Factors created when subsetting data frame - r

When using subset on a data frame, my resulting data frame has some odd behavior.
df is the subset of a larger data frame
>df
buy_sell_count trt sector
1 1 0.023957 Apartment
2 1 0.026739 Strip Center
3 1 0.0705979999999999 Mall
4 1 0.0595650000000001 Office
5 1 0.0290539999999999 Industrial
I've tried the various drop-level practices shown in this question, but none have worked.
When i do mean(df$trt) I get a argument is not numeric or logical: returning NA
When i do as.numeric(df$trt) I get
[1] 8 9 12 11 10 1 4 6 3 5 7 2
I think it has to do with the levels:
df$trt produces
[1] 0.023957 0.026739 0.0705979999999999 0.0595650000000001 0.0290539999999999
[6] -0.01607 -0.188538 0.00279700000000016 -0.022502 0.00178300000000009
[11] 0.00770099999999996 -0.0191330000000001
12 Levels: -0.01607 -0.0191330000000001 -0.022502 -0.188538 0.00178300000000009 ... 0.0705979999999999

Related

Different ways of indexing dataframe in R

Say, I have a dataframe df in R as follows,
id inflam
1 1 0.03093764
2 2 0.50115406
3 3 0.82153770
4 4 0.01985961
5 5 0.04994588
6 6 0.91714810
7 7 0.83438400
8 8 0.80832225
9 9 0.12360681
10 10 0.08490079
I can access the entirety of the inflam column by indexing as df[,2] or df[2]. However, typeof(df[,2]) returns double, whereas typeof(df[2]) returns list. The comma seems to be the differentiator, but why is this the case? What is going on under the hood?

creating a dataframe of means of 5 randomly sampled observations

I'm currently reading "Practical Statistics for Data Scientists" and following along in R as they demonstrate some code. There is one chunk of code I'm particularly struggling to follow the logic of and was hoping someone could help. The code in question is creating a dataframe with 1000 rows where each observation is the mean of 5 randomly drawn income values from the dataframe loans_income. However, I'm getting confused about the logic of the code as it is fairly complicated with a tapply() function and nested rep() statements.
The code to create the dataframe in question is as follows:
samp_mean_5 <- data.frame(income = tapply(sample(loans_income$income,1000*5),
rep(1:1000,rep(5,1000)),
FUN = mean),
type='mean_of_5')
In particular, I'm confused about the nested rep() statements and the 1000*5 portion of the sample() function. Any help understanding the logic of the code would be greatly appreciated!
For reference, the original dataset loans_income simply has a single column of 50,000 income values.
You have 50,000 loans_income in a single vector. Let's break your code down:
tapply(sample(loans_income$income,1000*5),
rep(1:1000,rep(5,1000)),
FUN = mean)
I will replace 1000 with 10 and income with random numbers, so it's easier to explain. I also set set.seed(1) so the result can be reproduced.
sample(loans_income$income,1000*5)
We 50 random incomes from your vector without replacement. They are (temporarily) put into a vector of length 50, so the output looks like this:
> sample(runif(50000),10*5)
[1] 0.73283101 0.60329970 0.29871173 0.12637654 0.48434952 0.01058067 0.32337850
[8] 0.46873561 0.72334215 0.88515494 0.44036341 0.81386225 0.38118213 0.80978822
[15] 0.38291273 0.79795343 0.23622492 0.21318431 0.59325586 0.78340477 0.25623138
[22] 0.64621658 0.80041393 0.68511759 0.21880083 0.77455662 0.05307712 0.60320912
[29] 0.13191926 0.20816298 0.71600799 0.70328349 0.44408218 0.32696205 0.67845445
[36] 0.64438336 0.13241312 0.86589561 0.01109727 0.52627095 0.39207860 0.54643661
[43] 0.57137320 0.52743012 0.96631114 0.47151170 0.84099503 0.16511902 0.07546454
[50] 0.85970500
rep(1:1000,rep(5,1000))
Now we are creating an indexing vector of length 50:
> rep(1:10,rep(5,10))
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6
[29] 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 10 10 10 10 10
Those indices "group" the samples from step 1. So basically this vector tells R that the first 5 entries of your "sample vector" belong together (index 1), the next 5 entries belong together (index 2) and so on.
FUN = mean
Just apply the mean-function on the data.
tapply
So tapply takes the sampled data (sample-part) and groups them by the second argument (the rep()-part) and applies the mean-function on each group.
If you are familiar with data.frames and the dplyr package, take a look at this (only the first 10 rows are displayed):
set.seed(1)
df <- data.frame(income=sample(runif(5000),10*5), index=rep(1:10,rep(5,10)))
income index
1 0.42585569 1
2 0.16931091 1
3 0.48127444 1
4 0.68357403 1
5 0.99374923 1
6 0.53227877 2
7 0.07109499 2
8 0.20754511 2
9 0.35839481 2
10 0.95615917 2
I attached the an index to the random numbers (your income). Now we calculate the mean per group:
df %>%
group_by(index) %>%
summarise(mean=mean(income))
which gives us
# A tibble: 10 x 2
index mean
<int> <dbl>
1 1 0.551
2 2 0.425
3 3 0.827
4 4 0.391
5 5 0.590
6 6 0.373
7 7 0.514
8 8 0.451
9 9 0.566
10 10 0.435
Compare it to
set.seed(1)
tapply(sample(runif(5000),10*5),
rep(1:10,rep(5,10)),
mean)
which yields basically the same result:
1 2 3 4 5 6 7 8 9
0.5507529 0.4250946 0.8273149 0.3905850 0.5902823 0.3730092 0.5143829 0.4512932 0.5658460
10
0.4352546

Frequency distribution using binCounts

I have a dataset of Ages for the customer and I wanted to make a frequency distribution by 9 years of a gap of age.
Ages=c(83,51,66,61,82,65,54,56,92,60,65,87,68,64,51,
70,75,66,74,68,44,55,78,69,98,67,82,77,79,62,38,88,76,99,
84,47,60,42,66,74,91,71,83,80,68,65,51,56,73,55)
My desired outcome would be similar to below-shared table, variable names can be differed(as you wish)
Could I use binCounts code into it ? if yes could you help me out using the code as not sure of bx and idxs in this code?
binCounts(x, idxs = NULL, bx, right = FALSE) ??
Age Count
38-46 3
47-55 7
56-64 7
65-73 14
74-82 10
83-91 6
92-100 3
Much Appreciated!
I don't know about the binCounts or even the package it is in but i have a bare r function:
data.frame(table(cut(Ages,0:7*9+37)))
Var1 Freq
1 (37,46] 3
2 (46,55] 7
3 (55,64] 7
4 (64,73] 14
5 (73,82] 10
6 (82,91] 6
7 (91,100] 3
To exactly duplicate your results:
lowerlimit=c(37,46,55,64,73,82,91,101)
Labels=paste(head(lowerlimit,-1)+1,lowerlimit[-1],sep="-")#I add one to have 38 47 etc
group=cut(Ages,lowerlimit,Labels)#Determine which group the ages belong to
tab=table(group)#Form a frequency table
as.data.frame(tab)# transform the table into a dataframe
group Freq
1 38-46 3
2 47-55 7
3 56-64 7
4 65-73 14
5 74-82 10
6 83-91 6
7 92-100 3
All this can be combined as:
data.frame(table(cut(Ages,s<-0:7*9+37,paste(head(s+1,-1),s[-1],sep="-"))))

Reshape data frame using a column's unique values as new columns and with missing data

I would like to reshape my old data.frame data from long to wide using two variables as the columns for the new data.frame new.data. Specifically, I want to take the two variables data$assessment and data$question_id:
1) Figure out how many data$question_id are in each data$assessment, so that
2) Each data$question_id represents a column in the new data.frame, and
3) Relabel each data$question_id to indicate the assessment it belongs to (i.e. Assessment1 and Q1 is Assessment1_Q1, Assessment1 and Q3 is Assessment1_Q3).
However, there are two things to consider:
1) The assessments have different numbers of questions
2) Not all questions were filled out by the participant (i.e. missing data)
Here's the general structure of the old data.frame:
> dim(data)
[1] 42106 4
> colnames(data)
[1] "subjectid" "assessment" "question_id" "question_value"
> lapply(data, class)
$subjectid
[1] "integer"
$assessment
[1] "factor"
$question_id
[1] "factor"
$question_value
[1] "factor"
> length(unique(data$subjectid))
[1] 96
> table(data$assessment)
Assessment1 Assessment2
1362 2102
Assessment3 Assessment4
966 864
Assessment5 Assessment6
1183 2093
Assessment7 Assessment8
181 14208
Assessment9 Assessment10
6734 2044
Assessment11 Assessment12
3129 2185
Assessment13 Assessment14
3962 1093
> length(unique(data$question_id))
[1] 431
I want my new data.frame new.data to have rows representing participants (N=96), columns representing the assessment and question (i.e. Assessment1_Q1), and new.data$question_value representing each participant's score on a specific assessment/question. Using dim(new.data) should yield 96 432
It should look something like this
subjectid Assessment1_Q1 Assessment1_Q2 Assessment1_Q3 Assessment1_Q4 Assessment2_Q1 Assessment2_Q2 Assessment2_Q3 Assessment3_Q1 Assessment3_Q2 Assessment3_Q3 Assessment4_Q1 Assessment4_Q2
1 6 7 5 4 1 2 4 8 6
2 5 9 3 1 2 4 8 2 3
3 3 9 5 4 5 9 2 3 7 5 5
As you can see, the new data.frame's rows are participants, the columns are Assessments/Questions, and the values are the participants' responses (missing responses are left blank.

Converting R data frame with RDS package: recruitment id error?

I am using the RDS package for respondent-driven sampling survey data. I want to convert a regular R data frame to an rds.data.frame. To do so, I have been trying to use the as.rds.data.frame function from RDS.
Here is an excerpted section of my data frame, where the first case (id=1) is the 'seed' respondent (who has no recruiter). It contains the variables: id (respondent id number), recruit.id(id number of respondent who recruited him/her), netsize (respondent's network size) and population (estimate of whole population size).
df<-data.frame(id=c(1,2,3,4,5,6,7,8,9,10),
recruit.id=c(-1,1,1,2,2,4,5,3,8,3),
netsize=c(6,6,6,5,5,4,4,3,4,6), population=rep(22,000, 10))
I then (try to) apply the relevant function:
new.df <-as.rds.data.frame(df,id=df$id,
recruiter.id=df$recruit.id,
network.size=df$netsize,
population.size=df$population,
max.coupons=2)
I get the error message:
Error in as.rds.data.frame(df, id = df$id, recruiter.id = df$recruit.id,: Invalid id
and the warning
In addition: Warning message:In if (!(id %in% names(x))) stop("Invalid id") :
the condition has length > 1 and only the first element will be used
I have tried assigning various 'recruiter id' values for seed participants, including -1,0 or their own id number but I still get the same message. I have also tried eliminating function arguments (coupon.max, population) or deleting seed respondents, but I still get the same message.
Package documentation says the function will fail if recruitment information is incomplete. As far as I can tell, this is not the case.
I am new to this, so if anyone can point me in the right direction I would be really grateful.
This seems to work:
colnames(df)[2:4] <- c("recruiter.id", "network.size.variable", "population.size")
as.rds.data.frame(df,max.coupons=2)
This gives a result with a warning
as.rds.data.frame(df, id="id", recruiter.id="recruit.id",
network.size="netsize", population.size="population", max.coupons=2)
# An object of class "rds.data.frame"
#id: 1 2 3 4 5 6 7 8 9 10
#recruiter.id: -1 1 1 2 2 4 5 3 8 3
# id recruit.id netsize population
#1 1 -1 6 22
#2 2 1 6 22
#3 3 1 6 22
#4 4 2 5 22
#5 5 2 5 22
#6 6 4 4 22
#7 7 5 4 22
#8 8 3 3 22
#9 9 8 4 22
#10 10 3 6 22
# Warning message:
#In as.rds.data.frame(df, id = "id", recruiter.id = "recruit.id", :
#NAs introduced by coercion

Resources