Tree method with 8T(n/2) +n^2 - math

I'm trying to solve this problem, but I think I haven't understood how to do it correctly. The first thing I do in this type of exercises is taking the bigger value in the row (in this case is n^2) and divide it multiple times, so I can find what kind of relation there is between the values. After found the relation, I try to mathematically found its value and then as the final step, I multiply the result for the root. In this case the result should be n^3. How is possible?

Unfortunately #vahidreza's solutions seems false to me because it contradicts the Master theorem. In terms of the Master theorem a = 8, b = 2, c = 2. So log_b(a) = 3 so log_b(a) > c and thus this is the case of a recursion dominated by the subproblems so the answer should be T(n) = Ө(n^3) rather than O(m^(2+1/3)) which #vahidreza has.
The main issue is probably in this statement:
Also you know that the tree has log_8 m levels. Because at each level, you divide the number by 8.
Let's try to solve it properly:
On the zeroth level you have n^2 (I prefer to start counting from 0 as it simplifies notation a bit)
on the first level you have 8 nodes of (n/2)^2 or a total of 8*(n/2)^2
on the second level you have 8 * 8 nodes of (n/(2^2))^2 or a total of 8^2*(n/(2^2))^2
on the i-th level you have 8^i nodes of (n/(2^i))^2 or a total of 8^i*(n/(2^i))^2 = n^2 * 8^i/2^(2*i) = n^2 * 2^i
At each level your value n is divided by two so at level i the value is n/2^i and so you'll have log_2(n) levels. So what you need to calculate is sum for i from 0 to log_2(n) of n^2 * 2^i. That's a geometric progression with a ratio of 2 so it's sum is
Σ (n^2 * 2^i) = n^2 * Σ(2^i) = n^2 * (2^(log_2(n)+1) - 1)/2
Since we are talking about Ө/O we can ignore constants and so we need to estimate
n^2 * 2^log_2(n)
Obviously 2^log_2(n) is just n so the answer is
T(n) = Ө(n^3)
exactly as predicted by the Master theorem.

Related

When have enough bits of my series with non-negative terms been calculated?

I have a power series with all terms non-negative which I want to evaluate to some arbitrarily set precision p (the length in binary digits of a MPFR floating-point mantissa). The result should be faithfully rounded. The issue is that I don't know when should I stop adding terms to the result variable, that is, how do I know when do I already have p + 32 accurate summed bits of the series? 32 is just an arbitrarily chosen small natural number meant to facilitate more accurate rounding to p binary digits.
This is my original series
0 <= h <= 1
series_orig(h) := sum(n = 0, +inf, a(n) * h^n)
But I actually need to calculate an arbitrary derivative of the above series (m is the order of the derivative):
series(h, m) := sum(n = m, +inf, a(n) * (n - m + 1) * ... * n * h^(n - m))
The rational number sequence a is defined like so:
a(n) := binomial(1/2, n)^2
= (((2*n)!/(n!)) / (n! * 4^n * (2*n - 1)))^2
So how do I know when to stop summing up terms of series?
Is the following maybe a good strategy?
compute in p * 4 (which is assumed to be greater than p + 32).
at each point be able to recall the current partial sum and the previous one.
stop looping when the previous and current partial sums are equal if rounded to precision p + 32.
round to precision p and return.
Clarification
I'm doing this with MPFI, an interval arithmetic addon to MPFR. Thus the [mpfi] tag.
Attempts to get relevant formulas and equations
Guided by Eric in the comments, I have managed to derive a formula for the required working precision and an equation for the required number of terms of the series in the sum.
A problem, however, is that a nice formula for the required number of terms is not possible.
Someone more mathematically capable might instead be able to achieve a formula for a useful upper bound, but that seems quite difficult to do for all possible requested result precisions and for all possible values of m (the order of the derivative). Note that the formulas need to be easily computable so they're ready before I start computing the series.
Another problem is that it seems necessary to assume the worst case for h (h = 1) for there to be any chance of a nice formula, but this is wasteful if h is far from the worst case, that is if h is close to zero.

How to solve the following recurence relation

How do I solve the following recurrence relation?
f(n+2) = 2*f(n+1) - f(n) + 2 where n is even
f(n+2) = 3*f(n) where n is odd
f(1) = f(2) = 1
For odd n I could solve the recurrence and it turns out to be a geometric series with common ratio 3.
When n is even I could find and solve the homogeneous part of the recurrence relation by substituting f(n) = r^n. So the solution comes to be r = 1. Therefore the solution is c1 + c2*n. But how do I solve the particular integral part? Am I on the right track? Are there any other approaches to the above solution?
The recurrence for odd n is very easy to solve with the substitution you tried:
Substituting this into the recurrence for even n:
Attempt #1
Make a general substitution of the form:
Note that the exponent is n/2 instead of n based on the odd recurrence, but it is purely a matter of choice
Matching the same types of terms:
But this solution doesn't work with the boundary condition f(2) = 1:
Attempt #2
It turns out that a second exponential term is required:
As before, one of the exponential terms needs to match 3^(n/2):
The last equation has solutions d = 0, -1; obviously only the non-trivial one
is useful:
The final solution for all n ≥ 2:
Alternative method
Longer but (possibly, at least I found it to be) more intuitive - expand the recurrence m times:
Observe the pattern:
The additive factor of 2 is present for odd number of expansions m but cancels out for even m.
Each expansion adds a factor of 2 * 3^(n/2-m) for odd m, and subtracts it for even m.
Each expansion also adds a factor of f(n-2m) for even m, and subtracts it for odd m.
Combining these observations to write a general closed form expression for the m-th expansion:
Using the standard formula for geometric series in the last step.
Recursion stops at f(2) = 1:
The same result as before.

What is O value for naive random selection from finite set?

This question on getting random values from a finite set got me thinking...
It's fairly common for people to want to retrieve X unique values from a set of Y values. For example, I may want to deal a hand from a deck of cards. I want 5 cards, and I want them to all be unique.
Now, I can do this naively, by picking a random card 5 times, and try again each time I get a duplicate, until I get 5 cards. This isn't so great, however, for large numbers of values from large sets. If I wanted 999,999 values from a set of 1,000,000, for instance, this method gets very bad.
The question is: how bad? I'm looking for someone to explain an O() value. Getting the xth number will take y attempts...but how many? I know how to figure this out for any given value, but is there a straightforward way to generalize this for the whole series and get an O() value?
(The question is not: "how can I improve this?" because it's relatively easy to fix, and I'm sure it's been covered many times elsewhere.)
Variables
n = the total amount of items in the set
m = the amount of unique values that are to be retrieved from the set of n items
d(i) = the expected amount of tries needed to achieve a value in step i
i = denotes one specific step. i ∈ [0, n-1]
T(m,n) = expected total amount of tries for selecting m unique items from a set of n items using the naive algorithm
Reasoning
The first step, i=0, is trivial. No matter which value we choose, we get a unique one at the first attempt. Hence:
d(0) = 1
In the second step, i=1, we at least need 1 try (the try where we pick a valid unique value). On top of this, there is a chance that we choose the wrong value. This chance is (amount of previously picked items)/(total amount of items). In this case 1/n. In the case where we picked the wrong item, there is a 1/n chance we may pick the wrong item again. Multiplying this by 1/n, since that is the combined probability that we pick wrong both times, gives (1/n)2. To understand this, it is helpful to draw a decision tree. Having picked a non-unique item twice, there is a probability that we will do it again. This results in the addition of (1/n)3 to the total expected amounts of tries in step i=1. Each time we pick the wrong number, there is a chance we might pick the wrong number again. This results in:
d(1) = 1 + 1/n + (1/n)2 + (1/n)3 + (1/n)4 + ...
Similarly, in the general i:th step, the chance to pick the wrong item in one choice is i/n, resulting in:
d(i) = 1 + i/n + (i/n)2 + (i/n)3 + (i/n)4 + ... = = sum( (i/n)k ), where k ∈ [0,∞]
This is a geometric sequence and hence it is easy to compute it's sum:
d(i) = (1 - i/n)-1
The overall complexity is then computed by summing the expected amount of tries in each step:
T(m,n) = sum ( d(i) ), where i ∈ [0,m-1] = = 1 + (1 - 1/n)-1 + (1 - 2/n)-1 + (1 - 3/n)-1 + ... + (1 - (m-1)/n)-1
Extending the fractions in the series above by n, we get:
T(m,n) = n/n + n/(n-1) + n/(n-2) + n/(n-3) + ... + n/(n-m+2) + n/(n-m+1)
We can use the fact that:
n/n ≤ n/(n-1) ≤ n/(n-2) ≤ n/(n-3) ≤ ... ≤ n/(n-m+2) ≤ n/(n-m+1)
Since the series has m terms, and each term satisfies the inequality above, we get:
T(m,n) ≤ n/(n-m+1) + n/(n-m+1) + n/(n-m+1) + n/(n-m+1) + ... + n/(n-m+1) + n/(n-m+1) = = m*n/(n-m+1)
It might be(and probably is) possible to establish a slightly stricter upper bound by using some technique to evaluate the series instead of bounding by the rough method of (amount of terms) * (biggest term)
Conclusion
This would mean that the Big-O order is O(m*n/(n-m+1)). I see no possible way to simplify this expression from the way it is.
Looking back at the result to check if it makes sense, we see that, if n is constant, and m gets closer and closer to n, the results will quickly increase, since the denominator gets very small. This is what we'd expect, if we for example consider the example given in the question about selecting "999,999 values from a set of 1,000,000". If we instead let m be constant and n grow really, really large, the complexity will converge towards O(m) in the limit n → ∞. This is also what we'd expect, since while chosing a constant number of items from a "close to" infinitely sized set the probability of choosing a previously chosen value is basically 0. I.e. We need m tries independently of n since there are no collisions.
If you already have chosen i values then the probability that you pick a new one from a set of y values is
(y-i)/y.
Hence the expected number of trials to get (i+1)-th element is
y/(y-i).
Thus the expected number of trials to choose x unique element is the sum
y/y + y/(y-1) + ... + y/(y-x+1)
This can be expressed using harmonic numbers as
y (Hy - Hy-x).
From the wikipedia page you get the approximation
Hx = ln(x) + gamma + O(1/x)
Hence the number of necessary trials to pick x unique elements from a set of y elements
is
y (ln(y) - ln(y-x)) + O(y/(y-x)).
If you need then you can get a more precise approximation by using a more precise approximation for Hx. In particular, when x is small it is possible to
improve the result a lot.
If you're willing to make the assumption that your random number generator will always find a unique value before cycling back to a previously seen value for a given draw, this algorithm is O(m^2), where m is the number of unique values you are drawing.
So, if you are drawing m values from a set of n values, the 1st value will require you to draw at most 1 to get a unique value. The 2nd requires at most 2 (you see the 1st value, then a unique value), the 3rd 3, ... the mth m. Hence in total you require 1 + 2 + 3 + ... + m = [m*(m+1)]/2 = (m^2 + m)/2 draws. This is O(m^2).
Without this assumption, I'm not sure how you can even guarantee the algorithm will complete. It's quite possible (especially with a pseudo-random number generator which may have a cycle), that you will keep seeing the same values over and over and never get to another unique value.
==EDIT==
For the average case:
On your first draw, you will make exactly 1 draw.
On your 2nd draw, you expect to make 1 (the successful draw) + 1/n (the "partial" draw which represents your chance of drawing a repeat)
On your 3rd draw, you expect to make 1 (the successful draw) + 2/n (the "partial" draw...)
...
On your mth draw, you expect to make 1 + (m-1)/n draws.
Thus, you will make 1 + (1 + 1/n) + (1 + 2/n) + ... + (1 + (m-1)/n) draws altogether in the average case.
This equals the sum from i=0 to (m-1) of [1 + i/n]. Let's denote that sum(1 + i/n, i, 0, m-1).
Then:
sum(1 + i/n, i, 0, m-1) = sum(1, i, 0, m-1) + sum(i/n, i, 0, m-1)
= m + sum(i/n, i, 0, m-1)
= m + (1/n) * sum(i, i, 0, m-1)
= m + (1/n)*[(m-1)*m]/2
= (m^2)/(2n) - (m)/(2n) + m
We drop the low order terms and the constants, and we get that this is O(m^2/n), where m is the number to be drawn and n is the size of the list.
There's a beautiful O(n) algorithm for this. It goes as follows. Say you have n items, from which you want to pick m items. I assume the function rand() yields a random real number between 0 and 1. Here's the algorithm:
items_left=n
items_left_to_pick=m
for j=1,...,n
if rand()<=(items_left_to_pick/items_left)
Pick item j
items_left_to_pick=items_left_to_pick-1
end
items_left=items_left-1
end
It can be proved that this algorithm does indeed pick each subset of m items with equal probability, though the proof is non-obvious. Unfortunately, I don't have a reference handy at the moment.
Edit The advantage of this algorithm is that it takes only O(m) memory (assuming the items are simply integers or can be generated on-the-fly) compared to doing a shuffle, which takes O(n) memory.
Your actual question is actually a lot more interesting than what I answered (and harder). I've never been any good at statistitcs (and it's been a while since I did any), but intuitively, I'd say that the run-time complexity of that algorithm would probably something like an exponential. As long as the number of elements picked is small enough compared to the size of the array the collision-rate will be so small that it will be close to linear time, but at some point the number of collisions will probably grow fast and the run-time will go down the drain.
If you want to prove this, I think you'd have to do something moderately clever with the expected number of collisions in function of the wanted number of elements. It might be possible do to by induction as well, but I think going by that route would require more cleverness than the first alternative.
EDIT: After giving it some thought, here's my attempt:
Given an array of m elements, and looking for n random and different elements. It is then easy to see that when we want to pick the ith element, the odds of picking an element we've already visited are (i-1)/m. This is then the expected number of collisions for that particular pick. For picking n elements, the expected number of collisions will be the sum of the number of expected collisions for each pick. We plug this into Wolfram Alpha (sum (i-1)/m, i=1 to n) and we get the answer (n**2 - n)/2m. The average number of picks for our naive algorithm is then n + (n**2 - n)/2m.
Unless my memory fails me completely (which entirely possible, actually), this gives an average-case run-time O(n**2).
The worst case for this algorithm is clearly when you're choosing the full set of N items. This is equivalent to asking: On average, how many times must I roll an N-sided die before each side has come up at least once?
Answer: N * HN, where HN is the Nth harmonic number,
a value famously approximated by log(N).
This means the algorithm in question is N log N.
As a fun example, if you roll an ordinary 6-sided die until you see one of each number, it will take on average 6 H6 = 14.7 rolls.
Before being able to answer this question in details, lets define the framework. Suppose you have a collection {a1, a2, ..., an} of n distinct objects, and want to pick m distinct objects from this set, such that the probability of a given object aj appearing in the result is equal for all objects.
If you have already picked k items, and radomly pick an item from the full set {a1, a2, ..., an}, the probability that the item has not been picked before is (n-k)/n. This means that the number of samples you have to take before you get a new object is (assuming independence of random sampling) geometric with parameter (n-k)/n. Thus the expected number of samples to obtain one extra item is n/(n-k), which is close to 1 if k is small compared to n.
Concluding, if you need m unique objects, randomly selected, this algorithm gives you
n/n + n/(n-1) + n/(n-2) + n/(n-3) + .... + n/(n-(m-1))
which, as Alderath showed, can be estimated by
m*n / (n-m+1).
You can see a little bit more from this formula:
* The expected number of samples to obtain a new unique element increases as the number of already chosen objects increases (which sounds logical).
* You can expect really long computation times when m is close to n, especially if n is large.
In order to obtain m unique members from the set, use a variant of David Knuth's algorithm for obtaining a random permutation. Here, I'll assume that the n objects are stored in an array.
for i = 1..m
k = randInt(i, n)
exchange(i, k)
end
here, randInt samples an integer from {i, i+1, ... n}, and exchange flips two members of the array. You only need to shuffle m times, so the computation time is O(m), whereas the memory is O(n) (although you can adapt it to only save the entries such that a[i] <> i, which would give you O(m) on both time and memory, but with higher constants).
Most people forget that looking up, if the number has already run, also takes a while.
The number of tries nessesary can, as descriped earlier, be evaluated from:
T(n,m) = n(H(n)-H(n-m)) ⪅ n(ln(n)-ln(n-m))
which goes to n*ln(n) for interesting values of m
However, for each of these 'tries' you will have to do a lookup. This might be a simple O(n) runthrough, or something like a binary tree. This will give you a total performance of n^2*ln(n) or n*ln(n)^2.
For smaller values of m (m < n/2), you can do a very good approximation for T(n,m) using the HA-inequation, yielding the formula:
2*m*n/(2*n-m+1)
As m goes to n, this gives a lower bound of O(n) tries and performance O(n^2) or O(n*ln(n)).
All the results are however far better, that I would ever have expected, which shows that the algorithm might actually be just fine in many non critical cases, where you can accept occasional longer running times (when you are unlucky).

Recursion and Big O

I've been working through a recent Computer Science homework involving recursion and big-O notation. I believe I understand this pretty well (certainly not perfectly, though!) But there is one question in particular that is giving me the most problems. The odd thing is that by looking it, it looks to be the most simple one on the homework.
Provide the best rate of growth using the big-Oh notation for the solution to the following recurrence?
T(1) = 2
T(n) = 2T(n - 1) + 1 for n>1
And the choices are:
O(n log n)
O(n^2)
O(2^n)
O(n^n)
I understand that big O works as an upper bound, to describe the most amount of calculations, or the highest running time, that program or process will take. I feel like this particular recursion should be O(n), since, at most, the recursion only occurs once for each value of n. Since n isn't available, it's either better than that, O(nlogn), or worse, being the other three options.
So, my question is: Why isn't this O(n)?
There's a couple of different ways to solve recurrences: substitution, recurrence tree and master theorem. Master theorem won't work in the case, because it doesn't fit the master theorem form.
You could use the other two methods, but the easiest way for this problem is to solve it iteratively.
T(n) = 2T(n-1) + 1
T(n) = 4T(n-2) + 2 + 1
T(n) = 8T(n-3) + 4 + 2 + 1
T(n) = ...
See the pattern?
T(n) = 2n-1⋅T(1) + 2n-2 + 2n-3 + ... + 1
T(n) = 2n-1⋅2 + 2n-2 + 2n-3 + ... + 1
T(n) = 2n + 2n-2 + 2n-3 + ... + 1
Therefore, the tightest bound is Θ(2n).
I think you have misunderstood the question a bit. It does not ask you how long it would take to solve the recurrence. It is asking what the big-O (the asymptotic bound) of the solution itself is.
What you have to do is to come up with a closed form solution, i. e. the non-recursive formula for T(n), and then determine what the big-O of that expression is.
The question is asking for the big-Oh notation for the solution to the recurrence, not the cost of calculation the recurrence.
Put another way: the recurrence produces:
1 -> 2
2 -> 5
3 -> 11
4 -> 23
5 -> 47
What big-Oh notation best describes the sequence 2, 5, 11, 23, 47, ...
The correct way to solve that is to solve the recurrence equations.
I think this will be exponential. Each increment to n makes the value to be twice as large.
T(2) = 2 * T(1) = 4
T(3) = 2 * T(2) = 2 * 4
...
T(x) would be the running time of the following program (for example):
def fn(x):
if (x == 1):
return # a constant time
# do the calculation for n - 1 twice
fn(x - 1)
fn(x - 1)
I think this will be exponential. Each increment to n brings twice as much calculation.
No, it doesn't. Quite on the contrary:
Consider that for n iterations, we get running time R. Then for n + 1 iterations we'll get exactly R + 1.
Thus, the growth rate is constant and the overall runtime is indeed O(n).
However, I think Dima's assumption about the question is right although his solution is overly complicated:
What you have to do is to come up with a closed form solution, i. e. the non-recursive formula for T(n), and then determine what the big-O of that expression is.
It's sufficient to examine the relative size of T(n) and T(n + 1) iterations and determine the relative growth rate. The amount obviously doubles which directly gives the asymptotic growth.
First off, all four answers are worse than O(n)... O(n*log n) is more complex than plain old O(n). What's bigger: 8 or 8 * 3, 16 or 16 * 4, etc...
On to the actual question. The general solution can obviously be solved in constant time if you're not doing recursion
( T(n) = 2^(n - 1) + 2^(n) - 1 ), so that's not what they're asking.
And as you can see, if we write the recursive code:
int T( int N )
{
if (N == 1) return 2;
return( 2*T(N-1) + 1);
}
It's obviously O(n).
So, it appears to be a badly worded question, and they are probably asking you the growth of the function itself, not the complexity of the code. That's 2^n. Now go do the rest of your homework... and study up on O(n * log n)
Computing a closed form solution to the recursion is easy.
By inspection, you guess that the solution is
T(n) = 3*2^(n-1) - 1
Then you prove by induction that this is indeed a solution. Base case:
T(1) = 3*2^0 - 1 = 3 - 1 = 2. OK.
Induction:
Suppose T(n) = 3*2^(n-1) - 1. Then
T(n+1) = 2*T(n) + 1 = 3*2^n - 2 + 1 = 3*2^((n+1)-1) - 1. OK.
where the first equality stems from the recurrence definition,
and the second from the inductive hypothesis. QED.
3*2^(n-1) - 1 is clearly Theta(2^n), hence the right answer is the third.
To the folks that answered O(n): I couldn't agree more with Dima. The problem does not ask the tightest upper bound to the computational complexity of an algorithm to compute T(n) (which would be now O(1), since its closed form has been provided). The problem asks for the tightest upper bound on T(n) itself, and that is the exponential one.

How are exponents calculated?

I'm trying to determine the asymptotic run-time of one of my algorithms, which uses exponents, but I'm not sure of how exponents are calculated programmatically.
I'm specifically looking for the pow() algorithm used for double-precision, floating point numbers.
I've had a chance to look at fdlibm's implementation. The comments describe the algorithm used:
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
followed by a listing of all the special cases handled (0, 1, inf, nan).
The most intense sections of the code, after all the special-case handling, involve the log2 and 2** calculations. And there are no loops in either of those. So, the complexity of floating-point primitives notwithstanding, it looks like a asymptotically constant-time algorithm.
Floating-point experts (of which I'm not one) are welcome to comment. :-)
Unless they've discovered a better way to do it, I believe that approximate values for trig, logarithmic and exponential functions (for exponential growth and decay, for example) are generally calculated using arithmetic rules and Taylor Series expansions to produce an approximate result accurate to within the requested precision. (See any Calculus book for details on power series, Taylor series, and Maclaurin series expansions of functions.) Please note that it's been a while since I did any of this so I couldn't tell you, for example, exactly how to calculate the number of terms in the series you need to include guarantee an error that small enough to be negligible in a double-precision calculation.
For example, the Taylor/Maclaurin series expansion for e^x is this:
+inf [ x^k ] x^2 x^3 x^4 x^5
e^x = SUM [ --- ] = 1 + x + --- + ----- + ------- + --------- + ....
k=0 [ k! ] 2*1 3*2*1 4*3*2*1 5*4*3*2*1
If you take all of the terms (k from 0 to infinity), this expansion is exact and complete (no error).
However, if you don't take all the terms going to infinity, but you stop after say 5 terms or 50 terms or whatever, you produce an approximate result that differs from the actual e^x function value by a remainder which is fairly easy to calculate.
The good news for exponentials is that it converges nicely and the terms of its polynomial expansion are fairly easy to code iteratively, so you might (repeat, MIGHT - remember, it's been a while) not even need to pre-calculate how many terms you need to guarantee your error is less than precision because you can test the size of the contribution at each iteration and stop when it becomes close enough to zero. In practice, I do not know if this strategy is viable or not - I'd have to try it. There are important details I have long since forgotten about. Stuff like: machine precision, machine error and rounding error, etc.
Also, please note that if you are not using e^x, but you are doing growth/decay with another base like 2^x or 10^x, the approximating polynomial function changes.
The usual approach, to raise a to the b, for an integer exponent, goes something like this:
result = 1
while b > 0
if b is odd
result *= a
b -= 1
b /= 2
a = a * a
It is generally logarithmic in the size of the exponent. The algorithm is based on the invariant "a^b*result = a0^b0", where a0 and b0 are the initial values of a and b.
For negative or non-integer exponents, logarithms and approximations and numerical analysis are needed. The running time will depend on the algorithm used and what precision the library is tuned for.
Edit: Since there seems to be some interest, here's a version without the extra multiplication.
result = 1
while b > 0
while b is even
a = a * a
b = b / 2
result = result * a
b = b - 1
You can use exp(n*ln(x)) for calculating xn. Both x and n can be double-precision, floating point numbers. Natural logarithm and exponential function can be calculated using Taylor series. Here you can find formulas: http://en.wikipedia.org/wiki/Taylor_series
If I were writing a pow function targeting Intel, I would return exp2(log2(x) * y). Intel's microcode for log2 is surely faster than anything I'd be able to code, even if I could remember my first year calculus and grad school numerical analysis.
e^x = (1 + fraction) * (2^exponent), 1 <= 1 + fraction < 2
x * log2(e) = log2(1 + fraction) + exponent, 0 <= log2(1 + fraction) < 1
exponent = floor(x * log2(e))
1 + fraction = 2^(x * log2(e) - exponent) = e^((x * log2(e) - exponent) * ln2) = e^(x - exponent * ln2), 0 <= x - exponent * ln2 < ln2

Resources