Work around firestore document size limit? - firebase

I need to store a large number of fields, like for a star rating system, but firestore only allows 20,000 fields per document. Is there a known way around this? Right now I am going to 'shard' the fields in multiple documents, and keep the size of each document in a documentSizeTracker document that I use to determine which document to shard to (and add to the counter with a transaction). Is this the correct approach? Any problems with this?

Sharding certainly could work. It's hard to say without knowing exactly what kind of data you'll need from your document, and when, but that's certainly a reasonable option. You could also consider having a parent "summary" doc that contains fields you might want to search on and then split all of your data into several documents inside a subcollection of that parent.
One important nuance here: the limit isn't 20,000 fields, but 20,000 indexed fields. So if you're storing a bunch of data inside your document, but you know that you're not going to be searching on all of them, another alternative is to mark some of your fields as unindexed (which you can now do in the Firebase console in the "Exemptions" section).
If you're dealing with thousands of fields, though, you probably won't want to exempt them all one at a time, so a better alternative might be to place your data as a map inside a container field (named something like "allOfMyData"), then just mark that one field as unindexed. That will automatically remove all indexes from any fields contained inside that map.

Actually, I ran into similar problem with the read and write issues with Firebase. So, here is my conclusion:
# if something small needs to be written & read very often, then use Firebase Realtime Database
Firebase Realtime database allows fast writes, but limits concurrent users to 100,000
Firebase Firestore allows a maximum of 1 write per second per document
It's very expensive to read a document that only contains a rating for example in Firestore
# if something (larger) needs to be read very often with writes usually more than 1 second in between then use Firestore
Firestore allows up to 1,000,000 concurrent users at current Beta release (they might make it more)
It's cheaper to read a large document (less than 1 MiB limit) in Firestore than Firebase Realtime database
# If your model doesn't fit into these two choices, then you should modify your model and split them into 2 models:
1 very small model to store in Firebase Real Database (ratings for example)
1 larger model to store in Firestore
Note: You could use both Firebase Realtime database and Firebase Firestore in the same project. Don't forget to take into account the billing differences between both databases. and their different limits. I believe, it's best to combine them and use the good side of each instead of trying to force solutions into one of them.
Note 2: I really didn't like the shard-ing idea in Firestore suggested solution and work around

Related

Should I create a duplicate collection/document for each use-case? (Firebase/Firestore)

I'm trying to build an ecommerce app with firebase on the backend. I have a collection of 1000+ products, each of which is stored as a separate document, which have product specific info such as price, title etc.
document:{
title: 'Some Title',
price: '$99.99',
genres: ['Horror', 'Action']
}
So in my app I need to display these products in many places, such as product carousels(similar to a bookshelf with arrow buttons at the ends), and also in a search results page.
At any given page, I assume that I will need to display at least 50 products, either as search results, or multiple carousels. I understand that I can use queries to get this data from firebase. But since each document I retrieve counts as (at least)one firestore read, I assume that a typical user session would run into 100+ reads, if not thousands.
It seems a little inefficient to me that I need to read multiple documents to get this data, when I could just all that data in a single array, as its own document. That would mean I get charged for one document read, not 50, per page.
Is this how it is expected to be done? Should I create a new document containing the data I need for each specific use case?
P.S. I'm pretty new to backend dev, let alone firebase.
TL;DR Yes, you should create a new document with the needed data for each specific use case, but it’s not recommended to make it as a document with nested objects like arrays with 1000+ elements.
From a technical point of view, Cloud Firestore is optimized for storing large collections of small documents.
Depending on the use case, you can select the most appropriate Cloud Firestore data structure.
For example, the 10 most buyed books of the month can be a document with nested complex objects like arrays or maps. This structure could be useful for use cases with a small or predefined number of elements, but as stated here, if your data expands over time with larger or growing lists, the document also grows, which can lead to slower document retrieval times.
In plus thousand registers, a better choice can be structure your data as subcollections. It is, you can create collections within documents when you have data that might expand over time, with the main advantage that, as your lists grow, the size of the parent document doesn't change.
Cloud Firestore also has several features to help you manage queries that return a large number of results:
Cursors, which allow you to resume a long-running query.
Page tokens, which help you paginate the query results.
Limits, which specify how many results to retrieve.
Offsets, which allow you
to skip a fixed number of documents.
There are no additional costs for using cursors, page tokens, and limits. In fact, these features can help you save money by reading only the documents that you actually need.
As a best practice, do not use offsets. Instead, use cursors. Using an offset only avoids returning the skipped documents to your application, but these documents are still retrieved internally. The skipped documents affect the latency of the query, and your application is billed for the read operations required to retrieve them.

Firestore Collection Write Rate

The article about Best practices for Cloud Firestore states that we should keep the rate of write operations for an individual collection under 1,000 operations/second.
But at the same time, the Firebase team says in Choose a data structure that root-level collections "offer the most flexibility and scalability".
What if I have a root-level collection (e.g. "messages") which expects to have more than 1,000 write operations/second?
If you think at that limitation of 1,000 operations/second it's pretty much but if you find your self in a situation in which you need more than that, then you should consider changing your database schema to allow writes on multiple collections. So you should multiply the number of collections. Having a single collection of messages, in which every user can add messages doesn't sound as a good way to go since you can reach that limitation very soon. In this case you should split that collection into multiple other collections. A possible schema might be the one I have explained in the following video:
https://www.youtube.com/watch?v=u3KwKQddPoo
See, at the end of that video, there is collection named messages which in term contains a roomId document. This document contains a subcollection named roomMessages which contains as documents all messages from a chat room. In this case, there are no chances you can reach that limitation.
But at the same time, the Firebase team says in Choose a data structure that root-level collections "offer the most flexibility and scalability".
But also rememeber, Firestore can as quickly look up a collection at level 1 as it can at level 100, so you don't need to worry about that.
The limit of 1,000 ops/sec per collection only apply to realtime update, so as long as you don't have a snapshot listener this should be okay.
I asked the question on the Cloud Firestore Google Groups
The limit is 10,000 writes per second if no other limits apply first:
https://firebase.google.com/docs/firestore/quotas#writes_and_transactions
Also just keep in mind the best practices for scaling cloud firestore

Determining number of Firebase reads for nested sub-collection

I have a mobile solution (iOS) that is using Firebase to aid in syncing of data between a users devices. What I have works and allows me to keep clients in sync as I wanted to. However from testing, my reads are a bit out of control for larger data sets and I need to do some optimization. To that end, I wanted to make sure that my understanding of how reads are counted was correct (I am still a newbie at Firebase).
My data is structured like this:
Its a bit nested I agree, but for all the uses cases it seems to be the best way to do things to minimize redundancy, e.g. there are relationship between Cats and Dogs and Birds, but I only store one copy of each, not multiple. In addition, each users data is segregated from the other users and I need the ability to version the data. Put that all together and with the requirement to alternate collections and documents, you get what you see.
Based on this structure, I can create queries like this:
Firestore.firestore().collection("userid1").document("data").collection("version0").document("Cats").collection("data").whereField("modifiedDate" isGreaterThanOrEqualTo: someDoubleValue).getDocuments(completionCallback)
This gets me the data I need and seems to only return the number of items I think it should. However, am I correct in saying that if there are 100 Cat type documents (Cat1...Cat100), but only 3 of them have a modifiedDate that is greater than my query parameter, when the data is returned to me, I will only be "charged" for 3 reads? Or have I don't something completely silly here and I am getting charged for all 100 even though I only get 3 documents back in the callback.
The billing doesn't work any different for subcollections than it does for top-level collections. You are only billed for the documents transferred, not the entire set of documents in the collection (unless you do request every document).
Cloud Firestore scales massively, and it's expected that you might have a massive number of documents in a collection. Billing a read for each and every document in a collection for each query against that collection would be insanely expensive.

Firestore Realtime Updates 1M Limit

When using Firestore and subscribing to document updates, it states a limit of 1M concurrent mobile/web connections per database.
https://firebase.google.com/docs/firestore/quotas#realtime_updates
Is that a hard limit (enforced/throttled in code)? Or is it a theoretical limit (like you're safe up to 1M, then things get dicey)? Is it possible to get an uplift?
Trying to understand how to support a large user base without needing to shard the database (which is one of the advantages of Firestore). Even at 5M users, it seems you would start having problems because you'd probably hit times when >20% of those users were on your app simultaneously.
As you already noticed, the maximum size of a single document in Firestore is 1 Megabyte. Trying to store large number of objects (maps) that may exceed this limitation, is generally considered a bad design.
You should reconsider the logic of you app and think at the reson why you need to have more than 1Mib in single a document, rather than each object being their own document. So to be able to use Firestore, you should change the way you are holding the data from within a single documents to a collection. In case of collections, there are no limitations. You can add as many documents as you want. According to the official documentation regarding Cloud Firestore Data model:
Cloud Firestore is optimized for storing large collections of small documents.
IMHO, you should take advantage of this feature.
For details, I recommend you see my answer from this post where I have explained some practices regarding storing data in arrays (documents), maps or collections.
Edit:
Without sharding, I'm affraid it is not an option. So in this case, sharding will work for sure. So in my opinion, that's certainly a reasonable option.

Is it ok to store a user id as the key of a field in a Firestore document?

Firestore charges for the amount of indexes used. If I have a structure where there is a massive list of ratings different users gave, and have the key as the user Id and the value as the rating, will that take up too many auto created indexes? Is there a good structure around this.
For example, in the collection 'ratings', I shard individual ratings that each user gives into different documents using a complex sharding mechanism I made that fills a document up to the max document size of around 20k, then starts filling up another document. say I have 5 documents, each filled with 20k fields. One of those docs would look like this:
uid1: 3.3
uid2: 5
uid3: 1.234
...
Is there another structure I should be using to store loads of individual 'fields' in Firestore? I don't want to use loads of documents for each rating either as that is too expensive. Arrays aren't big enough to store loads of ratings either.
Arrays aren't big enough to store loads of ratings either
The problem isn't about the arrays, the problem is that the documents have limits. So there are some limits when it comes to how much data you can put into a document. According to the official documentation regarding usage and limits:
Maximum size for a document: 1 MiB (1,048,576 bytes)
As you can see, you are limited to 1 MiB total of data in a single document. When we are talking about storing text, you can store pretty much but as your array getts bigger, be careful about this limitation.
According to the offical documentation regarding modelling data in Cloud Firestore:
Cloud Firestore is optimized for storing large collections of small documents.
So trying to shard a collection by filling up documents one by one, is not such a good idea.
If you are trying to add raitings from multipe users in a single document, with other words you trying to store large amount of data in a single document that can be updated by lots of users, there is another limitation that you need to take care of. So you are limited to 1 write per second on every document. So if you have a situation in which a lot of users al all trying to write data to the same documents all at once, you might start to see some of this writes to fail. So, be careful about this limitation too.
My recommendation is to store those raitings in an array, if you think that the size of the document will be within the 1MiB limitation, otherwise use a collection of tags for each object separately.

Resources