convert ascii to netcdf format using r language - r
I have data in .asc format, given below.
ncols 241
nrows 291
xllcenter 91.33
yllcenter 5.00
cellsize 0.1
NODATA_value -999
133.0 136.0 138.0 141.0 144.0 147.0 150.0 152.0 155.0 157.0 159.0 162.0 164.0 167.0 159.0 147.0 135.0 123.0 111.0 98.0 86.0 84.0 81.0 79.0 76.0 74.0 71.0 70.0 70.0 70.0 71.0 71.0 72.0 72.0 84.0 101.0 118.0 134.0 151.0 168.0 185.0 197.0 209.0 222.0 234.0 246.0 258.0 266.0 266.0 266.0 266.0 265.0 265.0 265.0 254.0 237.0 221.0 204.0 188.0 171.0 155.0 156.0 158.0 160.0 161.0 163.0 164.0 165.0 162.0 159.0 156.0 153.0 150.0 147.0 144.0 140.0 137.0 133.0 130.0 126.0 123.0 120.0 117.0 114.0 111.0 108.0 105.0 102.0 99.0 97.0 94.0 92.0 89.0 86.0 85.0 84.0 83.0 82.0 81.0 80.0 79.0 78.0 77.0 76.0 75.0 73.0 72.0 71.0 70.0 70.0 69.0 68.0 67.0 67.0 66.0 65.0 64.0 63.0 62.0 61.0 60.0 59.0 58.0 57.0 56.0 55.0 54.0 53.0 52.0 51.0 51.0 50.0 49.0 48.0 47.0 46.0 45.0 45.0 44.0 43.0 42.0 40.0 39.0 38.0 37.0 35.0 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 27.0 26.0 26.0 25.0 25.0 24.0 24.0 23.0 22.0 21.0 21.0 20.0 19.0 19.0 18.0 17.0 16.0 15.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 13.0 14.0 15.0 15.0
133.0 137.0 140.0 143.0 146.0 149.0 153.0 155.0 158.0 160.0 162.0 164.0 166.0 168.0 161.0 148.0 135.0 123.0 110.0 97.0 85.0 83.0 81.0 78.0 76.0 74.0 72.0 71.0 72.0 72.0 73.0 74.0 74.0 75.0 86.0 103.0 120.0 137.0 154.0 171.0 188.0 199.0 210.0 220.0 231.0 242.0 252.0 259.0 259.0 259.0 258.0 258.0 258.0 257.0 247.0 231.0 215.0 199.0 184.0 168.0 152.0 155.0 158.0 161.0 164.0 167.0 169.0 170.0 166.0 162.0 158.0 154.0 150.0 145.0 142.0 138.0 134.0 130.0 126.0 122.0 118.0 115.0 112.0 110.0 107.0 104.0 101.0 98.0 96.0 93.0 91.0 88.0 86.0 83.0 82.0 81.0 80.0 79.0 78.0 77.0 75.0 74.0 73.0 72.0 71.0 70.0 69.0 68.0 67.0 67.0 66.0 65.0 65.0 64.0 63.0 63.0 62.0 61.0 60.0 59.0 59.0 58.0 57.0 56.0 55.0 54.0 53.0 52.0 52.0 51.0 50.0 49.0 48.0 48.0 47.0 46.0 45.0 44.0 43.0 42.0 42.0 40.0 39.0 38.0 37.0 35.0 34.0 33.0 32.0 31.0 31.0 30.0 29.0 28.0 27.0 27.0 26.0 26.0 25.0 24.0 24.0 23.0 23.0 22.0 21.0 21.0 20.0 19.0 18.0 17.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 8.0 9.0 9.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 14.0 14.0 15.0 16.0 16.0
134.0 138.0 141.0 145.0 148.0 152.0 156.0 159.0 161.0 162.0 164.0 166.0 168.0 170.0 162.0 149.0 136.0 123.0 110.0 96.0 83.0 82.0 80.0 78.0 77.0 75.0 73.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 89.0 106.0 123.0 140.0 157.0 174.0 191.0 200.0 210.0 219.0 228.0 238.0 247.0 253.0 252.0 252.0 251.0 251.0 250.0 250.0 240.0 225.0 210.0 194.0 179.0 164.0 149.0 153.0 158.0 162.0 166.0 170.0 174.0 176.0 170.0 165.0 160.0 154.0 149.0 144.0 139.0 135.0 131.0 126.0 122.0 118.0 114.0 111.0 108.0 105.0 102.0 100.0 97.0 94.0 92.0 90.0 87.0 85.0 83.0 81.0 79.0 78.0 77.0 75.0 74.0 73.0 72.0 71.0 70.0 69.0 68.0 66.0 65.0 65.0 64.0 64.0 63.0 63.0 62.0 62.0 61.0 61.0 60.0 59.0 59.0 58.0 57.0 57.0 56.0 55.0 54.0 53.0 52.0 52.0 51.0 50.0 49.0 49.0 48.0 47.0 46.0 46.0 45.0 44.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 35.0 34.0 33.0 32.0 32.0 31.0 30.0 29.0 29.0 28.0 27.0 27.0 26.0 25.0 25.0 24.0 24.0 23.0 22.0 22.0 21.0 20.0 20.0 19.0 18.0 17.0 16.0 16.0 15.0 14.0 13.0 12.0 12.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10.0 11.0 12.0 12.0 13.0 14.0 14.0 15.0 16.0 17.0 17.0
135.0 139.0 143.0 147.0 151.0 155.0 159.0 162.0 163.0 165.0 167.0 169.0 170.0 172.0 164.0 150.0 136.0 123.0 109.0 95.0 82.0 81.0 79.0 78.0 77.0 76.0 74.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 92.0 109.0 126.0 143.0 160.0 177.0 194.0 202.0 210.0 218.0 226.0 233.0 241.0 246.0 246.0 245.0 244.0 244.0 243.0 242.0 232.0 218.0 204.0 190.0 175.0 161.0 147.0 152.0 158.0 163.0 169.0 174.0 180.0 181.0 175.0 168.0 162.0 155.0 149.0 142.0 137.0 132.0 128.0 123.0 118.0 114.0 109.0 106.0 104.0 101.0 98.0 96.0 93.0 90.0 88.0 86.0 84.0 82.0 80.0 78.0 76.0 75.0 73.0 72.0 71.0 69.0 68.0 67.0 66.0 65.0 64.0 63.0 62.0 61.0 61.0 61.0 60.0 60.0 60.0 59.0 59.0 59.0 58.0 58.0 57.0 57.0 56.0 55.0 55.0 54.0 53.0 53.0 52.0 51.0 50.0 50.0 49.0 48.0 47.0 47.0 46.0 45.0 44.0 44.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 34.0 33.0 33.0 32.0 31.0 31.0 30.0 29.0 29.0 28.0 27.0 27.0 26.0 25.0 25.0 24.0 23.0 23.0 22.0 21.0 21.0 20.0 19.0 18.0 18.0 17.0 16.0 15.0 14.0 14.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 5.0 5.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 10.0 11.0 11.0 12.0 13.0 13.0 14.0 15.0 16.0 17.0 18.0 18.0
135.0 140.0 144.0 148.0 153.0 157.0 161.0 165.0 166.0 168.0 169.0 171.0 172.0 174.0 165.0 151.0 137.0 123.0 109.0 94.0 80.0 80.0 79.0 78.0 77.0 76.0 76.0 75.0 77.0 78.0 79.0 80.0 82.0 83.0 95.0 112.0 129.0 146.0 163.0 180.0 197.0 204.0 210.0 216.0 223.0 229.0 236.0 240.0 239.0 238.0 237.0 236.0 235.0 235.0 225.0 212.0 198.0 185.0 171.0 157.0 144.0 151.0 157.0 164.0 171.0 178.0 185.0 186.0 179.0 171.0 163.0 156.0 148.0 140.0 134.0 129.0 124.0 120.0 115.0 110.0 105.0 102.0 99.0 97.0 94.0 92.0 89.0 87.0 85.0 83.0 81.0 79.0 77.0 75.0 73.0 72.0 70.0 69.0 67.0 66.0 65.0 64.0 63.0 62.0 61.0 59.0 58.0 58.0 58.0 58.0 57.0 57.0 57.0 57.0 57.0 56.0 56.0 56.0 56.0 55.0 55.0 54.0 54.0 53.0 52.0 52.0 51.0 51.0 50.0 49.0 48.0 48.0 47.0 46.0 45.0 45.0 44.0 43.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 35.0 34.0 33.0 32.0 32.0 31.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 26.0 25.0 24.0 24.0 23.0 22.0 22.0 21.0 21.0 20.0 19.0 18.0 17.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 9.0 9.0 8.0 8.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 10.0 11.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.0
136.0 141.0 145.0 150.0 155.0 160.0 164.0 168.0 169.0 171.0 172.0 173.0 175.0 176.0 167.0 152.0 137.0 123.0 108.0 94.0 79.0 79.0 78.0 78.0 77.0 77.0 77.0 77.0 78.0 80.0 81.0 83.0 84.0 86.0 97.0 115.0 132.0 149.0 166.0 183.0 200.0 205.0 210.0 215.0 220.0 225.0 230.0 233.0 232.0 231.0 230.0 229.0 228.0 227.0 218.0 205.0 192.0 180.0 167.0 154.0 141.0 149.0 157.0 165.0 173.0 181.0 190.0 192.0 183.0 174.0 165.0 156.0 148.0 139.0 132.0 127.0 121.0 116.0 111.0 105.0 100.0 97.0 95.0 93.0 90.0 88.0 85.0 83.0 81.0 79.0 77.0 75.0 74.0 72.0 70.0 69.0 67.0 66.0 64.0 62.0 61.0 60.0 59.0 58.0 57.0 56.0 55.0 54.0 54.0 54.0 55.0 55.0 55.0 55.0 55.0 54.0 54.0 54.0 54.0 54.0 54.0 53.0 53.0 52.0 52.0 51.0 51.0 50.0 49.0 48.0 48.0 47.0 46.0 46.0 45.0 44.0 44.0 43.0 42.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 35.0 34.0 33.0 33.0 32.0 32.0 31.0 31.0 30.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 23.0 23.0 22.0 22.0 21.0 20.0 19.0 19.0 18.0 17.0 16.0 15.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 19.0 20.0
136.0 140.0 145.0 150.0 154.0 159.0 164.0 167.0 168.0 170.0 171.0 172.0 173.0 174.0 165.0 150.0 135.0 121.0 106.0 91.0 77.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0 77.0 79.0 80.0 82.0 83.0 84.0 97.0 114.0 132.0 149.0 167.0 184.0 202.0 207.0 213.0 218.0 224.0 229.0 235.0 238.0 236.0 233.0 231.0 229.0 227.0 225.0 218.0 210.0 201.0 193.0 184.0 176.0 167.0 172.0 177.0 182.0 187.0 192.0 197.0 197.0 188.0 179.0 171.0 162.0 153.0 144.0 136.0 130.0 123.0 117.0 110.0 104.0 97.0 95.0 92.0 90.0 87.0 85.0 82.0 80.0 78.0 77.0 75.0 73.0 71.0 70.0 68.0 67.0 65.0 64.0 63.0 61.0 60.0 59.0 58.0 57.0 57.0 56.0 55.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 51.0 51.0 50.0 50.0 49.0 48.0 48.0 47.0 47.0 46.0 45.0 45.0 44.0 43.0 43.0 42.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0 35.0 34.0 34.0 33.0 33.0 32.0 32.0 31.0 30.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 24.0 23.0 22.0 22.0 21.0 20.0 19.0 18.0 18.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
136.0 140.0 145.0 149.0 154.0 158.0 163.0 166.0 167.0 169.0 170.0 171.0 172.0 173.0 163.0 148.0 134.0 119.0 104.0 89.0 74.0 74.0 74.0 74.0 74.0 74.0 75.0 75.0 76.0 78.0 79.0 81.0 82.0 83.0 96.0 114.0 132.0 149.0 167.0 185.0 203.0 209.0 215.0 221.0 227.0 233.0 240.0 243.0 239.0 236.0 233.0 229.0 226.0 223.0 219.0 215.0 210.0 206.0 202.0 198.0 194.0 195.0 197.0 199.0 201.0 203.0 204.0 203.0 194.0 185.0 176.0 167.0 158.0 149.0 141.0 133.0 125.0 117.0 110.0 102.0 94.0 92.0 89.0 87.0 84.0 82.0 79.0 77.0 76.0 74.0 72.0 71.0 69.0 67.0 66.0 65.0 64.0 63.0 61.0 60.0 59.0 58.0 58.0 57.0 56.0 55.0 55.0 54.0 54.0 54.0 54.0 54.0 53.0 53.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 50.0 50.0 49.0 49.0 48.0 48.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 43.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 37.0 36.0 36.0 35.0 34.0 34.0 33.0 32.0 32.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 26.0 25.0 24.0 24.0 23.0 22.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 15.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 8.0 9.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0
135.0 140.0 144.0 149.0 153.0 158.0 162.0 166.0 166.0 167.0 168.0 169.0 170.0 171.0 162.0 147.0 132.0 117.0 102.0 87.0 72.0 72.0 72.0 73.0 73.0 73.0 74.0 74.0 76.0 77.0 78.0 80.0 81.0 82.0 95.0 113.0 131.0 150.0 168.0 186.0 204.0 211.0 218.0 224.0 231.0 238.0 244.0 247.0 243.0 238.0 234.0 229.0 225.0 220.0 219.0 219.0 219.0 219.0 220.0 220.0 220.0 219.0 217.0 216.0 215.0 213.0 212.0 208.0 199.0 190.0 181.0 172.0 163.0 154.0 145.0 136.0 127.0 118.0 109.0 100.0 91.0 89.0 86.0 84.0 81.0 79.0 77.0 74.0 73.0 71.0 70.0 68.0 67.0 65.0 64.0 63.0 62.0 61.0 60.0 59.0 58.0 58.0 57.0 56.0 56.0 55.0 54.0 54.0 54.0 53.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 50.0 50.0 50.0 49.0 49.0 49.0 48.0 48.0 48.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 44.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 38.0 37.0 36.0 35.0 35.0 34.0 33.0 33.0 32.0 31.0 30.0 30.0 29.0 28.0 27.0 27.0 26.0 25.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 19.0 18.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 5.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0
135.0 140.0 144.0 148.0 153.0 157.0 161.0 165.0 166.0 166.0 167.0 168.0 169.0 170.0 160.0 145.0 130.0 115.0 100.0 84.0 69.0 70.0 70.0 71.0 71.0 72.0 73.0 73.0 75.0 76.0 77.0 79.0 80.0 81.0 94.0 113.0 131.0 150.0 169.0 187.0 206.0 213.0 220.0 228.0 235.0 242.0 249.0 252.0 246.0 241.0 235.0 229.0 224.0 218.0 219.0 224.0 228.0 233.0 237.0 242.0 246.0 242.0 237.0 233.0 228.0 224.0 219.0 213.0 204.0 195.0 186.0 177.0 168.0 159.0 150.0 139.0 129.0 119.0 109.0 98.0 88.0 86.0 83.0 81.0 79.0 76.0 74.0 72.0 70.0 69.0 67.0 66.0 65.0 63.0 62.0 61.0 61.0 60.0 59.0 58.0 57.0 57.0 56.0 56.0 55.0 55.0 54.0 54.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 50.0 50.0 50.0 50.0 50.0 49.0 49.0 49.0 49.0 48.0 48.0 48.0 47.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 44.0 43.0 42.0 42.0 41.0 40.0 40.0 39.0 38.0 37.0 37.0 36.0 35.0 34.0 33.0 33.0 32.0 31.0 31.0 30.0 29.0 28.0 28.0 27.0 26.0 25.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 16.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 5.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
135.0 139.0 144.0 148.0 152.0 156.0 161.0 164.0 165.0 165.0 166.0 167.0 168.0 168.0 158.0 143.0 128.0 113.0 97.0 82.0 67.0 68.0 68.0 69.0 70.0 71.0 71.0 72.0 74.0 75.0 76.0 78.0 79.0 80.0 93.0 112.0 131.0 150.0 169.0 188.0 207.0 215.0 223.0 231.0 238.0 246.0 254.0 257.0 250.0 243.0 236.0 230.0 223.0 216.0 220.0 228.0 237.0 246.0 255.0 264.0 272.0 265.0 257.0 250.0 242.0 234.0 227.0 219.0 210.0 201.0 192.0 183.0 174.0 165.0 154.0 142.0 131.0 120.0 108.0 97.0 85.0 83.0 80.0 78.0 76.0 73.0 71.0 69.0 68.0 66.0 65.0 64.0 62.0 61.0 60.0 60.0 59.0 58.0 58.0 57.0 56.0 56.0 56.0 55.0 55.0 54.0 54.0 53.0 53.0 53.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 50.0 50.0 50.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 48.0 48.0 48.0 48.0 48.0 48.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 44.0 43.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 38.0 37.0 36.0 35.0 34.0 34.0 33.0 32.0 32.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 25.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 15.0 14.0 13.0 12.0 12.0 11.0 10.0 10.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 6.0 7.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 18.0
135.0 139.0 143.0 148.0 152.0 156.0 160.0 163.0 164.0 164.0 165.0 165.0 166.0 167.0 157.0 142.0 127.0 112.0 97.0 82.0 67.0 68.0 69.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 78.0 79.0 80.0 93.0 111.0 129.0 147.0 165.0 184.0 202.0 212.0 223.0 234.0 244.0 255.0 266.0 272.0 269.0 266.0 263.0 260.0 257.0 255.0 257.0 261.0 265.0 269.0 274.0 278.0 282.0 273.0 264.0 255.0 246.0 237.0 228.0 219.0 213.0 206.0 199.0 193.0 186.0 180.0 169.0 156.0 143.0 130.0 117.0 104.0 91.0 88.0 85.0 82.0 78.0 75.0 72.0 70.0 68.0 67.0 66.0 64.0 63.0 62.0 61.0 60.0 59.0 59.0 58.0 57.0 56.0 56.0 56.0 55.0 55.0 55.0 54.0 54.0 54.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 51.0 51.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 49.0 49.0 49.0 49.0 48.0 48.0 47.0 47.0 46.0 46.0 45.0 45.0 44.0 43.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 37.0 36.0 36.0 35.0 34.0 33.0 33.0 32.0 31.0 30.0 29.0 29.0 28.0 27.0 26.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 16.0 15.0 14.0 13.0 12.0 11.0 11.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 6.0 5.0 4.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 5.0 6.0 7.0 8.0 9.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0
135.0 139.0 143.0 147.0 151.0 155.0 159.0 162.0 162.0 163.0 164.0 164.0 165.0 165.0 156.0 141.0 126.0 111.0 97.0 82.0 67.0 68.0 69.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 77.0 78.0 79.0 80.0 92.0 110.0 127.0 144.0 162.0 179.0 196.0 210.0 223.0 237.0 250.0 264.0 277.0 286.0 288.0 289.0 290.0 291.0 292.0 293.0 294.0 293.0 293.0 293.0 293.0 292.0 292.0 281.0 271.0 260.0 250.0 239.0 229.0 220.0 216.0 212.0 207.0 203.0 199.0 194.0 183.0 169.0 154.0 140.0 126.0 111.0 97.0 93.0 89.0 85.0 81.0 77.0 74.0 71.0 69.0 68.0 66.0 65.0 64.0 62.0 61.0 60.0 60.0 59.0 58.0 57.0 57.0 56.0 56.0 56.0 55.0 55.0 55.0 54.0 54.0 54.0 54.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 51.0 51.0 51.0 51.0 51.0 51.0 50.0 50.0 49.0 49.0 49.0 48.0 48.0 47.0 46.0 46.0 45.0 44.0 44.0 43.0 42.0 41.0 40.0 40.0 39.0 38.0 37.0 36.0 35.0 35.0 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 27.0 26.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 15.0 14.0 13.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 4.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0 5.0 6.0 7.0 8.0 8.0 9.0 10.0 11.0 11.0 12.0 13.0 14.0
135.0 139.0 143.0 147.0 151.0 154.0 158.0 161.0 161.0 162.0 162.0 163.0 163.0 164.0 154.0 140.0 125.0 111.0 96.0 82.0 67.0 68.0 69.0 70.0 70.0 71.0 72.0 73.0 74.0 75.0 77.0 78.0 79.0 80.0 92.0 108.0 125.0 141.0 158.0 174.0 191.0 207.0 223.0 240.0 256.0 272.0 289.0 301.0 306.0 311.0 317.0 322.0 327.0 332.0 331.0 326.0 321.0 316.0 311.0 307.0 302.0 290.0 278.0 266.0 254.0 242.0 230.0 221.0 219.0 217.0 215.0 213.0 211.0 209.0 198.0 182.0 166.0 150.0 134.0 118.0 102.0 98.0 93.0 89.0 84.0 80.0 75.0 71.0 70.0 69.0 67.0 66.0 64.0 63.0 62.0 61.0 60.0 59.0 58.0 57.0 57.0 56.0 56.0 56.0 56.0 55.0 55.0 55.0 55.0 54.0 54.0 54.0 54.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 51.0 51.0 50.0 50.0 49.0 48.0 48.0 47.0 46.0 46.0 45.0 44.0 43.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 37.0 36.0 35.0 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 26.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16.0 16.0 15.0 14.0 13.0 12.0 12.0 11.0 10.0 9.0 9.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0 5.0 6.0 7.0 7.0 8.0 9.0 9.0 10.0 11.0 11.0 12.0
136.0 139.0 143.0 146.0 150.0 154.0 157.0 160.0 160.0 161.0 161.0 162.0 162.0 162.0 153.0 139.0 124.0 110.0 96.0 82.0 67.0 68.0 69.0 70.0 71.0 71.0 72.0 73.0 74.0 76.0 77.0 78.0 79.0 80.0 91.0 107.0 123.0 138.0 154.0 170.0 185.0 204.0 224.0 243.0 262.0 281.0 300.0 316.0 325.0 334.0 343.0 352.0 362.0 371.0 368.0 358.0 349.0 340.0 330.0 321.0 312.0 298.0 285.0 271.0 258.0 244.0 231.0 222.0 222.0 223.0 223.0 224.0 224.0 224.0 213.0 195.0 178.0 160.0 143.0 126.0 108.0 103.0 98.0 92.0 87.0 82.0 76.0 72.0 71.0 69.0 68.0 66.0 65.0 63.0 62.0 61.0 60.0 59.0 58.0 58.0 57.0 56.0 56.0 56.0 56.0 56.0 55.0 55.0 55.0 55.0 55.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 53.0 53.0 52.0 52.0 51.0 51.0 50.0 49.0 49.0 48.0 47.0 47.0 46.0 45.0 44.0 43.0 42.0 41.0 41.0 40.0 39.0 38.0 37.0 36.0 35.0 34.0 33.0 32.0 31.0 30.0 29.0 28.0 27.0 26.0 25.0 24.0 23.0 22.0 20.0 20.0 19.0 18.0 17.0 16.0 15.0 14.0 14.0 13.0 12.0 11.0 10.0 10.0 9.0 8.0 8.0 7.0 7.0 6.0 5.0 5.0 5.0 4.0 4.0 3.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 10.0 10.0
136.0 139.0 143.0 146.0 150.0 153.0 157.0 159.0 159.0 160.0 160.0 160.0 160.0 161.0 152.0 138.0 123.0 109.0 95.0 81.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 73.0 75.0 76.0 77.0 78.0 79.0 80.0 91.0 105.0 120.0 135.0 150.0 165.0 180.0 202.0 224.0 246
Now I want to convert into NetCDF file. I imported the .asc file using
asc = import.asc("/Users/Pushp/Desktop/test/CF/2004/Eta-20040101-India-RH50.asc")
then change into raster
raster = raster(asc)
Now I want to change this raster file into NetCDF file?
You can do:
library(raster)
asc <- raster("Eta-20040101-India-RH50.asc")
x <- writeRaster(asc, "eta.nc")
Related
how add spatial interpolation in R
I have question to you guys because I don't know how to interpolate my data on map. I'm try to reproduce map from http://aasa.ut.ee/Rspatial/05_session.html and I want to achive something like that: map from tutorial. But there is happening something in background so I don't understand everything. What I already have: data frame with longitude, latitude and preassure columns. The range of longitude and latitude is xlim=c(-10, 30), ylim=c(40,65) > df longitude latitude preassure 1 65.0 -10.0 999.6984 2 65.0 -7.5 999.7445 3 65.0 -5.0 999.5182 4 65.0 -2.5 999.0021 5 65.0 0.0 998.4595 6 65.0 2.5 998.0452 7 65.0 5.0 997.8119 8 65.0 7.5 997.4956 9 65.0 10.0 997.1532 10 65.0 12.5 997.1851 11 65.0 15.0 997.3216 12 65.0 17.5 997.0767 13 65.0 20.0 996.5215 14 65.0 22.5 996.0055 15 65.0 25.0 995.7271 16 65.0 27.5 995.6919 17 65.0 30.0 995.8885 18 65.0 32.5 996.1016 19 65.0 35.0 996.3514 20 62.5 -10.0 1001.9770 21 62.5 -7.5 1002.4431 22 62.5 -5.0 1002.6335 23 62.5 -2.5 1002.6905 24 62.5 0.0 1002.7607 25 62.5 2.5 1002.7090 26 62.5 5.0 1002.2872 27 62.5 7.5 1001.8760 28 62.5 10.0 1001.8066 29 62.5 12.5 1001.3829 30 62.5 15.0 1000.1226 31 62.5 17.5 998.7299 32 62.5 20.0 997.8351 33 62.5 22.5 997.3430 34 62.5 25.0 997.2307 35 62.5 27.5 997.3709 36 62.5 30.0 997.5797 37 62.5 32.5 997.7341 38 62.5 35.0 997.9541 39 60.0 -10.0 1006.7589 40 60.0 -7.5 1007.3146 41 60.0 -5.0 1007.5654 42 60.0 -2.5 1007.7268 43 60.0 0.0 1007.8035 44 60.0 2.5 1007.5192 45 60.0 5.0 1006.9113 46 60.0 7.5 1006.3931 47 60.0 10.0 1005.7369 48 60.0 12.5 1004.3599 49 60.0 15.0 1002.6407 50 60.0 17.5 1001.2952 51 60.0 20.0 1000.2639 52 60.0 22.5 999.5920 53 60.0 25.0 999.3969 54 60.0 27.5 999.3746 55 60.0 30.0 999.4167 56 60.0 32.5 999.6822 57 60.0 35.0 1000.2075 58 57.5 -10.0 1011.8321 59 57.5 -7.5 1012.5412 60 57.5 -5.0 1013.0607 61 57.5 -2.5 1013.2542 62 57.5 0.0 1013.0942 63 57.5 2.5 1012.6132 64 57.5 5.0 1011.7856 65 57.5 7.5 1010.6275 66 57.5 10.0 1009.2998 67 57.5 12.5 1007.9899 68 57.5 15.0 1006.7288 69 57.5 17.5 1005.4613 70 57.5 20.0 1004.2938 71 57.5 22.5 1003.5243 72 57.5 25.0 1003.2300 73 57.5 27.5 1003.0484 74 57.5 30.0 1002.9350 75 57.5 32.5 1003.1247 76 57.5 35.0 1003.6449 77 55.0 -10.0 1017.0270 78 55.0 -7.5 1018.0844 79 55.0 -5.0 1018.8001 80 55.0 -2.5 1018.8523 81 55.0 0.0 1018.3936 82 55.0 2.5 1017.8593 83 55.0 5.0 1017.3493 84 55.0 7.5 1016.5559 85 55.0 10.0 1015.3215 86 55.0 12.5 1013.9338 87 55.0 15.0 1012.6094 88 55.0 17.5 1011.2712 89 55.0 20.0 1009.9580 90 55.0 22.5 1008.9790 91 55.0 25.0 1008.4529 92 55.0 27.5 1008.0782 93 55.0 30.0 1007.7059 94 55.0 32.5 1007.5469 95 55.0 35.0 1007.5681 96 52.5 -10.0 1021.5118 97 52.5 -7.5 1022.4463 98 52.5 -5.0 1022.9901 99 52.5 -2.5 1023.1570 100 52.5 0.0 1023.0451 101 52.5 2.5 1022.8766 102 52.5 5.0 1022.7153 103 52.5 7.5 1022.2165 104 52.5 10.0 1021.0707 105 52.5 12.5 1019.6818 106 52.5 15.0 1018.5007 107 52.5 17.5 1017.3067 108 52.5 20.0 1015.8635 109 52.5 22.5 1014.5103 110 52.5 25.0 1013.4495 111 52.5 27.5 1012.4800 112 52.5 30.0 1011.7438 113 52.5 32.5 1011.5841 114 52.5 35.0 1011.6581 115 50.0 -10.0 1024.6059 116 50.0 -7.5 1025.4720 117 50.0 -5.0 1026.0310 118 50.0 -2.5 1026.4533 119 50.0 0.0 1026.6738 120 50.0 2.5 1026.6087 121 50.0 5.0 1026.4604 122 50.0 7.5 1026.2937 123 50.0 10.0 1025.5823 124 50.0 12.5 1024.3837 125 50.0 15.0 1023.3542 126 50.0 17.5 1022.3630 127 50.0 20.0 1021.0361 128 50.0 22.5 1019.7546 129 50.0 25.0 1018.5380 130 50.0 27.5 1016.9760 131 50.0 30.0 1015.5891 132 50.0 32.5 1015.2455 133 50.0 35.0 1015.3957 134 47.5 -10.0 1026.5579 135 47.5 -7.5 1027.6550 136 47.5 -5.0 1028.1215 137 47.5 -2.5 1028.2034 138 47.5 0.0 1028.3665 139 47.5 2.5 1028.4254 140 47.5 5.0 1028.6371 141 47.5 7.5 1029.1085 142 47.5 10.0 1028.8970 143 47.5 12.5 1027.6374 144 47.5 15.0 1026.1353 145 47.5 17.5 1024.8384 146 47.5 20.0 1023.6115 147 47.5 22.5 1022.7498 148 47.5 25.0 1022.1981 149 47.5 27.5 1020.5934 150 47.5 30.0 1018.6138 151 47.5 32.5 1017.7399 152 47.5 35.0 1017.6530 153 45.0 -10.0 1027.3521 154 45.0 -7.5 1028.1177 155 45.0 -5.0 1028.4873 156 45.0 -2.5 1028.4996 157 45.0 0.0 1028.7896 158 45.0 2.5 1028.8341 159 45.0 5.0 1027.7460 160 45.0 7.5 1026.4421 161 45.0 10.0 1025.6955 162 45.0 12.5 1025.1825 163 45.0 15.0 1025.0429 164 45.0 17.5 1025.2959 165 45.0 20.0 1025.0541 166 45.0 22.5 1024.3106 167 45.0 25.0 1022.9915 168 45.0 27.5 1021.3729 169 45.0 30.0 1020.4743 170 45.0 32.5 1019.7272 171 45.0 35.0 1019.3080 172 42.5 -10.0 1027.2090 173 42.5 -7.5 1027.8139 174 42.5 -5.0 1028.9445 175 42.5 -2.5 1029.2019 176 42.5 0.0 1028.4393 177 42.5 2.5 1026.8987 178 42.5 5.0 1025.0419 179 42.5 7.5 1023.9250 180 42.5 10.0 1024.0046 181 42.5 12.5 1024.0845 182 42.5 15.0 1023.5381 183 42.5 17.5 1023.5317 184 42.5 20.0 1024.7725 185 42.5 22.5 1025.0638 186 42.5 25.0 1022.9272 187 42.5 27.5 1022.0318 188 42.5 30.0 1021.7181 189 42.5 32.5 1020.8714 190 42.5 35.0 1020.5228 191 40.0 -10.0 1026.8144 192 40.0 -7.5 1027.3171 193 40.0 -5.0 1029.2556 194 40.0 -2.5 1028.9006 195 40.0 0.0 1026.9173 196 40.0 2.5 1026.1678 197 40.0 5.0 1025.5287 198 40.0 7.5 1024.6530 199 40.0 10.0 1024.0673 200 40.0 12.5 1023.5342 201 40.0 15.0 1022.7612 202 40.0 17.5 1022.1834 203 40.0 20.0 1022.2757 204 40.0 22.5 1022.6448 205 40.0 25.0 1021.9519 206 40.0 27.5 1021.6179 207 40.0 30.0 1022.3322 208 40.0 32.5 1023.9349 209 40.0 35.0 1023.3993 here is my code: library("rnaturalearth") library(sf) library(ggplot2) library(viridis) world <- ne_countries(scale = "medium", returnclass = "sf") sf::sf_use_s2(FALSE) ggplot(data = world) + geom_raster(data = df, aes(x=latitude, y=longitude, fill=preassure), interpolate = TRUE) + scale_fill_viridis(direction = 1) + geom_sf(fill = "NA", colour = "white") + coord_sf(xlim=c(-10, 30),ylim=c(40,65), expand = F) + xlab("Długość geograficzna") + ylab("Szerokość geograficzna") + labs(title = "SLP zima",fill = "Cisnienie") + theme(plot.title = element_text(hjust = 0.5) ) and result: what I was able to do and finaly I want something like this: map with the preasure interpolation - demo from paint Thanks for all your help!!!
Deep Nested Tag IDs not found using BeautifulSoup
I am trying to scrape NBA data from https://www.basketball-reference.com/leagues/NBA_2019.html, but I am running into issues where BeautifulSoup drops deeply nested tags. I tried to use soup.find(id='opponent-stats-per_game') to grab the "Opponent Per Game Stats" table. However, I am getting None result. If I try to instead find a div that is higher up in the tree, then it clips the more deep children. Could someone please offer me some guidance on how this works? I am fairly new to web scraping using BeautifulSoup
The reference.com sites are partially dynamic. I had the same issue a long while back when trying to figure out football-reference.com There's a couple ways to handle it. One is to use Selenium to render the page first, and then you can go in and grab the tables. Now you can still use BeautifulSoup to get it, but whenever I see <table> tags, my first initial try is to use pandas and .read_html(), as that'll do most of the work for you on the tables. This will return a list of dataframes. It's then just a matter of finding which dataframe you want, and then possibly do a little manipulation of column names and what-not to get it the way you need. Doing this, your opponent stats per game table was in index position 19: from bs4 import BeautifulSoup from selenium import webdriver import pandas as pd driver = webdriver.Chrome('C:/chromedriver_win32/chromedriver.exe') page_url = 'https://www.basketball-reference.com/leagues/NBA_2019.html' driver.get(page_url) tables = pd.read_html(driver.page_source) opp_per_gm_df = tables[19] driver.quit() Output: print (opp_per_gm_df) Rk Team G MP FG ... STL BLK TOV PF PTS 0 1.0 Memphis Grizzlies 77 242.3 37.2 ... 7.7 4.9 15.5 21.7 105.6 1 2.0 Miami Heat 77 240.3 38.2 ... 7.4 4.8 14.2 20.3 105.6 2 3.0 Indiana Pacers* 78 240.3 38.7 ... 7.5 5.2 15.6 20.1 104.3 3 4.0 Utah Jazz* 77 240.6 39.7 ... 8.6 4.7 13.9 22.2 106.1 4 5.0 Denver Nuggets* 77 240.6 39.6 ... 7.5 5.0 13.5 20.5 106.9 5 6.0 Detroit Pistons 77 242.3 40.0 ... 6.9 5.2 14.1 21.5 107.5 6 7.0 Orlando Magic 78 241.3 39.9 ... 6.9 4.4 13.0 18.8 106.5 7 8.0 Boston Celtics* 78 241.3 39.5 ... 6.8 3.8 15.2 19.6 108.0 8 9.0 Toronto Raptors* 78 242.2 40.2 ... 7.7 4.5 15.1 20.6 108.4 9 10.0 Dallas Mavericks 77 241.0 40.9 ... 7.9 4.6 13.1 23.4 109.9 10 11.0 Milwaukee Bucks* 78 241.3 40.3 ... 6.9 4.9 13.4 20.0 108.6 11 12.0 Portland Trail Blazers* 77 242.3 41.1 ... 7.3 5.1 12.4 20.8 110.5 12 13.0 Houston Rockets* 78 241.9 40.4 ... 7.4 4.6 15.0 20.1 109.3 13 14.0 Golden State Warriors* 77 241.6 40.3 ... 7.6 3.7 13.5 19.8 111.4 14 15.0 San Antonio Spurs* 78 241.6 41.6 ... 7.2 4.1 12.2 19.7 110.4 15 16.0 Philadelphia 76ers* 77 241.6 41.5 ... 7.9 4.0 12.9 22.3 112.2 16 17.0 Charlotte Hornets 77 241.9 42.0 ... 7.1 6.1 13.6 20.6 112.2 17 18.0 Oklahoma City Thunder* 78 242.2 40.8 ... 8.2 5.1 16.9 22.6 110.8 18 19.0 Brooklyn Nets 78 243.8 42.2 ... 7.8 5.4 13.5 22.3 112.5 19 20.0 Minnesota Timberwolves 77 241.9 42.0 ... 6.6 5.6 14.7 22.0 114.0 20 21.0 New York Knicks 77 241.3 42.0 ... 7.4 5.7 13.4 21.0 114.1 21 22.0 Chicago Bulls 78 242.9 42.1 ... 7.5 5.6 13.5 18.9 113.4 22 23.0 Los Angeles Clippers* 78 241.6 41.4 ... 8.2 5.9 13.1 24.0 113.4 23 24.0 Los Angeles Lakers 78 241.3 42.1 ... 8.3 5.1 14.3 21.0 113.7 24 25.0 Cleveland Cavaliers 78 241.0 43.0 ... 6.9 5.6 12.5 19.6 113.9 25 26.0 Sacramento Kings 78 240.6 41.9 ... 7.7 5.1 15.9 21.6 114.9 26 27.0 Phoenix Suns 78 242.2 42.2 ... 9.1 5.0 15.6 20.7 116.3 27 28.0 New Orleans Pelicans 78 240.6 43.2 ... 8.4 5.4 13.8 21.3 116.5 28 29.0 Washington Wizards 78 243.2 43.3 ... 7.8 4.6 15.9 21.4 116.9 29 30.0 Atlanta Hawks 78 242.2 42.6 ... 9.9 5.4 15.1 22.0 118.8 30 NaN League Average 78 241.7 41.0 ... 7.7 5.0 14.2 21.0 111.1 [31 rows x 25 columns]
Rolling mean with changing window size on a large dataset
I want to compute the rolling mean over a vector whereby the window grows with each entry in the vector. Basically, I want to have the mean of all elements up to the i-th, i+1-th, i+2-th, and so forth. To make it more clear, I'll provide an example and a solution which works for smaller datasets but does not scale up well: library(zoo) # data: x <- 1:100 # solution: rolling_average <- rollapply(x, seq_along(x), mean, align = "right") # result: rolling_average # [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 # [27] 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 # [53] 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 # [79] 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5 50.0 50.5 Using this approach for a vector with 500000 entries fills up my memory within seconds and renders my PC unusable. Alternatively, I've tried using roll_mean from RcppRoll, but wasn't able to come up with a solution because RcppRoll::roll_mean only accepts integers as window lengths. So, what is the best approach to solve this problem on a large scale? Any help is greatly appreciated.
We can do cumsum(x) / seq_along(x) # [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 # [21] 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 # [41] 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 # [61] 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 # [81] 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5 50.0 50.5
We can use cummean library(dplyr) cummean(x) #[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 #[20] 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 #[39] 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 #[58] 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 #[77] 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 #[96] 48.5 49.0 49.5 50.0 50.5
SVG use one color for each path
I have an svg and in in there are 2 paths <path d="M 84.4 53.2 C 75.3 50.1 67.1 48.5 59.6 48.3 C 51.2 48 45.2 47.5 41.5 46.5 C 35.7 45.1 29.9 42.4 23.9 38.4 C 21.6 36.9 19.4 35.2 17.3 33.2 C 19.4 34.2 21.6 35 23.9 35.6 C 27.3 36.5 34.1 37 44.1 37.2 C 53.7 37.3 59.7 37.7 62 38.3 C 70.4 40.3 77 44.2 81.8 49.9 C 82.9 51 83.7 52 84.4 53.2 Z" class="st0" style="fill: rgb(15, 141, 225);"/> <path d="M 68.1 7.3 C 79.5 10.1 86.8 16 89.9 24.9 C 91.4 29.2 91.4 36.1 89.8 45.7 C 89.9 45.8 90 46 90.1 46.2 L 90 46 C 90.4 46.7 90.8 47.4 91.2 48.2 C 93.2 52 94.4 56.2 95 60.7 C 95.1 61.3 95 61.8 94.6 62.3 C 94.2 62.7 93.8 63 93.2 63.1 C 92.7 63.2 92.1 63 91.6 62.7 C 91.2 62.3 90.9 61.9 90.8 61.3 C 90.3 57.3 89.2 53.6 87.5 50.2 C 86.8 49.1 86 48.1 85.1 47.1 C 79.7 40.8 72.4 36.5 63.1 34.2 L 63.2 34.3 C 60.8 33.607 54.5 33.599 44.3 33.1 C 34.709 32.63 28.3 32.4 25.1 31.6 L 25 31.6 C 18.9 30.1 14.1 26.9 10.6 22 C 10.2 21.4 9.8 20.7 9.5 20.1 C 9.5 20.1 9.5 20 9.4 20 C 9.3 19.8 9.2 19.6 9 19.3 C 6.6 15.3 5.3 10.8 5 6.1 C 7.4 8.5 10.3 10.1 13.5 10.9 C 17.7 11.9 22.3 12.1 27.3 11.5 C 30.2 11.2 34.7 10.4 40.6 9 C 46.4 7.5 50.9 6.6 54 6.4 C 59 5.8 63.7 6.1 68.1 7.3 Z" class="st0" style="fill: rgb(11, 59, 91);"/> Is is possible to select and fill the paths individually with css? This works .svg-fill { fill: red } but it fills the whole svg. How can I target the individual paths?
Use nth-child selector: svg path:nth-child(1) { /*OR svg path:first-child OR svg path:nth-of-type(1)*/ fill:red; } svg path:nth-child(2) { /*OR svg path:last-child OR svg path:nth-of-type(2)*/ fill:green; } <svg> <path d="M 84.4 53.2 C 75.3 50.1 67.1 48.5 59.6 48.3 C 51.2 48 45.2 47.5 41.5 46.5 C 35.7 45.1 29.9 42.4 23.9 38.4 C 21.6 36.9 19.4 35.2 17.3 33.2 C 19.4 34.2 21.6 35 23.9 35.6 C 27.3 36.5 34.1 37 44.1 37.2 C 53.7 37.3 59.7 37.7 62 38.3 C 70.4 40.3 77 44.2 81.8 49.9 C 82.9 51 83.7 52 84.4 53.2 Z"/> <path d="M 68.1 7.3 C 79.5 10.1 86.8 16 89.9 24.9 C 91.4 29.2 91.4 36.1 89.8 45.7 C 89.9 45.8 90 46 90.1 46.2 L 90 46 C 90.4 46.7 90.8 47.4 91.2 48.2 C 93.2 52 94.4 56.2 95 60.7 C 95.1 61.3 95 61.8 94.6 62.3 C 94.2 62.7 93.8 63 93.2 63.1 C 92.7 63.2 92.1 63 91.6 62.7 C 91.2 62.3 90.9 61.9 90.8 61.3 C 90.3 57.3 89.2 53.6 87.5 50.2 C 86.8 49.1 86 48.1 85.1 47.1 C 79.7 40.8 72.4 36.5 63.1 34.2 L 63.2 34.3 C 60.8 33.607 54.5 33.599 44.3 33.1 C 34.709 32.63 28.3 32.4 25.1 31.6 L 25 31.6 C 18.9 30.1 14.1 26.9 10.6 22 C 10.2 21.4 9.8 20.7 9.5 20.1 C 9.5 20.1 9.5 20 9.4 20 C 9.3 19.8 9.2 19.6 9 19.3 C 6.6 15.3 5.3 10.8 5 6.1 C 7.4 8.5 10.3 10.1 13.5 10.9 C 17.7 11.9 22.3 12.1 27.3 11.5 C 30.2 11.2 34.7 10.4 40.6 9 C 46.4 7.5 50.9 6.6 54 6.4 C 59 5.8 63.7 6.1 68.1 7.3 Z" /> </svg>
Each of your paths has the same class (at the end of each path you can see it is defined with class="st0" in the code). If you change the class to make each one unique you can target them individually. For example, change the second one to class="st1" and then the following CSS will make the 1st path red and the 2nd blue: .st0 { fill: red; } .st1 { fill: blue; } If you want to change them using CSS you should also remove the style="fill: rgb(xx, xx, xx);" from each path.
Subsetting and Looping a Time Series Data in R
I have a dataset of timeseries (30 years). I did a subset for the month and the date I want (shown below in the code). Is there a way to do a loop for each month and the days in those month? Also, is there a way to save the plots automatically, in different folders corresponding to each month? Right now I am doing it manually by changing the month and date which corresponds to dfOct31all <- df [ which(df$Month==10 & df$Day==31), ]in the code below then plotting and saving it. By the way, I'm using RStudio. Can someone please guide me? Thanks! setwd("WDir") df <- read.csv("Velocity.csv", header = TRUE) attach(df) #Day 31 dfOct31all <- df [ which(df$Month==10 & df$Day==31), ] dfall31Mbs <- dfOct31all[c(-1,-2,-3)] densities <- lapply(dfall31Mbs, density) par(mfcol=c(5,5), oma=c(1,1,0,0), mar=c(1,1,1,0), tcl=-0.1, mgp=c(0,0,0)) plot(densities[[1]], col="black",main = "1000mb",xlab=NA,ylab=NA) plot(densities[[2]], col="black",main="925mb",xlab=NA,ylab=NA) plot(densities[[3]], col="black",main="850mb",xlab=NA,ylab=NA) plot(densities[[4]], col="black",main="700mb",xlab=NA,ylab=NA) plot(densities[[5]], col="black",main="600mb",xlab=NA,ylab=NA) plot(densities[[6]], col="black",main="500mb",xlab=NA,ylab=NA) plot(densities[[7]], col ="black",main="400mb",xlab=NA,ylab=NA) plot(densities[[8]], col="black",main="300mb",xlab=NA,ylab=NA) plot(densities[[9]], col="black",main="250mb",xlab=NA,ylab=NA) plot(densities[[10]], col="black",main="200mb",xlab=NA,ylab=NA) plot(densities[[11]], col= "black",main="150mb",xlab=NA,ylab=NA) plot(densities[[12]], col= "black",main="100mb",xlab=NA,ylab=NA) plot(densities[[13]], col = "black",main="70mb",xlab=NA,ylab=NA) plot(densities[[14]], col="black",main="50mb",xlab=NA,ylab=NA) plot(densities[[15]], col="black",main="30mb",xlab=NA,ylab=NA) plot(densities[[16]], col = "black",main="20mb",xlab=NA,ylab=NA) plot(densities[[17]], col="black",main="10mb",xlab=NA,ylab=NA) Snippet of data is shown as well Year Month Day 1000mb 925mb 850mb 700mb 600mb 500mb 400mb 300mb 250mb 200mb 150mb 100mb 70mb 50mb 30mb 20mb 10mb 1984 10 31 6 6.6 7.9 11.5 14.6 17 20.8 25.8 26.4 25.3 24.4 22.7 19.9 19.2 20.4 24.8 30.8 1985 10 31 5.8 7.1 7.7 11.5 14.7 17.3 25.3 32.6 32.9 32.4 27.1 20.9 14.2 9.7 6.4 7.3 7.4 1986 10 31 4.3 6.1 7.7 11.3 18.4 26.3 34.4 44.5 48.9 46.2 34.5 20.4 13.8 13.2 21.7 31 46.4 1987 10 31 2.2 2.9 4 7 9 13.9 19.9 25.8 26.6 23.7 17.3 12 7 3.1 1.7 5.8 14.1 1988 10 31 2.5 2.1 2.3 6.5 6.4 5.1 7.4 12.1 13.4 16.1 16.7 15.2 8.8 5 2.8 6.2 8.9 1989 10 31 3.4 4 4.7 4.4 4.1 4 4.6 4.8 5.9 5.6 10.9 13.9 12.3 10.4 8.1 8 8 1990 10 31 4 4.9 7.5 14.6 19 21.9 25.7 28.3 29.4 29.2 27.3 18 12.6 10.1 9 12 19.9 1991 10 31 2.8 3.2 4 10.8 12.1 11.2 9.9 9.1 9.9 12.8 18 17.5 10.4 6.3 4.2 7.6 11.7 1992 10 31 5.9 6.9 7.9 13.1 17.9 25.2 34.6 47.3 53.3 53 42.4 21.3 11.6 6 4.6 8.5 12.8 1993 10 31 2.3 1.5 0.4 3.6 6.3 10.1 14.3 19.1 21.6 21.8 18.4 13.6 12.3 9.5 6.9 11 18.1 1994 10 31 2 2.2 3.8 11.6 17 19.8 23.6 24.9 25.5 26.2 28.4 25.2 16.7 13.6 9.3 8.3 9.8 1995 10 31 1.5 2 3.4 7.6 9.1 11.2 13.7 17.9 20.3 21.7 21.1 16.7 13 12.1 14.9 21.4 27.3 1996 10 31 1.9 2.4 3.5 8 11.7 17.4 26.4 35.6 33.3 24.6 12.4 4.1 0.5 3.4 7.2 9.4 11.6 1997 10 31 3.7 4.8 7.8 19.2 24.6 29.6 35.6 41 41.8 42 37.9 23.7 11.2 8.6 4.2 3.8 7 1998 10 31 0.7 1.1 0.9 4.8 8.4 11.4 14 25.3 29.7 25.2 15.9 6.6 2.1 1 4.5 8.9 6.1 1999 10 31 1.9 1.6 2.4 10.7 15.3 19 23.2 29 32.4 31.9 28 20.3 10.8 9.4 12 14.5 16.9 2000 10 31 5.1 5.8 6.7 12.8 18.2 23.9 29.9 40.7 42.2 33.7 23.5 12.7 2.6 1.6 3.8 4.7 5.1 2001 10 31 5.7 6.1 7.1 10.1 10.8 14.7 18.3 22.8 22.3 22.2 22 14 9.5 6.6 5.2 6.5 8.6 2002 10 31 1.4 1.6 1.8 9.2 14.5 19.5 24.8 30 30.5 27.6 22.2 13.9 9.1 7.1 8.5 16.1 23.8 2003 10 31 1.5 1.3 0.7 1 3.5 6 11.7 21.5 21.9 22.9 23 20.7 15.8 12.5 14.5 20.1 26 2004 10 31 5.4 5.6 6.9 14.4 23.3 33.3 46.1 60.9 62.1 54.6 42.9 28 17.3 12.3 10.1 13.6 13.3 2005 10 31 1.7 1.3 3 10.3 15.8 19.5 21.1 22.8 24.1 24.5 24.5 20.6 13.5 10.7 10 10.7 10.4 2006 10 31 2.3 1.5 1.7 8.7 12.5 15.9 18.7 20.5 21.8 24.3 29.9 25.3 18.3 12.8 7.7 8.8 12.4 2007 10 31 3.7 2.7 2.3 2.2 2.6 4.2 6.5 11.9 15.9 19.6 17.2 9.5 6.9 5.7 4.9 5.8 11.7 2008 10 31 7.7 10.8 14.3 20.3 23 25.8 27.4 32.1 35.4 34.8 25.8 13.2 7.1 2.9 2.6 3.4 6 2009 10 31 0.5 0.2 2 9.3 13.5 17.6 18.8 20.8 21.4 21.2 18.9 14.2 11.1 6.4 1.9 3 8 2010 10 31 5.6 6.8 8.5 13.4 16.5 20.3 23.8 26.8 31 28.1 24 15.7 9.9 7 4.8 3.9 1.8 2011 10 31 5.9 6.7 5.6 7.9 10.3 11.8 12.5 16.2 19.5 21.4 17.9 13.2 9.6 7.9 8 8.3 10.8 2012 10 31 4.8 6.3 9.4 19.5 24.2 27.2 27.5 27.3 27.7 30.7 27.5 16.7 10 7.6 8 13.8 19.7 2013 10 31 1.4 1.9 3.9 9.1 13.1 17.3 22.9 29.7 30.4 27.3 23.5 18.2 13.1 6.3 4.4 2.4 9.4
I wrote it out for each day rather than doing a loop.