Converting R data frame with RDS package: recruitment id error? - r

I am using the RDS package for respondent-driven sampling survey data. I want to convert a regular R data frame to an rds.data.frame. To do so, I have been trying to use the as.rds.data.frame function from RDS.
Here is an excerpted section of my data frame, where the first case (id=1) is the 'seed' respondent (who has no recruiter). It contains the variables: id (respondent id number), recruit.id(id number of respondent who recruited him/her), netsize (respondent's network size) and population (estimate of whole population size).
df<-data.frame(id=c(1,2,3,4,5,6,7,8,9,10),
recruit.id=c(-1,1,1,2,2,4,5,3,8,3),
netsize=c(6,6,6,5,5,4,4,3,4,6), population=rep(22,000, 10))
I then (try to) apply the relevant function:
new.df <-as.rds.data.frame(df,id=df$id,
recruiter.id=df$recruit.id,
network.size=df$netsize,
population.size=df$population,
max.coupons=2)
I get the error message:
Error in as.rds.data.frame(df, id = df$id, recruiter.id = df$recruit.id,: Invalid id
and the warning
In addition: Warning message:In if (!(id %in% names(x))) stop("Invalid id") :
the condition has length > 1 and only the first element will be used
I have tried assigning various 'recruiter id' values for seed participants, including -1,0 or their own id number but I still get the same message. I have also tried eliminating function arguments (coupon.max, population) or deleting seed respondents, but I still get the same message.
Package documentation says the function will fail if recruitment information is incomplete. As far as I can tell, this is not the case.
I am new to this, so if anyone can point me in the right direction I would be really grateful.

This seems to work:
colnames(df)[2:4] <- c("recruiter.id", "network.size.variable", "population.size")
as.rds.data.frame(df,max.coupons=2)
This gives a result with a warning
as.rds.data.frame(df, id="id", recruiter.id="recruit.id",
network.size="netsize", population.size="population", max.coupons=2)
# An object of class "rds.data.frame"
#id: 1 2 3 4 5 6 7 8 9 10
#recruiter.id: -1 1 1 2 2 4 5 3 8 3
# id recruit.id netsize population
#1 1 -1 6 22
#2 2 1 6 22
#3 3 1 6 22
#4 4 2 5 22
#5 5 2 5 22
#6 6 4 4 22
#7 7 5 4 22
#8 8 3 3 22
#9 9 8 4 22
#10 10 3 6 22
# Warning message:
#In as.rds.data.frame(df, id = "id", recruiter.id = "recruit.id", :
#NAs introduced by coercion

Related

Frequency distribution using binCounts

I have a dataset of Ages for the customer and I wanted to make a frequency distribution by 9 years of a gap of age.
Ages=c(83,51,66,61,82,65,54,56,92,60,65,87,68,64,51,
70,75,66,74,68,44,55,78,69,98,67,82,77,79,62,38,88,76,99,
84,47,60,42,66,74,91,71,83,80,68,65,51,56,73,55)
My desired outcome would be similar to below-shared table, variable names can be differed(as you wish)
Could I use binCounts code into it ? if yes could you help me out using the code as not sure of bx and idxs in this code?
binCounts(x, idxs = NULL, bx, right = FALSE) ??
Age Count
38-46 3
47-55 7
56-64 7
65-73 14
74-82 10
83-91 6
92-100 3
Much Appreciated!
I don't know about the binCounts or even the package it is in but i have a bare r function:
data.frame(table(cut(Ages,0:7*9+37)))
Var1 Freq
1 (37,46] 3
2 (46,55] 7
3 (55,64] 7
4 (64,73] 14
5 (73,82] 10
6 (82,91] 6
7 (91,100] 3
To exactly duplicate your results:
lowerlimit=c(37,46,55,64,73,82,91,101)
Labels=paste(head(lowerlimit,-1)+1,lowerlimit[-1],sep="-")#I add one to have 38 47 etc
group=cut(Ages,lowerlimit,Labels)#Determine which group the ages belong to
tab=table(group)#Form a frequency table
as.data.frame(tab)# transform the table into a dataframe
group Freq
1 38-46 3
2 47-55 7
3 56-64 7
4 65-73 14
5 74-82 10
6 83-91 6
7 92-100 3
All this can be combined as:
data.frame(table(cut(Ages,s<-0:7*9+37,paste(head(s+1,-1),s[-1],sep="-"))))

Error in levels for seqdef in R

I've seen this error everytime I try to run seqdef on my data that has already been converted to STS format using seqformat. A sample of my dataframe looks like
head(df.new, 10)
user_id orderdate cart to
1 8 1 produce 30
2 8 31 produce 60
3 8 61 produce 70
4 8 71 produce 92
5 10 1 produce 30
6 10 31 produce 42
7 10 43 meat seafood 56
8 10 57 deli 77
9 17 1 beverages 3
10 17 4 beverages 8
It has a total of 14000 rows of orders and there are some orders which occur on the same day for each user (i.e. orderdate == to). Below are the codes that I have used to create my STS data which is used as input to seqdef.
df.form <- seqformat(df.new, id='user_id', begin='orderdate', end='to', status='cart', from='SPELL', to='STS', process=FALSE)
df.seq <- seqdef(df.form, left='DEL', right = 'unknown', xtstep=10, void = 'unknown')
The error message I get when running the seqdef is
[>] found missing values ('NA') in sequence data
[>] preparing 35000 sequences
[>] coding void elements with 'unknown' and missing values with '*'
[>] 21 distinct states appear in the data:
1 = alcohol
2 = babies
3 = bakery
4 = beverages
5 = breakfast
6 = bulk
7 = canned goods
8 = dairy eggs
9 = deli
10 = dry goods pasta
11 = frozen
12 = household
...
[>] adding special state(s) to the alphabet: unknown
Error in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, :
factor level [24] is duplicated
I tried removing those orders where orderdate == to and the same error still occurs. I would appreciate any help I can get to fix this problem. Thanks.
The error occurs because you are using the same code ('unknown') for right missings and voids.
When the sequences contain 'missings', these missings will be considered as a separate state when you set with.missing = TRUE in functions such as seqdist or seqdplot, while voids are used to adjust the row lengths and are simply ignored when plotting the sequences (seqplot) or computing dissimilarities (seqdist).

R creating variable with satisfying condition

Help sought from anyone.
I have a household survey data set named h2004 and would like to create a variable equals to another variable that satisfy certain condition. Here I have put a sample of observations.
cq15 expen
10 0.4616136
10 1.538712
11 2.308068
11 0.384678
12 2.576797822
12 5.5393632
13 5.4624276
14 2.6158104
14 20.157127
and I tried the following command:
h2004$crops[h2004$cq15>=12 & h2004$cq15<=14]=h2004$expen
and this produces wrong results in R as I know the correct result from using Stata. In the original data set, the above command takes values of 'expen' even when cq15<12 and replaces the observations against cq15>=12 & cq15<=14.
I also tried with filter option of dplyr that correctly subset the data frame but don't know how to apply it to specific variable.
fil<- filter(h2004, cq15>=12 & cq15<=14)
I think my subsetting (cq15>=12 & cq15<=14) is wrong. Please advice. Thanks
The problem is in the command. When the command is executed, the following warning message is issued:
Warning message:
In h2004$crops[h2004$cq15 >= 12 & h2004$cq15 <= 14] = h2004$expen :
number of items to replace is not a multiple of replacement length
The reason for this is that the LHS of this command selects elements satisfying condition h2004$cq15 >= 12 & h2004$cq15 <= 14 while on the RHS, the complete vector h2004$expen is given causing mismatch in length.
Solution:
> h2004$crops[h2004$cq15>=12 & h2004$cq15<=14]=h2004$expen[h2004$cq15>=12 & h2004$cq15<=14]
> h2004
cq15 expen crops
1 10 0.4616136 NA
2 10 1.5387120 NA
3 11 2.3080680 NA
4 11 0.3846780 NA
5 12 2.5767978 2.576798
6 12 5.5393632 5.539363
7 13 5.4624276 5.462428
8 14 2.6158104 2.615810
9 14 20.1571270 20.157127
or Alternatively:
> indices <- which(h2004$cq15>=12 & h2004$cq15<=14)
> h2004$crops[indices] = h2004$expen[indices]
> h2004
cq15 expen crops
1 10 0.4616136 NA
2 10 1.5387120 NA
3 11 2.3080680 NA
4 11 0.3846780 NA
5 12 2.5767978 2.576798
6 12 5.5393632 5.539363
7 13 5.4624276 5.462428
8 14 2.6158104 2.615810
9 14 20.1571270 20.157127

Identifying maximum number and longest set of time intervals

Say I have data that look like this:
level start end
1 1 133.631 825.141
2 2 133.631 155.953
3 3 146.844 155.953
4 2 293.754 302.196
5 3 293.754 302.196
6 4 293.754 301.428
7 2 326.253 343.436
8 3 326.253 343.436
9 4 333.827 343.436
10 2 578.066 611.766
11 3 578.066 611.766
12 4 578.066 587.876
13 4 598.052 611.766
14 2 811.228 825.141
15 3 811.228 825.141
or this:
level start end
1 1 3.60353 1112.62000
2 2 3.60353 20.35330
3 3 3.60353 8.77526
4 2 72.03720 143.60700
5 3 73.50530 101.13200
6 4 73.50530 81.64660
7 4 92.19030 101.13200
8 3 121.28500 143.60700
9 4 121.28500 128.25900
10 2 167.19700 185.04800
11 3 167.19700 183.44600
12 4 167.19700 182.84600
13 2 398.12300 418.64300
14 3 398.12300 418.64300
15 2 445.83600 454.54500
16 2 776.59400 798.34800
17 3 776.59400 796.64700
18 4 776.59400 795.91300
19 2 906.68800 915.89700
20 3 906.68800 915.89700
21 2 1099.44000 1112.62000
22 3 1099.44000 1112.62000
23 4 1100.14000 1112.62000
They produce the following graphs:
As you can see there are several time intervals at different levels. The level-1 interval always spans the entire duration of the time of interest. Levels 2+ have time intervals that are shorter.
What I would like to do is select the maximum number of non-overlapping time intervals covering each period that contain the maximum number of total time within them. I have marked in pink which ones those would be.
For small dataframes it is possible to brute force this, but obviously there should be some more logical way of doing this. I'm interested in hearing some ideas about what I should try.
EDIT:
I think one thing that could help here is the column 'level'. The results come from Kleinberg's burst detection algorithm (package 'bursts'). You will note that the levels are hierarchically organized. Levels of the same number cannot overlap. However levels successively increasing e.g. 2,3,4 in successive rows can overlap.
In essence, I think the problem could be shortened to this. Take the levels produced, but remove level 1. This would be the vector for the 2nd example:
2 3 2 3 4 4 3 4 2 3 4 2 3 2 2 3 4 2 3 2 3 4
Then, look at the 2s... if there are fewer than or only one '3' then that 2 is the longest interval. But if there are two or more 3's between successive 2's, then those 3s should be counted. Do this iteratively for each level. I think that should work...?
e.g.
vec<-df$level %>% as.vector() %>% .[-1]
vec
#[1] 2 3 2 3 4 4 3 4 2 3 4 2 3 2 2 3 4 2 3 2 3 4
max(vec) #4
vec3<-vec #need to find two or more 4's between 3s
vec3[vec3==3]<-NA
names(vec3)<-cumsum(is.na(vec3))
0 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 8 8
2 NA 2 NA 4 4 NA 4 2 NA 4 2 NA 2 2 NA 4 2 NA 2 NA 4
vec3.res<-which(table(vec3,names(vec3))["4",]>1)
which(names(vec3)==names(vec3.res) & vec3==4) #5 6
The above identifies rows 5 and 6 (which equate to rows 6 and 7 in original df) as having two fours that lie between 3's. Perhaps something using this sort of approach might work?
OK here is a stab using your second data set to test. This might not be correct in all cases!!
library(data.table)
dat <- fread("data.csv")
dat[,use:="maybe"]
make.pass <- function(dat,low,high,the.level,use) {
check <- dat[(use!="no" & level > the.level)]
check[,contained.by.above:=(low<=start & end<=high)]
check[,consecutive.contained.by.above:=
(contained.by.above &
!is.na(shift(contained.by.above,1)) &
shift(contained.by.above,1)),by=level]
if(!any(check[,consecutive.contained.by.above])) {
#Cause a side effect where we've learned we don't care:
dat[check[(contained.by.above),rownum],use:="no"]
print(check)
return("yes")
} else {
return("no")
}
}
dat[,rownum:=.I]
dat[level==1,use:=make.pass(dat,start,end,level,use),by=rownum]
dat
dat[use=="maybe" & level==2,use:=make.pass(dat,start,end,level,use),by=rownum]
dat
dat[use=="maybe" & level==3,use:=make.pass(dat,start,end,level,use),by=rownum]
dat
#Finally correct for last level
dat[use=="maybe" & level==4,use:="yes"]
I wrote these last steps out so you can trace in your own interactive session to see what's happening (see the print to get an idea) but you can remove the print and also condense the last steps into something like lapply(1:dat[,max(level)-1], function(the.level) dat[use=="maybe" & level==the.level,use:=make.pass......]) In response to your comment if there are an arbitrary number of levels you will definitely want to use this formalism, and follow it with a final call to dat[use=="maybe" & level==max(level),use:="yes"].
Output:
> dat
level start end use rownum
1: 1 3.60353 1112.62000 no 1
2: 2 3.60353 20.35330 yes 2
3: 3 3.60353 8.77526 no 3
4: 2 72.03720 143.60700 no 4
5: 3 73.50530 101.13200 no 5
6: 4 73.50530 81.64660 yes 6
7: 4 92.19030 101.13200 yes 7
8: 3 121.28500 143.60700 yes 8
9: 4 121.28500 128.25900 no 9
10: 2 167.19700 185.04800 yes 10
11: 3 167.19700 183.44600 no 11
12: 4 167.19700 182.84600 no 12
13: 2 398.12300 418.64300 yes 13
14: 3 398.12300 418.64300 no 14
15: 2 445.83600 454.54500 yes 15
16: 2 776.59400 798.34800 yes 16
17: 3 776.59400 796.64700 no 17
18: 4 776.59400 795.91300 no 18
19: 2 906.68800 915.89700 yes 19
20: 3 906.68800 915.89700 no 20
21: 2 1099.44000 1112.62000 yes 21
22: 3 1099.44000 1112.62000 no 22
23: 4 1100.14000 1112.62000 no 23
level start end use rownum
On the off chance this is correct, the algorithm can roughly be described as follows:
Mark all the intervals as possible.
Start with a given level. Pick a particular interval (by=rownum) say called X. With X in mind, subset a copy of the data to all higher-level intervals.
Mark any of these that are contained in X as "contained in X".
If consecutive intervals at the same level are contained in X, X is no good b/c it wastes intervals. In this case label X's "use" variable as "no" so we'll never think about X again. [Note: if it's possible that non-consecutive intervals are contained in X, or that containing multiple intervals across levels could ruin X's viability, then this logic might need to be changed to count contained intervals instead of finding consecutive ones. I didn't think about this at all, but it's just occurring to me now, so use at your own risk.]
On the other hand, if X passed the test, then we've already established it's good. Mark it as a "yes." But importantly, we also have to mark any single interval contained in X as "no," or else when we iterate the step it will forget that it was contained inside a good interval and mark itself as "yes" as well. This is the side effect step.
Now, iterate, ignoring any results that we've already determined.
Finally any "maybe"s leftover at the highest level are automatically in.
Let me know what you think of this--this is a rough draft and some aspects might not be correct.

Short(er) notation of selecting a part of a data.frame or other objects in R

I always get angry at my R code when I have to process dataframes, i.e. filtering out certain rows. The code gets very illegible as I tend to choose meaningful, but long, names for my objects. An example:
all.mutations.extra.large.name <- read.delim(filename)
head(all.mutations.extra.large.name)
id gene pos aa consequence V
ENSG00000105732 ZN574_HUMAN 81 x/N missense_variant 3
ENSG00000125879 OTOR_HUMAN 7 V/3 missense_variant 2
ENSG00000129194 SOX15_HUMAN 20 N/T missense_variant 3
ENSG00000099204 ABLM1_HUMAN 33 H/R missense_variant 2
ENSG00000103335 PIEZ1_HUMAN 11 Q/R missense_variant 3
ENSG00000171533 MAP6_HUMAN 39 A/G missense_variant 3
all.mutations.extra.large.name <- all.mutations.extra.large.name[which(all.mutations.extra.large.name$gene == ZN574_HUMAN)]
So in order to kick out all other lines in which I am not interested I need to reference 3 times the object all.mutations.extra.large.name. And reating this kind of step for different columns makes the code really difficult to understand.
Therefore my question: Is there a way to filter out rows by a criterion without referencing the object 3 times. Something like this would be beautiful: myobj[,gene=="ZN574_HUMAN"]
You can use subset for that:
subset(all.mutations.extra.large.name, gene == "ZN574_HUMAN")
Several options:
all.mutations.extra.large.name <- data.frame(a=1:5, b=2:6)
within(all.mutations.extra.large.name, a[a < 3] <- 0)
a b
1 0 2
2 0 3
3 3 4
4 4 5
5 5 6
transform(all.mutations.extra.large.name, b = b^2)
a b
1 1 4
2 2 9
3 3 16
4 4 25
5 5 36
Also check ?attach if you would like to avoid repetitive typing like all.mutations.extra.large.name$foo.

Resources