-%m-%d %H:%M:%S"))
Related
I have a dataset that contains start and end time stamps, as well as a performance percentage. I'd like to calculate group statistics over hourly blocks, e.g. "the average performance for the midnight hour was x%."
My question is if there is a more efficient way to do this than a series of ifelse() statements.
# some sample data
pre.starting <- data.frame(starting = format(seq.POSIXt(from =
as.POSIXct(Sys.Date()), to = as.POSIXct(Sys.Date()+1), by = "5 min"),
"%H:%M", tz="GMT"))
pre.ending <- data.frame(ending = pre.starting[seq(1, nrow(pre.starting),
2), ])
ending2 <- pre.ending[-c(1), ]
starting2 <- data.frame(pre.starting = pre.starting[!(pre.starting$starting
%in% pre.ending$ending),])
dataset <- data.frame(starting = starting2
, ending = ending2
, perct = rnorm(nrow(starting2), 0.5, 0.2))
For example, I could create hour blocks with code along the lines of the following:
dataset2 <- dataset %>%
mutate(hour = ifelse(starting >= 00:00 & ending < 01:00, 12
, ifelse(starting >= 01:00 & ending < 02:00, 1
, ifelse(starting >= 02:00 & ending < 03:00, 13)))
) %>%
group_by(hour) %>%
summarise(mean.perct = mean(perct, na.rm=T))
Is there a way to make this code more efficient, or improve beyond ifelse()?
We can use cut ending hour based on hourly interval after converting timestamps into POSIXct and then take mean for each hour.
library(dplyr)
dataset %>%
mutate_at(vars(pre.starting, ending), as.POSIXct, format = "%H:%M") %>%
group_by(ending_hour = cut(ending, breaks = "1 hour")) %>%
summarise(mean.perct = mean(perct, na.rm = TRUE))
# ending_hour mean.perct
# <fct> <dbl>
# 1 2019-09-30 00:00:00 0.540
# 2 2019-09-30 01:00:00 0.450
# 3 2019-09-30 02:00:00 0.612
# 4 2019-09-30 03:00:00 0.470
# 5 2019-09-30 04:00:00 0.564
# 6 2019-09-30 05:00:00 0.437
# 7 2019-09-30 06:00:00 0.413
# 8 2019-09-30 07:00:00 0.397
# 9 2019-09-30 08:00:00 0.492
#10 2019-09-30 09:00:00 0.613
# … with 14 more rows
I have the following data frame:
Date_from <- c("2013-02-01","2013-05-10","2013-08-13","2013-02-01","2013-05-10","2013-08-13","2013-02-01","2013-05-10","2013-08-13")
Date_to <- c("2013-05-07","2013-08-12","2013-11-18","2013-05-07","2013-08-12","2013-11-18","2013-05-07","2013-08-12","2013-11-18")
y <- data.frame(Date_from,Date_to)
y$concentration <- c("1.5","2.5","1.5","3.5","1.5","2.5","1.5","3.5","3")
y$Parameter<-c("A","A","A","B","B","B","C","C","C")
y$Date_from <- as.Date(y$Date_from)
y$Date_to <- as.Date(y$Date_to)
y$concentration <- as.numeric(y$concentration)
I will need to check the data frame if for EACH Parameter the date range begins at the first day of the year (2013-01-01) and ends at the last day of the year (2013-12-31). If not I will need to add an extra row at the beginning and at the end for each of the parameters to complete the date range to a full year for each parameter. The result should look like this:
Date_from Date_to concentration Parameter
2013-01-01 2013-01-31 NA NA
2013-02-01 2013-05-07 1.5 A
2013-05-10 2013-08-12 2.5 A
2013-08-13 2013-11-18 1.5 A
2013-11-19 2013-12-31 NA NA
2013-01-01 2013-01-31 NA NA
2013-02-01 2013-05-07 3.5 B
2013-05-10 2013-08-12 1.5 B
2013-08-13 2013-11-18 2.5 B
2013-11-19 2013-12-31 NA NA
2013-01-01 2013-01-31 NA NA
2013-02-01 2013-05-07 1.5 C
2013-05-10 2013-08-12 3.5 C
2013-08-13 2013-11-18 3.0 C
2013-11-19 2013-12-31 NA NA
Please note: The date ranges are only equal in this example for simplification.
UPDATE: This is my original data snippet and code:
sm<-read.csv("https://www.dropbox.com/s/tft6inwcrjqujgt/Test_data.csv?dl=1",sep=";",header=TRUE)
cleaned_sm<-sm[,c(4,5,11,14)] ##Delete obsolete columns
colnames(cleaned_sm)<-c("Parameter","Concentration","Date_from","Date_to")
cleaned_sm$Date_from<-as.Date(cleaned_sm$Date_from, format ="%d.%m.%Y")
cleaned_sm$Date_to<-as.Date(cleaned_sm$Date_to, format ="%d.%m.%Y")
#detect comma decimal separator and replace with dot decimal separater as comma is not recognised as a number
cleaned_sm=lapply(cleaned_sm, function(x) gsub(",", ".", x))
cleaned_sm<-data.frame(cleaned_sm)
cleaned_sm$Concentration <- as.numeric(cleaned_sm$Concentration)
cleaned_sm$Date_from <- as.Date(cleaned_sm$Date_from)
cleaned_sm$Date_to <- as.Date(cleaned_sm$Date_to)
Added code based on #jasbner:
cleaned_sm %>%
group_by(Parameter) %>%
do(add_row(.,
Date_from = ymd(max(Date_to))+1 ,
Date_to = ymd(paste(year(max(Date_to)),"1231")),
Parameter = .$Parameter[1])) %>%
do(add_row(.,
Date_to = ymd(min(Date_from))-1,
Date_from = ymd(paste(year(min(Date_from)),"0101")) ,
Parameter = .$Parameter[1],
.before = 0)) %>%
filter(!duplicated(Date_from,fromLast = T),!duplicated(Date_to))
My attempt with dplyr and lubridate. Hacked together but I think it should work. Note this does not look for any gaps in the middle of the date ranges. Basically, for each group, you add a row before and after that particular group. Then if there are any cases where the date range starts at the beginning of the year or ends at the end of the year the added rows are filtered out.
library(dplyr)
library(lubridate)
cleaned_sm %>%
group_by(Parameter) %>%
do(add_row(.,
Date_from = ymd(max(.$Date_to))+1 ,
Date_to = ymd(paste(year(max(.$Date_to)),"1231")),
Parameter = .$Parameter[1])) %>%
do(add_row(.,
Date_to = ymd(min(.$Date_from))-1,
Date_from = ymd(paste(year(min(.$Date_from)),"0101")) ,
Parameter = .$Parameter[1],
.before = 0)) %>%
filter(!duplicated(Date_from,fromLast = T),!duplicated(Date_to))
# A tibble: 15 x 4
# Groups: Parameter [3]
# Date_from Date_to concentration Parameter
# <date> <date> <dbl> <chr>
# 1 2013-01-01 2013-01-31 NA A
# 2 2013-02-01 2013-05-07 1.50 A
# 3 2013-05-10 2013-08-12 2.50 A
# 4 2013-08-13 2013-11-18 1.50 A
# 5 2013-11-19 2013-12-31 NA A
# 6 2013-01-01 2013-01-31 NA B
# 7 2013-02-01 2013-05-07 3.50 B
# 8 2013-05-10 2013-08-12 1.50 B
# 9 2013-08-13 2013-11-18 2.50 B
# 10 2013-11-19 2013-12-31 NA B
# 11 2013-01-01 2013-01-31 NA C
# 12 2013-02-01 2013-05-07 1.50 C
# 13 2013-05-10 2013-08-12 3.50 C
# 14 2013-08-13 2013-11-18 3.00 C
# 15 2013-11-19 2013-12-31 NA C
This seems like it requires a combination of different packages to attack it. I am using tidyr, data.table, and I used lubridate.
date.start <- seq.Date(as.Date("2013-01-01"), as.Date("2013-12-31"), by = "day")
Date.Int <- data.frame(Date_from = date.start, Date_to = date.start)
y_wide <- y %>% spread(Parameter, concentration)
y_wide <- as.data.table(setkey(as.data.table(y_wide), Date_from, Date_to))
Date.Int <- as.data.table(setkey(as.data.table(Date.Int), Date_from, Date_to))
dats <- foverlaps(Date.Int, y_wide, nomatch = NA)
fin.dat <- dats %>%
mutate(A = ifelse(is.na(A), -5, A),
seqs = cumsum(!is.na(A) & A != lag(A, default = -5))) %>%
group_by(seqs) %>%
summarise(Date_from = first(i.Date_from),
Date_to = last(i.Date_to) ,
A = first(A),
B = first(B),
C = first(C)) %>%
mutate(A = ifelse(A == -5, NA, A)) %>%
ungroup()%>%
gather(Concentration, Parameter, A:C) %>%
mutate(Concentration = ifelse(is.na(Parameter), NA, Concentration))
Okay, so I created a vector of dates from a start point to an end point (date.start); then I turned into a data.frame with the same interval names and interval dates for Date.Int. This is because foverlaps needs to compare two intervals (same date start and end dates in Date.Int are now officially intervals). I then took your data you provided and spread, turning it from long format data to wide format data and turned that into a data.table. keying a data.table sets up how it should be arranged, and when using foverlaps you have to key the start dates and end dates (in that order). foverlaps determines if an interval falls within another interval of dates. If you print out dats, you will see a bunch of lines with NA for everything because they did not fall within an interval. So now we have to group these in some manner. I picked grouping by values of "A" in dats. The grouping variable is called seqs. But then I summarised the data, and then switched it back from wide format to long format and replaced the appropriate NA values.
I used the following R code to create a POSIXct date time field from a separate date and time field both in character format using lubridate and dplyr.
library(dplyr)
library(lubridate)
c_cycle_work <- tibble(
StartDate = c("1/28/2011", "2/26/2011", "4/2/2011", "4/11/2011"),
StartTime = c("10:58", "6:02", "6:00", "9:47")
)
c_cycle_work %>%
mutate(start_dt = paste0(StartDate, StartTime, sep = " ", collapse = NULL)) %>%
mutate(start_dt = mdy_hms(start_dt))
# 1 1/28/2011 10:58 2020-01-28 11:10:58
# 2 2/26/2011 6:02 2020-02-26 11:06:02
# 3 4/2/2011 6:00 2020-04-02 11:06:00
# 4 4/11/2011 9:47 2020-04-11 11:09:47
The start_dt field I created is in Y m d format even though I used mdy_hms based on the data. Also, all years have been changed to 2020.
Went over this several times, used paste vs. paste0, etc. but still stumped.
Your problem is the paste0() which doesn't have a sep= argument. So when you paste the date and time you get 1/28/201110:58 and it spilts that into 1/28/20/11/10/58 though it seemed to work differently with my version lubridate_1.6.0. Also you where use "hms" but your times didn't have seconds. This should work with your data
c_cycle_work %>%
mutate(start_dt = paste(StartDate, StartTime, sep=" ")) %>%
mutate(start_dt = mdy_hm(start_dt))
# StartDate StartTime start_dt
# <chr> <chr> <dttm>
# 1 1/28/2011 10:58 2011-01-28 10:58:00
# 2 2/26/2011 6:02 2011-02-26 06:02:00
# 3 4/2/2011 6:00 2011-04-02 06:00:00
# 4 4/11/2011 9:47 2011-04-11 09:47:00
I have one data table which contains just a sequence of times. I have another data table containing two columns: start_time and end_time. I want to take the first data table and add a column where the value is the count of all of the rows in the second data table where the time from the first data table fits within the start and end time. Here is my code
start_date <- as.POSIXct(x = "2017-01-31 17:00:00", format = "%Y-%m-%d %H:%M:%S")
end_date <- as.POSIXct(x = "2017-02-01 09:00:00", format = "%Y-%m-%d %H:%M:%S")
all_dates <- as.data.table(seq(start_date, end_date, "min"))
colnames(all_dates) <- c("Bin")
start_times <- sample(seq(start_date,end_date,"min"), 100)
offsets <- sample(seq(60,7200,60), 100)
end_times <- start_times + offsets
input_data <- data.table(start_times, end_times)
Here is what i want to do, but this is wrong and gives an error. What's the right way to write this?
all_dates[, BinCount := input_data[start_times < Bin & end_times > Bin, .N] ]
In the end i should get something like
Bin BinCount
2017-01-31 17:00:00 1
2017-01-31 17:01:00 5
...
The problem can be solved very easily using sqldf as it provides easy way to join tables with range checking. Hence one solution could be:
The data from OP:
library(data.table)
start_date <- as.POSIXct(x = "2017-01-31 17:00:00", format = "%Y-%m-%d %H:%M:%S")
end_date <- as.POSIXct(x = "2017-02-01 09:00:00", format = "%Y-%m-%d %H:%M:%S")
all_dates <- as.data.table(seq(start_date, end_date, "min"))
colnames(all_dates) <- c("Bin")
start_times <- sample(seq(start_date,end_date,"min"), 100)
offsets <- sample(seq(60,7200,60), 100)
end_times <- start_times + offsets
input_data <- data.table(start_times, end_times)
library(sqldf)
result <- sqldf("SELECT all_dates.bin, count() as BinCount
FROM all_dates, input_data
WHERE all_dates.bin > input_data.start_times AND
all_dates.bin < input_data.end_times
GROUP BY bin" )
result
Bin BinCount
1 2017-01-31 17:01:00 1
2 2017-01-31 17:02:00 1
3 2017-01-31 17:03:00 1
4 2017-01-31 17:04:00 1
5 2017-01-31 17:05:00 1
6 2017-01-31 17:06:00 1
...........
...........
497 2017-02-01 01:17:00 6
498 2017-02-01 01:18:00 5
499 2017-02-01 01:19:00 5
500 2017-02-01 01:20:00 4
[ reached getOption("max.print") -- omitted 460 rows ]
In data.table you're after a range join.
library(data.table)
start_date <- as.POSIXct(x = "2017-01-31 17:00:00", format = "%Y-%m-%d %H:%M:%S")
end_date <- as.POSIXct(x = "2017-02-01 09:00:00", format = "%Y-%m-%d %H:%M:%S")
all_dates <- as.data.table(seq(start_date, end_date, "min"))
colnames(all_dates) <- c("Bin")
set.seed(123)
start_times <- sample(seq(start_date,end_date,"min"), 100)
offsets <- sample(seq(60,7200,60), 100)
end_times <- start_times + offsets
input_data <- data.table(start_times, end_times)
## doing the range-join and calculating the number of items per bin in one chained step
input_data[
all_dates
, on = .(start_times < Bin, end_times > Bin)
, nomatch = 0
, allow.cartesian = T
][, .N, by = start_times]
# start_times N
# 1: 2017-01-31 17:01:00 1
# 2: 2017-01-31 17:02:00 1
# 3: 2017-01-31 17:03:00 1
# 4: 2017-01-31 17:04:00 1
# 5: 2017-01-31 17:05:00 1
# ---
# 956: 2017-02-01 08:56:00 6
# 957: 2017-02-01 08:57:00 4
# 958: 2017-02-01 08:58:00 4
# 959: 2017-02-01 08:59:00 5
# 960: 2017-02-01 09:00:00 5
Note:
I've put the all_dates object on the right-hand-side of the join, so the result contains the names of the input_data columns, even though they are your Bins (see this issue for the discussion on this topic)
I've used set.seed(), as you're taking samples
Wasn't requested, but here is a compact alternative solution using the tidyverse. Uses lubridate parsers, interval, and %within%, as well as purrr::map_int to generate the desired bin counts.
library(tidyverse)
library(lubridate)
start_date <- ymd_hms(x = "2017-01-31 17:00:00") # lubridate parsers
end_date <- ymd_hms(x = "2017-02-01 09:00:00")
all_dates <- tibble(seq(start_date, end_date, "min")) # tibble swap for data.table
colnames(all_dates) <- c("Bin")
start_times <- sample(seq(start_date,end_date,"min"), 100)
offsets <- sample(seq(60,7200,60), 100)
end_times <- start_times + offsets
input_data <- tibble(
start_times,
end_times,
intvl = interval(start_times, end_times) # Add interval column
)
all_dates %>% # Checks date in Bin and counts intervals it lies within
mutate(BinCount = map_int(.$Bin, ~ sum(. %within% input_data$intvl)))
# A tibble: 961 x 2
Bin BinCount
<dttm> <int>
1 2017-01-31 17:00:00 0
2 2017-01-31 17:01:00 0
3 2017-01-31 17:02:00 0
4 2017-01-31 17:03:00 0
5 2017-01-31 17:04:00 0
6 2017-01-31 17:05:00 0
7 2017-01-31 17:06:00 0
8 2017-01-31 17:07:00 1
9 2017-01-31 17:08:00 1
10 2017-01-31 17:09:00 1
# ... with 951 more rows
I have a data frame that contains two POSIXct columns. How can I go about calculating the number of weekdays between these two columns?
df <- data.frame(StartDate=as.POSIXct(c("2017-05-17 12:53:00","2017-08-31 21:16:00","2017-08-25 13:54:00","2017-09-06 15:47:00","2017-10-15 05:11:00"), format = "%Y-%m-%d %H:%M:%S"),
EndDate=as.POSIXct(c("2017-06-09 11:57:00","2017-11-29 16:51:00","2017-09-06 15:13:00","2018-01-03 16:22:00","2017-11-17 11:51:00"), format = "%Y-%m-%d %H:%M:%S"))
Using dplyr:
df %>%
dplyr::rowwise() %>%
dplyr::mutate(wdays = sum(!weekdays(seq(StartDate, EndDate, by="day")) %in% c("Saturday", "Sunday")))
Source: local data frame [5 x 3]
Groups: <by row>
# A tibble: 5 x 3
StartDate EndDate wdays
<dttm> <dttm> <int>
1 2017-05-17 12:53:00 2017-06-09 11:57:00 17
2 2017-08-31 21:16:00 2017-11-29 16:51:00 64
3 2017-08-25 13:54:00 2017-09-06 15:13:00 9
4 2017-09-06 15:47:00 2018-01-03 16:22:00 86
5 2017-10-15 05:11:00 2017-11-17 11:51:00 25
This makes use of the fact that dates can easily be sequenced, and that because TRUE is equal to one, we can just sum up all of the non-weekend days.
Try the bizdays package:
library(bizdays) # Load the package
## Make a calendar that excludes Saturdays and Sundays
create.calendar("Workdays",weekdays = c("saturday", "sunday"))
## Calculate difference in days using the new Workdays calendar
df$bizdays <- bizdays(df$StartDate,df$EndDate,"Workdays")
df$bizdays
[1] 17 63 8 85 24
That returned 17, 63, 8, 85, and 24 business days between the start and end dates you provided. This looks right when I checked the 8 business days between 8/25/2017 and 9/6/2017.