I have data in .asc format, given below.
ncols 241
nrows 291
xllcenter 91.33
yllcenter 5.00
cellsize 0.1
NODATA_value -999
133.0 136.0 138.0 141.0 144.0 147.0 150.0 152.0 155.0 157.0 159.0 162.0 164.0 167.0 159.0 147.0 135.0 123.0 111.0 98.0 86.0 84.0 81.0 79.0 76.0 74.0 71.0 70.0 70.0 70.0 71.0 71.0 72.0 72.0 84.0 101.0 118.0 134.0 151.0 168.0 185.0 197.0 209.0 222.0 234.0 246.0 258.0 266.0 266.0 266.0 266.0 265.0 265.0 265.0 254.0 237.0 221.0 204.0 188.0 171.0 155.0 156.0 158.0 160.0 161.0 163.0 164.0 165.0 162.0 159.0 156.0 153.0 150.0 147.0 144.0 140.0 137.0 133.0 130.0 126.0 123.0 120.0 117.0 114.0 111.0 108.0 105.0 102.0 99.0 97.0 94.0 92.0 89.0 86.0 85.0 84.0 83.0 82.0 81.0 80.0 79.0 78.0 77.0 76.0 75.0 73.0 72.0 71.0 70.0 70.0 69.0 68.0 67.0 67.0 66.0 65.0 64.0 63.0 62.0 61.0 60.0 59.0 58.0 57.0 56.0 55.0 54.0 53.0 52.0 51.0 51.0 50.0 49.0 48.0 47.0 46.0 45.0 45.0 44.0 43.0 42.0 40.0 39.0 38.0 37.0 35.0 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 27.0 26.0 26.0 25.0 25.0 24.0 24.0 23.0 22.0 21.0 21.0 20.0 19.0 19.0 18.0 17.0 16.0 15.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 13.0 14.0 15.0 15.0
133.0 137.0 140.0 143.0 146.0 149.0 153.0 155.0 158.0 160.0 162.0 164.0 166.0 168.0 161.0 148.0 135.0 123.0 110.0 97.0 85.0 83.0 81.0 78.0 76.0 74.0 72.0 71.0 72.0 72.0 73.0 74.0 74.0 75.0 86.0 103.0 120.0 137.0 154.0 171.0 188.0 199.0 210.0 220.0 231.0 242.0 252.0 259.0 259.0 259.0 258.0 258.0 258.0 257.0 247.0 231.0 215.0 199.0 184.0 168.0 152.0 155.0 158.0 161.0 164.0 167.0 169.0 170.0 166.0 162.0 158.0 154.0 150.0 145.0 142.0 138.0 134.0 130.0 126.0 122.0 118.0 115.0 112.0 110.0 107.0 104.0 101.0 98.0 96.0 93.0 91.0 88.0 86.0 83.0 82.0 81.0 80.0 79.0 78.0 77.0 75.0 74.0 73.0 72.0 71.0 70.0 69.0 68.0 67.0 67.0 66.0 65.0 65.0 64.0 63.0 63.0 62.0 61.0 60.0 59.0 59.0 58.0 57.0 56.0 55.0 54.0 53.0 52.0 52.0 51.0 50.0 49.0 48.0 48.0 47.0 46.0 45.0 44.0 43.0 42.0 42.0 40.0 39.0 38.0 37.0 35.0 34.0 33.0 32.0 31.0 31.0 30.0 29.0 28.0 27.0 27.0 26.0 26.0 25.0 24.0 24.0 23.0 23.0 22.0 21.0 21.0 20.0 19.0 18.0 17.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 8.0 9.0 9.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 14.0 14.0 15.0 16.0 16.0
134.0 138.0 141.0 145.0 148.0 152.0 156.0 159.0 161.0 162.0 164.0 166.0 168.0 170.0 162.0 149.0 136.0 123.0 110.0 96.0 83.0 82.0 80.0 78.0 77.0 75.0 73.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 89.0 106.0 123.0 140.0 157.0 174.0 191.0 200.0 210.0 219.0 228.0 238.0 247.0 253.0 252.0 252.0 251.0 251.0 250.0 250.0 240.0 225.0 210.0 194.0 179.0 164.0 149.0 153.0 158.0 162.0 166.0 170.0 174.0 176.0 170.0 165.0 160.0 154.0 149.0 144.0 139.0 135.0 131.0 126.0 122.0 118.0 114.0 111.0 108.0 105.0 102.0 100.0 97.0 94.0 92.0 90.0 87.0 85.0 83.0 81.0 79.0 78.0 77.0 75.0 74.0 73.0 72.0 71.0 70.0 69.0 68.0 66.0 65.0 65.0 64.0 64.0 63.0 63.0 62.0 62.0 61.0 61.0 60.0 59.0 59.0 58.0 57.0 57.0 56.0 55.0 54.0 53.0 52.0 52.0 51.0 50.0 49.0 49.0 48.0 47.0 46.0 46.0 45.0 44.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 35.0 34.0 33.0 32.0 32.0 31.0 30.0 29.0 29.0 28.0 27.0 27.0 26.0 25.0 25.0 24.0 24.0 23.0 22.0 22.0 21.0 20.0 20.0 19.0 18.0 17.0 16.0 16.0 15.0 14.0 13.0 12.0 12.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10.0 11.0 12.0 12.0 13.0 14.0 14.0 15.0 16.0 17.0 17.0
135.0 139.0 143.0 147.0 151.0 155.0 159.0 162.0 163.0 165.0 167.0 169.0 170.0 172.0 164.0 150.0 136.0 123.0 109.0 95.0 82.0 81.0 79.0 78.0 77.0 76.0 74.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 92.0 109.0 126.0 143.0 160.0 177.0 194.0 202.0 210.0 218.0 226.0 233.0 241.0 246.0 246.0 245.0 244.0 244.0 243.0 242.0 232.0 218.0 204.0 190.0 175.0 161.0 147.0 152.0 158.0 163.0 169.0 174.0 180.0 181.0 175.0 168.0 162.0 155.0 149.0 142.0 137.0 132.0 128.0 123.0 118.0 114.0 109.0 106.0 104.0 101.0 98.0 96.0 93.0 90.0 88.0 86.0 84.0 82.0 80.0 78.0 76.0 75.0 73.0 72.0 71.0 69.0 68.0 67.0 66.0 65.0 64.0 63.0 62.0 61.0 61.0 61.0 60.0 60.0 60.0 59.0 59.0 59.0 58.0 58.0 57.0 57.0 56.0 55.0 55.0 54.0 53.0 53.0 52.0 51.0 50.0 50.0 49.0 48.0 47.0 47.0 46.0 45.0 44.0 44.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 34.0 33.0 33.0 32.0 31.0 31.0 30.0 29.0 29.0 28.0 27.0 27.0 26.0 25.0 25.0 24.0 23.0 23.0 22.0 21.0 21.0 20.0 19.0 18.0 18.0 17.0 16.0 15.0 14.0 14.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 5.0 5.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 10.0 11.0 11.0 12.0 13.0 13.0 14.0 15.0 16.0 17.0 18.0 18.0
135.0 140.0 144.0 148.0 153.0 157.0 161.0 165.0 166.0 168.0 169.0 171.0 172.0 174.0 165.0 151.0 137.0 123.0 109.0 94.0 80.0 80.0 79.0 78.0 77.0 76.0 76.0 75.0 77.0 78.0 79.0 80.0 82.0 83.0 95.0 112.0 129.0 146.0 163.0 180.0 197.0 204.0 210.0 216.0 223.0 229.0 236.0 240.0 239.0 238.0 237.0 236.0 235.0 235.0 225.0 212.0 198.0 185.0 171.0 157.0 144.0 151.0 157.0 164.0 171.0 178.0 185.0 186.0 179.0 171.0 163.0 156.0 148.0 140.0 134.0 129.0 124.0 120.0 115.0 110.0 105.0 102.0 99.0 97.0 94.0 92.0 89.0 87.0 85.0 83.0 81.0 79.0 77.0 75.0 73.0 72.0 70.0 69.0 67.0 66.0 65.0 64.0 63.0 62.0 61.0 59.0 58.0 58.0 58.0 58.0 57.0 57.0 57.0 57.0 57.0 56.0 56.0 56.0 56.0 55.0 55.0 54.0 54.0 53.0 52.0 52.0 51.0 51.0 50.0 49.0 48.0 48.0 47.0 46.0 45.0 45.0 44.0 43.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 35.0 34.0 33.0 32.0 32.0 31.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 26.0 25.0 24.0 24.0 23.0 22.0 22.0 21.0 21.0 20.0 19.0 18.0 17.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 9.0 9.0 8.0 8.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 10.0 11.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.0
136.0 141.0 145.0 150.0 155.0 160.0 164.0 168.0 169.0 171.0 172.0 173.0 175.0 176.0 167.0 152.0 137.0 123.0 108.0 94.0 79.0 79.0 78.0 78.0 77.0 77.0 77.0 77.0 78.0 80.0 81.0 83.0 84.0 86.0 97.0 115.0 132.0 149.0 166.0 183.0 200.0 205.0 210.0 215.0 220.0 225.0 230.0 233.0 232.0 231.0 230.0 229.0 228.0 227.0 218.0 205.0 192.0 180.0 167.0 154.0 141.0 149.0 157.0 165.0 173.0 181.0 190.0 192.0 183.0 174.0 165.0 156.0 148.0 139.0 132.0 127.0 121.0 116.0 111.0 105.0 100.0 97.0 95.0 93.0 90.0 88.0 85.0 83.0 81.0 79.0 77.0 75.0 74.0 72.0 70.0 69.0 67.0 66.0 64.0 62.0 61.0 60.0 59.0 58.0 57.0 56.0 55.0 54.0 54.0 54.0 55.0 55.0 55.0 55.0 55.0 54.0 54.0 54.0 54.0 54.0 54.0 53.0 53.0 52.0 52.0 51.0 51.0 50.0 49.0 48.0 48.0 47.0 46.0 46.0 45.0 44.0 44.0 43.0 42.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 35.0 34.0 33.0 33.0 32.0 32.0 31.0 31.0 30.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 23.0 23.0 22.0 22.0 21.0 20.0 19.0 19.0 18.0 17.0 16.0 15.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.0 20.0
136.0 140.0 145.0 150.0 154.0 159.0 164.0 167.0 168.0 170.0 171.0 172.0 173.0 174.0 165.0 150.0 135.0 121.0 106.0 91.0 77.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 77.0 79.0 80.0 82.0 83.0 84.0 97.0 114.0 132.0 149.0 167.0 184.0 202.0 207.0 213.0 218.0 224.0 229.0 235.0 238.0 236.0 233.0 231.0 229.0 227.0 225.0 218.0 210.0 201.0 193.0 184.0 176.0 167.0 172.0 177.0 182.0 187.0 192.0 197.0 197.0 188.0 179.0 171.0 162.0 153.0 144.0 136.0 130.0 123.0 117.0 110.0 104.0 97.0 95.0 92.0 90.0 87.0 85.0 82.0 80.0 78.0 77.0 75.0 73.0 71.0 70.0 68.0 67.0 65.0 64.0 63.0 61.0 60.0 59.0 58.0 57.0 57.0 56.0 55.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 51.0 51.0 50.0 50.0 49.0 48.0 48.0 47.0 47.0 46.0 45.0 45.0 44.0 43.0 43.0 42.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 35.0 34.0 34.0 33.0 33.0 32.0 32.0 31.0 30.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 24.0 23.0 22.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
136.0 140.0 145.0 149.0 154.0 158.0 163.0 166.0 167.0 169.0 170.0 171.0 172.0 173.0 163.0 148.0 134.0 119.0 104.0 89.0 74.0 74.0 74.0 74.0 74.0 74.0 75.0 75.0 76.0 78.0 79.0 81.0 82.0 83.0 96.0 114.0 132.0 149.0 167.0 185.0 203.0 209.0 215.0 221.0 227.0 233.0 240.0 243.0 239.0 236.0 233.0 229.0 226.0 223.0 219.0 215.0 210.0 206.0 202.0 198.0 194.0 195.0 197.0 199.0 201.0 203.0 204.0 203.0 194.0 185.0 176.0 167.0 158.0 149.0 141.0 133.0 125.0 117.0 110.0 102.0 94.0 92.0 89.0 87.0 84.0 82.0 79.0 77.0 76.0 74.0 72.0 71.0 69.0 67.0 66.0 65.0 64.0 63.0 61.0 60.0 59.0 58.0 58.0 57.0 56.0 55.0 55.0 54.0 54.0 54.0 54.0 54.0 53.0 53.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 50.0 50.0 49.0 49.0 48.0 48.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 43.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 37.0 36.0 36.0 35.0 34.0 34.0 33.0 32.0 32.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 26.0 25.0 24.0 24.0 23.0 22.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 15.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 8.0 9.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0
135.0 140.0 144.0 149.0 153.0 158.0 162.0 166.0 166.0 167.0 168.0 169.0 170.0 171.0 162.0 147.0 132.0 117.0 102.0 87.0 72.0 72.0 72.0 73.0 73.0 73.0 74.0 74.0 76.0 77.0 78.0 80.0 81.0 82.0 95.0 113.0 131.0 150.0 168.0 186.0 204.0 211.0 218.0 224.0 231.0 238.0 244.0 247.0 243.0 238.0 234.0 229.0 225.0 220.0 219.0 219.0 219.0 219.0 220.0 220.0 220.0 219.0 217.0 216.0 215.0 213.0 212.0 208.0 199.0 190.0 181.0 172.0 163.0 154.0 145.0 136.0 127.0 118.0 109.0 100.0 91.0 89.0 86.0 84.0 81.0 79.0 77.0 74.0 73.0 71.0 70.0 68.0 67.0 65.0 64.0 63.0 62.0 61.0 60.0 59.0 58.0 58.0 57.0 56.0 56.0 55.0 54.0 54.0 54.0 53.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 50.0 50.0 50.0 49.0 49.0 49.0 48.0 48.0 48.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 44.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 38.0 37.0 36.0 35.0 35.0 34.0 33.0 33.0 32.0 31.0 30.0 30.0 29.0 28.0 27.0 27.0 26.0 25.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 19.0 18.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0
135.0 140.0 144.0 148.0 153.0 157.0 161.0 165.0 166.0 166.0 167.0 168.0 169.0 170.0 160.0 145.0 130.0 115.0 100.0 84.0 69.0 70.0 70.0 71.0 71.0 72.0 73.0 73.0 75.0 76.0 77.0 79.0 80.0 81.0 94.0 113.0 131.0 150.0 169.0 187.0 206.0 213.0 220.0 228.0 235.0 242.0 249.0 252.0 246.0 241.0 235.0 229.0 224.0 218.0 219.0 224.0 228.0 233.0 237.0 242.0 246.0 242.0 237.0 233.0 228.0 224.0 219.0 213.0 204.0 195.0 186.0 177.0 168.0 159.0 150.0 139.0 129.0 119.0 109.0 98.0 88.0 86.0 83.0 81.0 79.0 76.0 74.0 72.0 70.0 69.0 67.0 66.0 65.0 63.0 62.0 61.0 61.0 60.0 59.0 58.0 57.0 57.0 56.0 56.0 55.0 55.0 54.0 54.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 50.0 50.0 50.0 50.0 50.0 49.0 49.0 49.0 49.0 48.0 48.0 48.0 47.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 44.0 43.0 42.0 42.0 41.0 40.0 40.0 39.0 38.0 37.0 37.0 36.0 35.0 34.0 33.0 33.0 32.0 31.0 31.0 30.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 16.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 5.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
135.0 139.0 144.0 148.0 152.0 156.0 161.0 164.0 165.0 165.0 166.0 167.0 168.0 168.0 158.0 143.0 128.0 113.0 97.0 82.0 67.0 68.0 68.0 69.0 70.0 71.0 71.0 72.0 74.0 75.0 76.0 78.0 79.0 80.0 93.0 112.0 131.0 150.0 169.0 188.0 207.0 215.0 223.0 231.0 238.0 246.0 254.0 257.0 250.0 243.0 236.0 230.0 223.0 216.0 220.0 228.0 237.0 246.0 255.0 264.0 272.0 265.0 257.0 250.0 242.0 234.0 227.0 219.0 210.0 201.0 192.0 183.0 174.0 165.0 154.0 142.0 131.0 120.0 108.0 97.0 85.0 83.0 80.0 78.0 76.0 73.0 71.0 69.0 68.0 66.0 65.0 64.0 62.0 61.0 60.0 60.0 59.0 58.0 58.0 57.0 56.0 56.0 56.0 55.0 55.0 54.0 54.0 53.0 53.0 53.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 50.0 50.0 50.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 48.0 48.0 48.0 48.0 48.0 48.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 44.0 43.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 38.0 37.0 36.0 35.0 34.0 34.0 33.0 32.0 32.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 25.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 15.0 14.0 13.0 12.0 12.0 11.0 10.0 10.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 6.0 7.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 18.0
135.0 139.0 143.0 148.0 152.0 156.0 160.0 163.0 164.0 164.0 165.0 165.0 166.0 167.0 157.0 142.0 127.0 112.0 97.0 82.0 67.0 68.0 69.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 78.0 79.0 80.0 93.0 111.0 129.0 147.0 165.0 184.0 202.0 212.0 223.0 234.0 244.0 255.0 266.0 272.0 269.0 266.0 263.0 260.0 257.0 255.0 257.0 261.0 265.0 269.0 274.0 278.0 282.0 273.0 264.0 255.0 246.0 237.0 228.0 219.0 213.0 206.0 199.0 193.0 186.0 180.0 169.0 156.0 143.0 130.0 117.0 104.0 91.0 88.0 85.0 82.0 78.0 75.0 72.0 70.0 68.0 67.0 66.0 64.0 63.0 62.0 61.0 60.0 59.0 59.0 58.0 57.0 56.0 56.0 56.0 55.0 55.0 55.0 54.0 54.0 54.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 51.0 51.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 49.0 49.0 49.0 49.0 48.0 48.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 43.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 37.0 36.0 36.0 35.0 34.0 33.0 33.0 32.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 16.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 6.0 5.0 4.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 6.0 7.0 8.0 9.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0
135.0 139.0 143.0 147.0 151.0 155.0 159.0 162.0 162.0 163.0 164.0 164.0 165.0 165.0 156.0 141.0 126.0 111.0 97.0 82.0 67.0 68.0 69.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 77.0 78.0 79.0 80.0 92.0 110.0 127.0 144.0 162.0 179.0 196.0 210.0 223.0 237.0 250.0 264.0 277.0 286.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 293.0 293.0 293.0 293.0 292.0 292.0 281.0 271.0 260.0 250.0 239.0 229.0 220.0 216.0 212.0 207.0 203.0 199.0 194.0 183.0 169.0 154.0 140.0 126.0 111.0 97.0 93.0 89.0 85.0 81.0 77.0 74.0 71.0 69.0 68.0 66.0 65.0 64.0 62.0 61.0 60.0 60.0 59.0 58.0 57.0 57.0 56.0 56.0 56.0 55.0 55.0 55.0 54.0 54.0 54.0 54.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 51.0 51.0 50.0 50.0 49.0 49.0 49.0 48.0 48.0 47.0 46.0 46.0 45.0 44.0 44.0 43.0 42.0 41.0 40.0 40.0 39.0 38.0 37.0 36.0 35.0 35.0 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 27.0 26.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0 5.0 6.0 7.0 8.0 8.0 9.0 10.0 11.0 11.0 12.0 13.0 14.0
135.0 139.0 143.0 147.0 151.0 154.0 158.0 161.0 161.0 162.0 162.0 163.0 163.0 164.0 154.0 140.0 125.0 111.0 96.0 82.0 67.0 68.0 69.0 70.0 70.0 71.0 72.0 73.0 74.0 75.0 77.0 78.0 79.0 80.0 92.0 108.0 125.0 141.0 158.0 174.0 191.0 207.0 223.0 240.0 256.0 272.0 289.0 301.0 306.0 311.0 317.0 322.0 327.0 332.0 331.0 326.0 321.0 316.0 311.0 307.0 302.0 290.0 278.0 266.0 254.0 242.0 230.0 221.0 219.0 217.0 215.0 213.0 211.0 209.0 198.0 182.0 166.0 150.0 134.0 118.0 102.0 98.0 93.0 89.0 84.0 80.0 75.0 71.0 70.0 69.0 67.0 66.0 64.0 63.0 62.0 61.0 60.0 59.0 58.0 57.0 57.0 56.0 56.0 56.0 56.0 55.0 55.0 55.0 55.0 54.0 54.0 54.0 54.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 51.0 51.0 50.0 50.0 49.0 48.0 48.0 47.0 46.0 46.0 45.0 44.0 43.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 37.0 36.0 35.0 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 26.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 16.0 15.0 14.0 13.0 12.0 12.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0 5.0 6.0 7.0 7.0 8.0 9.0 9.0 10.0 11.0 11.0 12.0
136.0 139.0 143.0 146.0 150.0 154.0 157.0 160.0 160.0 161.0 161.0 162.0 162.0 162.0 153.0 139.0 124.0 110.0 96.0 82.0 67.0 68.0 69.0 70.0 71.0 71.0 72.0 73.0 74.0 76.0 77.0 78.0 79.0 80.0 91.0 107.0 123.0 138.0 154.0 170.0 185.0 204.0 224.0 243.0 262.0 281.0 300.0 316.0 325.0 334.0 343.0 352.0 362.0 371.0 368.0 358.0 349.0 340.0 330.0 321.0 312.0 298.0 285.0 271.0 258.0 244.0 231.0 222.0 222.0 223.0 223.0 224.0 224.0 224.0 213.0 195.0 178.0 160.0 143.0 126.0 108.0 103.0 98.0 92.0 87.0 82.0 76.0 72.0 71.0 69.0 68.0 66.0 65.0 63.0 62.0 61.0 60.0 59.0 58.0 58.0 57.0 56.0 56.0 56.0 56.0 56.0 55.0 55.0 55.0 55.0 55.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 53.0 53.0 52.0 52.0 51.0 51.0 50.0 49.0 49.0 48.0 47.0 47.0 46.0 45.0 44.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 37.0 36.0 35.0 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 26.0 25.0 24.0 23.0 22.0 20.0 20.0 19.0 18.0 17.0 16.0 15.0 14.0 14.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 5.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 10.0 10.0
136.0 139.0 143.0 146.0 150.0 153.0 157.0 159.0 159.0 160.0 160.0 160.0 160.0 161.0 152.0 138.0 123.0 109.0 95.0 81.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 73.0 75.0 76.0 77.0 78.0 79.0 80.0 91.0 105.0 120.0 135.0 150.0 165.0 180.0 202.0 224.0 246
Now I want to convert into NetCDF file. I imported the .asc file using
asc = import.asc("/Users/Pushp/Desktop/test/CF/2004/Eta-20040101-India-RH50.asc")
then change into raster
raster = raster(asc)
Now I want to change this raster file into NetCDF file?
You can do:
library(raster)
asc <- raster("Eta-20040101-India-RH50.asc")
x <- writeRaster(asc, "eta.nc")
I have a dataset of timeseries (30 years). I did a subset for the month and the date I want (shown below in the code). Is there a way to do a loop for each month and the days in those month? Also, is there a way to save the plots automatically, in different folders corresponding to each month? Right now I am doing it manually by changing the month and date which corresponds to dfOct31all <- df [ which(df$Month==10 & df$Day==31), ]in the code below then plotting and saving it. By the way, I'm using RStudio.
Can someone please guide me?
Thanks!
setwd("WDir")
df <- read.csv("Velocity.csv", header = TRUE)
attach(df)
#Day 31
dfOct31all <- df [ which(df$Month==10 & df$Day==31), ]
dfall31Mbs <- dfOct31all[c(-1,-2,-3)]
densities <- lapply(dfall31Mbs, density)
par(mfcol=c(5,5), oma=c(1,1,0,0), mar=c(1,1,1,0), tcl=-0.1, mgp=c(0,0,0))
plot(densities[[1]], col="black",main = "1000mb",xlab=NA,ylab=NA)
plot(densities[[2]], col="black",main="925mb",xlab=NA,ylab=NA)
plot(densities[[3]], col="black",main="850mb",xlab=NA,ylab=NA)
plot(densities[[4]], col="black",main="700mb",xlab=NA,ylab=NA)
plot(densities[[5]], col="black",main="600mb",xlab=NA,ylab=NA)
plot(densities[[6]], col="black",main="500mb",xlab=NA,ylab=NA)
plot(densities[[7]], col ="black",main="400mb",xlab=NA,ylab=NA)
plot(densities[[8]], col="black",main="300mb",xlab=NA,ylab=NA)
plot(densities[[9]], col="black",main="250mb",xlab=NA,ylab=NA)
plot(densities[[10]], col="black",main="200mb",xlab=NA,ylab=NA)
plot(densities[[11]], col= "black",main="150mb",xlab=NA,ylab=NA)
plot(densities[[12]], col= "black",main="100mb",xlab=NA,ylab=NA)
plot(densities[[13]], col = "black",main="70mb",xlab=NA,ylab=NA)
plot(densities[[14]], col="black",main="50mb",xlab=NA,ylab=NA)
plot(densities[[15]], col="black",main="30mb",xlab=NA,ylab=NA)
plot(densities[[16]], col = "black",main="20mb",xlab=NA,ylab=NA)
plot(densities[[17]], col="black",main="10mb",xlab=NA,ylab=NA)
Snippet of data is shown as well
Year Month Day 1000mb 925mb 850mb 700mb 600mb 500mb 400mb 300mb 250mb 200mb 150mb 100mb 70mb 50mb 30mb 20mb 10mb
1984 10 31 6 6.6 7.9 11.5 14.6 17 20.8 25.8 26.4 25.3 24.4 22.7 19.9 19.2 20.4 24.8 30.8
1985 10 31 5.8 7.1 7.7 11.5 14.7 17.3 25.3 32.6 32.9 32.4 27.1 20.9 14.2 9.7 6.4 7.3 7.4
1986 10 31 4.3 6.1 7.7 11.3 18.4 26.3 34.4 44.5 48.9 46.2 34.5 20.4 13.8 13.2 21.7 31 46.4
1987 10 31 2.2 2.9 4 7 9 13.9 19.9 25.8 26.6 23.7 17.3 12 7 3.1 1.7 5.8 14.1
1988 10 31 2.5 2.1 2.3 6.5 6.4 5.1 7.4 12.1 13.4 16.1 16.7 15.2 8.8 5 2.8 6.2 8.9
1989 10 31 3.4 4 4.7 4.4 4.1 4 4.6 4.8 5.9 5.6 10.9 13.9 12.3 10.4 8.1 8 8
1990 10 31 4 4.9 7.5 14.6 19 21.9 25.7 28.3 29.4 29.2 27.3 18 12.6 10.1 9 12 19.9
1991 10 31 2.8 3.2 4 10.8 12.1 11.2 9.9 9.1 9.9 12.8 18 17.5 10.4 6.3 4.2 7.6 11.7
1992 10 31 5.9 6.9 7.9 13.1 17.9 25.2 34.6 47.3 53.3 53 42.4 21.3 11.6 6 4.6 8.5 12.8
1993 10 31 2.3 1.5 0.4 3.6 6.3 10.1 14.3 19.1 21.6 21.8 18.4 13.6 12.3 9.5 6.9 11 18.1
1994 10 31 2 2.2 3.8 11.6 17 19.8 23.6 24.9 25.5 26.2 28.4 25.2 16.7 13.6 9.3 8.3 9.8
1995 10 31 1.5 2 3.4 7.6 9.1 11.2 13.7 17.9 20.3 21.7 21.1 16.7 13 12.1 14.9 21.4 27.3
1996 10 31 1.9 2.4 3.5 8 11.7 17.4 26.4 35.6 33.3 24.6 12.4 4.1 0.5 3.4 7.2 9.4 11.6
1997 10 31 3.7 4.8 7.8 19.2 24.6 29.6 35.6 41 41.8 42 37.9 23.7 11.2 8.6 4.2 3.8 7
1998 10 31 0.7 1.1 0.9 4.8 8.4 11.4 14 25.3 29.7 25.2 15.9 6.6 2.1 1 4.5 8.9 6.1
1999 10 31 1.9 1.6 2.4 10.7 15.3 19 23.2 29 32.4 31.9 28 20.3 10.8 9.4 12 14.5 16.9
2000 10 31 5.1 5.8 6.7 12.8 18.2 23.9 29.9 40.7 42.2 33.7 23.5 12.7 2.6 1.6 3.8 4.7 5.1
2001 10 31 5.7 6.1 7.1 10.1 10.8 14.7 18.3 22.8 22.3 22.2 22 14 9.5 6.6 5.2 6.5 8.6
2002 10 31 1.4 1.6 1.8 9.2 14.5 19.5 24.8 30 30.5 27.6 22.2 13.9 9.1 7.1 8.5 16.1 23.8
2003 10 31 1.5 1.3 0.7 1 3.5 6 11.7 21.5 21.9 22.9 23 20.7 15.8 12.5 14.5 20.1 26
2004 10 31 5.4 5.6 6.9 14.4 23.3 33.3 46.1 60.9 62.1 54.6 42.9 28 17.3 12.3 10.1 13.6 13.3
2005 10 31 1.7 1.3 3 10.3 15.8 19.5 21.1 22.8 24.1 24.5 24.5 20.6 13.5 10.7 10 10.7 10.4
2006 10 31 2.3 1.5 1.7 8.7 12.5 15.9 18.7 20.5 21.8 24.3 29.9 25.3 18.3 12.8 7.7 8.8 12.4
2007 10 31 3.7 2.7 2.3 2.2 2.6 4.2 6.5 11.9 15.9 19.6 17.2 9.5 6.9 5.7 4.9 5.8 11.7
2008 10 31 7.7 10.8 14.3 20.3 23 25.8 27.4 32.1 35.4 34.8 25.8 13.2 7.1 2.9 2.6 3.4 6
2009 10 31 0.5 0.2 2 9.3 13.5 17.6 18.8 20.8 21.4 21.2 18.9 14.2 11.1 6.4 1.9 3 8
2010 10 31 5.6 6.8 8.5 13.4 16.5 20.3 23.8 26.8 31 28.1 24 15.7 9.9 7 4.8 3.9 1.8
2011 10 31 5.9 6.7 5.6 7.9 10.3 11.8 12.5 16.2 19.5 21.4 17.9 13.2 9.6 7.9 8 8.3 10.8
2012 10 31 4.8 6.3 9.4 19.5 24.2 27.2 27.5 27.3 27.7 30.7 27.5 16.7 10 7.6 8 13.8 19.7
2013 10 31 1.4 1.9 3.9 9.1 13.1 17.3 22.9 29.7 30.4 27.3 23.5 18.2 13.1 6.3 4.4 2.4 9.4
I wrote it out for each day rather than doing a loop.
I have the following data.
HEIrank1
HEI.ID X2007 X2008 X2009 X2010 X2011 X2012
1 OP 41.8 147.6 90.3 82.9 106.8 63.0
2 MO 20.0 20.8 21.1 20.9 12.6 20.6
3 SD 21.2 32.3 25.7 23.9 25.0 40.1
4 UN 51.8 39.8 19.9 20.9 21.6 22.5
5 WS 18.0 19.9 15.3 13.6 15.7 15.2
6 BF 11.5 36.9 20.0 23.2 18.2 23.8
7 ME 34.2 30.3 28.4 30.1 31.5 25.6
8 IM 7.7 18.1 20.5 14.6 17.2 17.1
9 OM 11.4 11.2 12.2 11.1 13.4 19.2
10 DC 14.3 28.7 20.1 17.0 22.3 16.2
11 OC 28.6 44.0 24.9 27.9 34.0 30.7
12 TH 7.4 10.0 5.8 8.8 8.7 8.6
13 CC 12.1 11.0 12.2 12.1 14.9 15.0
14 MM 11.7 24.2 18.4 18.6 31.9 31.7
15 MC 19.0 13.7 17.0 20.4 20.5 12.1
16 SH 11.4 24.8 26.1 12.7 19.9 25.9
17 SB 13.0 22.8 15.9 17.6 17.2 9.6
18 SN 11.5 18.6 22.9 12.0 20.3 11.6
19 ER 10.8 13.2 20.0 11.0 14.9 14.2
20 SL 44.9 21.6 21.3 26.5 17.0 8.0
I try following commends to draw regression line for each HEIs.
year <- c(2007 , 2008 , 2009 , 2010 , 2011, 2012)
op <- as.numeric(HEIrank1[1,])
lm.r <- lm(op~year)
plot(year, op)
abline(lm.r)
I want to draw to draw regression line for each college in one graph and I do not how.can you help me.
Here's my approach with ggplot2 but the graph is uninterpretable with that many lines.
library(ggplot2);library(reshape2)
mdat <- melt(HEIrank1, variable.name="year")
mdat$year <- as.numeric(substring(mdat$year, 2))
ggplot(mdat, aes(year, value, colour=HEI.ID, group=HEI.ID)) +
geom_point() + stat_smooth(se = FALSE, method="lm")
Faceting may be a better way to got:
ggplot(mdat, aes(year, value, group=HEI.ID)) +
geom_point() + stat_smooth(se = FALSE, method="lm") +
facet_wrap(~HEI.ID)
I'm using R for the analysis of my master thesis
I have the following data frame: STOF: Student to staff ratio
HEI.ID X2007 X2008 X2009 X2010 X2011 X2012
1 OP 41.8 147.6 90.3 82.9 106.8 63.0
2 MO 20.0 20.8 21.1 20.9 12.6 20.6
3 SD 21.2 32.3 25.7 23.9 25.0 40.1
4 UN 51.8 39.8 19.9 20.9 21.6 22.5
5 WS 18.0 19.9 15.3 13.6 15.7 15.2
6 BF 11.5 36.9 20.0 23.2 18.2 23.8
7 ME 34.2 30.3 28.4 30.1 31.5 25.6
8 IM 7.7 18.1 20.5 14.6 17.2 17.1
9 OM 11.4 11.2 12.2 11.1 13.4 19.2
10 DC 14.3 28.7 20.1 17.0 22.3 16.2
11 OC 28.6 44.0 24.9 27.9 34.0 30.7
Then I rank colleges using this commend
HEIrank1<-(STOF[,-c(1)])
rank1 <- apply(HEIrank1,2,rank)
> HEIrank11
HEI.ID X2007 X2008 X2009 X2010 X2011 X2012
1 OP 18.0 20 20.0 20.0 20.0 20
2 MO 14.0 9 13.0 13.5 2.0 12
3 SD 15.0 16 17.0 16.0 16.0 19
4 UN 20.0 18 8.0 13.5 14.0 13
5 WS 12.0 8 4.0 7.0 6.0 8
6 BF 6.5 17 9.5 15.0 10.0 14
7 ME 17.0 15 19.0 19.0 17.0 15
8 IM 2.0 6 12.0 8.0 8.5 10
9 OM 4.5 3 2.5 3.0 3.0 11
10 DC 11.0 14 11.0 9.0 15.0 9
11 OC 16.0 19 16.0 18.0 19.0 17
I would like to draw histogram for each HEIs (for each row)?
If you use ggplot you won't need to do it as a loop, you can plot them all at once. Also, you need to reformat your data so that it's in long format not short format. You can use the melt function from the reshape package to do so.
library(reshape2)
new.df<-melt(HEIrank11,id.vars="HEI.ID")
names(new.df)=c("HEI.ID","Year","Rank")
substring is just getting rid of the X in each year
library(ggplot2)
ggplot(new.df, aes(x=HEI.ID,y=Rank,fill=substring(Year,2)))+
geom_histogram(stat="identity",position="dodge")
Here's a solution in lattice:
require(lattice)
barchart(X2007+X2008+X2009+X2010+X2011+X2012 ~ HEI.ID,
data=HEIrank11,
auto.key=list(space='right')
)
I am trying to graph the following data file:
61.0 16.4 100.0 28.6 28.6 12.2 12.2
59.0 25.4 100.0 21.4 21.4 11.8 11.8
69.0 15.9 100.0 35.7 35.7 11.5 11.5
59.0 23.7 100.0 23.4 23.4 11.8 11.8
49.0 20.4 100.0 18.0 18.0 9.8 9.8
84.0 13.1 90.9 50.8 50.8 16.8 16.8
59.0 16.9 100.0 22.6 22.6 11.8 11.8
71.0 16.9 100.0 32.8 32.8 14.2 14.2
68.0 19.1 100.0 26.2 26.2 13.6 13.6
91.0 13.2 100.0 51.6 51.6 18.2 18.2
57.0 22.8 100.0 29.4 29.4 11.4 11.4
52.0 26.9 100.0 17.8 17.8 10.4 10.4
55.0 21.8 100.0 32.2 32.2 11.0 11.0
68.0 19.1 100.0 29.8 29.8 13.6 13.6
50.0 22.0 100.0 19.0 19.0 10.0 10.0
149.0 12.1 66.7 111.2 111.2 29.8 29.8
69.0 20.3 100.0 29.8 29.8 13.8 13.8
I am very new to gnuplot I cant seem to figure out what the correct code will be to get this graph:
I was trying something like this:
gnuplot> set output 'datastore1.png'
gnuplot> plot 'desktop1.dat' using 0:1 title "totalio" with lines, 'desktop1.dat' using 0:2 title "readpercentage" with lines, 'desktop1.dat' using 0:3 title "cachehitpercentage" with lines, 'desktop1.dat' using 0:4 title "currentkbpersecond" with lines, 'desktop1.dat' using 0:5 title "maximumkbpersecond" with lines, 'desktop1.dat' using 0:6 title "currentiopersecond" with lines, 'desktop1.dat' using 0:7 title "maximumiopersecond" with lines
gnuplot> quit
However the graph is not exactly correct.
Thanks for the help!
Not sure what you are trying to plot here, but I think the error is that you are using the zero-th column for the 'using' command which does not exist. Rather use this
p 'desktop1.dat' u 1:2, 'desktop1.dat' u 1:3
edit
So when you are plotting against time, you might want to add another column to the data that you read in from the file such that you have
15 61.0 16.4 100.0 28.6 28.6 12.2 12.2
as an example for the first line of your data. Afterwards you use the given plotting command I gove above.