Show a modal dialog with a plot in Shiny Application - r

I have the following Shiny Application:
dates <- seq(as.Date("2018-01-01"), as.Date("2018-05-01"), by="days")
point_duration = rnorm(n=length(dates), mean=6, sd=1)
point_duration_bench = rnorm(n=length(dates), mean=5, sd=2)
df <- data.frame(dates, point_duration, point_duration_bench)
df$week <- strftime(df$dates, format = "%V")
df$month <- strftime(df$dates, format = "%m")
current_day = Sys.Date()
current_week = strftime(current_day, format = "%V")
current_month = strftime(current_day, format = "%m")
library(shiny)
library(ggplot2)
library(plotly)
library(shinyBS)
UI <- fluidPage(
actionButton("month","Show last week"),
plotOutput("line_graph"),
bsModal("modalExample", "Your plot", "go", size = "large",plotOutput("plot"),downloadButton('downloadPlot', 'Download'))
)
Server <- function(input, output) {
observeEvent(input$month, {
output$plot <- renderPlot({
hist(50)
})
})
output$line_graph <- renderPlot({
ggplot(df, aes(x=dates, y=point_duration)) +
geom_bar(stat = "identity") +
geom_line(aes(x=dates, y = point_duration_bench), colour = "blue") +
geom_point() +
labs(y="Amount of calls (#1000)",x="")
})
}
shinyApp(ui = UI, server = Server)
With the bsModal function I try to achieve that when you press the month button you get a popup screen showing a the plot output (in this case a simple hist(50)).
However, it does not seem to work... Any thoughts on where I go wrong?

You need to connect the modal output to the right button. You had it attached to 'go' when it needed 'month' to work. Also, I don't think you need the observer as the behavior is built in tobsModal(). See working code:
dates <- seq(as.Date("2018-01-01"), as.Date("2018-05-01"), by="days")
point_duration = rnorm(n=length(dates), mean=6, sd=1)
point_duration_bench = rnorm(n=length(dates), mean=5, sd=2)
df <- data.frame(dates, point_duration, point_duration_bench)
df$week <- strftime(df$dates, format = "%V")
df$month <- strftime(df$dates, format = "%m")
current_day = Sys.Date()
current_week = strftime(current_day, format = "%V")
current_month = strftime(current_day, format = "%m")
library(shiny)
library(ggplot2)
library(plotly)
library(shinyBS)
UI <- fluidPage(
actionButton("month","Show last week"),
plotOutput("line_graph"),
bsModal("modalExample",
"Your plot",
"month", # <----set the observer to the right button
size = "large",
plotOutput("plot"),
downloadButton('downloadPlot', 'Download'))
)
Server <- function(input, output) {
output$plot <- renderPlot({
hist(50)
})
output$line_graph <- renderPlot({
ggplot(df, aes(x=dates, y=point_duration)) +
geom_bar(stat = "identity") +
geom_line(aes(x=dates, y = point_duration_bench), colour = "blue") +
geom_point() +
labs(y="Amount of calls (#1000)",x="")
})
}
shinyApp(ui = UI, server = Server)

Related

Adding multiple reactive geom_lines to Shiny figure

I'd like to include the reactive outputs of two data sets as different geom_lines in the same ggplotly figure. The code runs as expected when only one reactive data.frame is included as a geom_line. Why not two?
ui <- fluidPage(
sidebarLayout(
selectInput("Var1",
label = "Variable", #DATA CHOICE 1
selected = 10,
choices = c(10:100)),
selectInput("Var1",
label = "Variable2", #DATA CHOICE 2
selected = 10,
choices = c(10:100))
# Show a plot of the generated distribution
),
mainPanel(
plotlyOutput('plot') #Draw figure
)
)
server <- function(input, output) {
out <- reactive({
data.frame(x = rnorm(input$Var1), #Build data set 1
y = 1:input$Var1)
})
out2 <- reactive({
data.frame(x = rnorm(input$Var2), #Build data set 2
y = 1:input$Var2)
})
output$plot <- renderPlotly({
p <- ggplot() +
geom_line(data = out(), aes(x = x, y = y)) #Add both data sets in one ggplot
geom_line(data = out2(), aes(x = x, y = y), color = "red")
ggplotly(p)
})
}
# Run the application
shinyApp(ui = ui, server = server)
When you put the data into long format and give each group a group identifier it seems to work. Note that you should be able to change sliderInput back to selectInput - this was one of the entries I toggled during testing, but the choice of UI widget should not matter.
This works -- code can be simplified inside the reactive from here:
library(plotly)
ui <- fluidPage(
sidebarLayout(
sliderInput("Var1",
label = "Variable", #DATA CHOICE 1
min=10, max=100, value=10),
sliderInput("Var2",
label = "Variable2", #DATA CHOICE 2
min=10, max=100, value=10),
),
mainPanel(
plotlyOutput('plot') #Draw figure
)
)
server <- function(input, output) {
out <- reactive({
x1 <- rnorm(input$Var1)
y1 <- seq(1:input$Var1)
x2 <- rnorm(input$Var2)
y2 <- seq(1:input$Var2)
xx <- c(x1,x2)
yy <- c(y1,y2)
gg <- c( rep(1,length(y1)), rep(2,length(y2)) )
df <- data.frame(cbind(xx,yy,gg))
df
})
output$plot <- renderPlotly({
p <- ggplot() +
geom_line(data=out(), aes(x = xx, y = yy, group=gg, colour=gg))
ggplotly(p)
})
}
shinyApp(ui = ui, server = server)

Cannot plot properly in RShiny

I'm trying to create an easy shiny dashboard. I'm using the next data frame:
df <- data.frame(Age = c(18,20,25,30,40),
Salary = c(18000, 20000, 25000, 30000, 40000),
Date = as.Date(c("2006-01-01", "2008-01-01", "2013-01-01", "2018-01-01", "2028-01-01")))
save(df, file = "data.Rdata")
And the code for doing the shiny app is the following:
library(shiny)
library(ggplot2)
load("C:/.../data.RData")
ui <- fluidPage(
sidebarLayout(
# Inputs
sidebarPanel(
# Select variable for y-axis
selectInput(inputId = "y",
label = "Y-axis:",
choices = names(df),
selected = "Salary"),
# Select variable for x-axis
selectInput(inputId = "x",
label = "X-axis:",
choices = names(df),
selected = "Date")
),
# Outputs
mainPanel(
plotOutput(outputId = "scatterplot")
)
)
)
server <- function(input, output) {
output$scatterplot <- renderPlot({
ggplot(data = df, aes(x = input$x, y = input$y)) +
geom_line()
})
}
shinyApp(ui = ui, server = server)
This is what I get on my plot:
And this is what I'm expecting:
I'm not sure what I'm missing on my code.
Try with:
output$scatterplot <- renderPlot({
ggplot(data = df, aes(x = df[, input$x], y = df[, input$y])) +
geom_line()
})
or simply by using:
output$scatterplot <- renderPlot({
ggplot(data = df, aes_string(x = input$x, y = input$y)) +
geom_line()
})

How to plot real time line chart for mqtt data without having to refresh the chart

I tried to fetch streaming data from mosquito test server for creating a real time line chart. I checked some examples of real time chart, but I couldn't seem to achieve the same objective. The chart is updated real time but it always refreshes.
Here is the script I edited from one example:
library(shiny)
library(magrittr)
library(mqtt)
library(jsonlite)
ui <- shinyServer(fluidPage(
plotOutput("plot")
))
server <- shinyServer(function(input, output, session){
myData <- data.frame()
# Function to get new observations
get_new_data <- function(){
d <- character()
mqtt::topic_subscribe(host = "test.mosquitto.org", port = 1883L, client_id = "dcR", topic = "IoTDemoData",
message_callback =
function(id, topic, payload, qos, retain) {
if (topic == "IoTDemoData") {
d <<- readBin(payload, "character")
# print(received_payload)
# received_payload <- fromJSON(received_payload)
# print(d)
return("quit")
}
}
)
d <- fromJSON(d)
d <- as.data.frame(d)
return(d)
# data <- rnorm(5) %>% rbind %>% data.frame
# return(data)
}
# Initialize my_data
myData <- get_new_data()
# Function to update my_data
update_data <- function(){
myData <<- rbind(get_new_data(), myData)
}
# Plot the 30 most recent values
output$plot <- renderPlot({
invalidateLater(1000, session)
update_data()
print(myData)
plot(temperature ~ 1, data=myData[1:30,], ylim=c(-20, -10), las=1, type="l")
})
})
shinyApp(ui=ui,server=server)
I have been struggling with creating real time chart for days. If anyone can point out the problem why the line chart is always refreshed and the solution, it will be highly appreciated!
Below are the revised working script based on Florian's answer:
library(shiny)
library(mqtt)
library(jsonlite)
library(ggplot2)
ui <- shinyServer(fluidPage(
plotOutput("mqttData")
))
server <- shinyServer(function(input, output, session){
myData <- reactiveVal()
get_new_data <- function(){
d <- character()
mqtt::topic_subscribe(host = "localhost", port = 1883L, client_id = "dcR", topic = "IoTDemoData",
message_callback =
function(id, topic, payload, qos, retain) {
if (topic == "IoTDemoData") {
d <<- readBin(payload, "character")
return("quit")
}
}
)
d <- fromJSON(d)
d <- as.data.frame(d)
return(d)
}
observe({
invalidateLater(1000, session)
isolate({
# fetch the new data
new_data <- get_new_data()
# If myData is empty, we initialize it with just the new data.
if(is.null(myData()))
myData(new_data)
else # row bind the new data to the existing data, and set that as the new value.
myData(rbind(myData(),new_data))
})
})
output$mqttData <- renderPlot({
ggplot(mapping = aes(x = c(1:nrow(myData())), y = myData()$temperature)) +
geom_line() +
labs(x = "Second", y = "Celsius")
})
})
shinyApp(ui=ui,server=server)
However, after adding a second plot, the flickering began. When I commented out one of the plots, the plot works great without the need to refresh.
library(shiny)
library(mqtt)
library(jsonlite)
library(ggplot2)
ui <- shinyServer(fluidPage(
plotOutput("mqttData"),
plotOutput("mqttData_RH")
))
server <- shinyServer(function(input, output, session){
myData <- reactiveVal()
get_new_data <- function(){
d <- character()
mqtt::topic_subscribe(host = "test.mosquitto.org", port = 1883L, client_id = "dcR", topic = "IoTDemoData",
# mqtt::topic_subscribe(host = "localhost", port = 1883L, client_id = "dcR", topic = "IoTDemoData",
message_callback =
function(id, topic, payload, qos, retain) {
if (topic == "IoTDemoData") {
d <<- readBin(payload, "character")
return("quit")
}
}
)
d <- fromJSON(d)
d <- as.data.frame(d)
d$RH <- as.numeric(as.character( d$RH))
return(d)
}
observe({
invalidateLater(10000, session)
isolate({
# fetch the new data
new_data <- get_new_data()
# If myData is empty, we initialize it with just the new data.
if(is.null(myData()))
myData(new_data)
else # row bind the new data to the existing data, and set that as the new value.
myData(rbind(myData(),new_data))
})
})
output$mqttData <- renderPlot({
ggplot(mapping = aes(x = c(1:nrow(myData())), y = myData()$temperature)) +
geom_line() +
labs(x = "Second", y = "Celsius")
})
output$mqttData_RH <- renderPlot({
ggplot(mapping = aes(x = c(1:nrow(myData())), y = myData()$RH)) +
geom_line() +
labs(x = "Second", y = "RH %")
})
})
shinyApp(ui=ui,server=server)
One solution I found plot the charts in one renderPlot object. The flickering reduces.
output$mqttData <- renderPlot({
myData() %>%
gather('Var', 'Val', c(temperature, RH)) %>%
ggplot(aes(timestamp,Val, group = 1))+geom_line()+facet_grid(Var ~ ., scales="free_y")
})
However, I wonder if there is way to plot the charts separately without flickering / refreshing.
I found one github example put data to ggplot2 using pipe %>% (https://github.com/mokjpn/R_IoT) and modified it to plot separated charts.
library(shiny)
library(ggplot2)
library(tidyr)
# Dashboard-like layout
ui <- shinyServer(fluidPage(
fluidRow(
column(
6,
plotOutput("streaming_data_1")
),
column(
6,
plotOutput("streaming_data_2")
)
),
fluidRow(
column(
6,
plotOutput("streaming_data_3")
),
column(
6,
plotOutput("streaming_data_4")
)
)
))
server <- shinyServer(function(input, output, session){
myData <- reactiveVal()
# show the first and last timestamp in the streaming charts
realtime_graph_x_labels <- reactiveValues(first = "",last ="")
get_new_data <- function(){
epochTimeStamp <- as.character(as.integer(Sys.time()))
sensor_1 <- -runif(1,min = 10, max = 30)
sensor_2 <- runif(1,min = 0,max = 100)
sensor_3 <- runif(1,min = 0,max = 100000)
sensor_4 <- runif(1,min = 0,max = 10)
newData <- data.frame(ts = epochTimeStamp, val_1 = sensor_1, val_2 = sensor_2, val_3 = sensor_3, val_4 = sensor_4)
return(newData)
}
observe({
invalidateLater(1000, session)
isolate({
# fetch the new data
new_data <- get_new_data()
# If myData is empty, we initialize it with just the new data.
if(is.null(myData()))
{
myData(new_data)
realtime_graph_x_labels$first <- as.character(head(myData()$ts,1))
}
else # row bind the new data to the existing data, and set that as the new value.
myData(rbind(myData(),new_data))
realtime_graph_x_labels$last <- as.character(tail(myData()$ts,1))
})
})
# When displaying two charts, there is no flickering / refreshing, which is desired
output$streaming_data_1 <- renderPlot({
myData() %>%
ggplot(aes(ts,val_1, group = 1))+geom_line() +
scale_x_discrete(breaks = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last), labels = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last)) +
labs(title ="Sensor 1") +
theme(plot.margin = unit(c(1,4,1,1),"lines"))
})
output$streaming_data_2<- renderPlot({
myData() %>%
ggplot(aes(ts,val_2, group = 1))+geom_line() +
scale_x_discrete(breaks = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last), labels = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last)) +
labs(title ="Sensor 2") +
theme(plot.margin = unit(c(1,4,1,1),"lines"))
})
# When adding the 3rd chart, every charts start to flicker / refresh when ploting new value
output$streaming_data_3<- renderPlot({
myData() %>%
ggplot(aes(ts,val_3, group = 1))+geom_line() +
scale_x_discrete(breaks = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last), labels = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last)) +
labs(title ="Sensor 3") +
theme(plot.margin = unit(c(1,4,1,1),"lines"))
})
output$streaming_data_4<- renderPlot({
myData() %>%
ggplot(aes(ts,val_4, group = 1))+geom_line() +
scale_x_discrete(breaks = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last), labels = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last)) +
labs(title ="Sensor 4") +
theme(plot.margin = unit(c(1,4,1,1),"lines"))
})
})
shinyApp(ui=ui,server=server)
The solution works when there are only two charts and starts flickering / refreshing when adding the 3rd.
One possible cause may be that 1000ms is too short for the data to finish processing. Try invalidateLater(10000, session) for example, and see what happens.
I was unable to install mqtt with my R version, so I am unable to reproduce your behavior. However, I looked at your code and I think there is something you could do different to improve your code: Writing data to the global environment with <<- is usually not a good idea. What might be better suited is a reactiveVal, in which you can store data, and on which other functions take a dependency. So in the example below, I have created a reactiveVal and a corresponding observer that updates the reactiveVal every 1000ms.
Below is a working example, where I replaced the contents of your function with a simple one-liner for illustration purposes.
Hope this helps!
set.seed(1)
library(shiny)
ui <- fluidPage(
plotOutput("plotx")
)
server <- function(input, output, session){
# A reactiveVal that holds our data
myData <- reactiveVal()
# Our function to get new data
get_new_data <- function(){
data.frame(a=sample(seq(20),1),b=sample(seq(20),1))
}
# Observer that updates the data every 1000ms.
observe({
# invalidate every 1000ms
invalidateLater(1000, session)
isolate({
# fetch the new data
new_data <- get_new_data()
# If myData is empty, we initialize it with just the new data.
if(is.null(myData()))
myData(new_data)
else # row bind the new data to the existing data, and set that as the new value.
myData(rbind(myData(),new_data))
})
})
# Plot a histrogram
output$plotx <- renderPlot({
hist(myData()$a)
})
}
shinyApp(ui=ui,server=server)
EDIT based on new reproducible example. Seems like it just takes some time to create all the plots. You can add
tags$style(type="text/css", ".recalculating {opacity: 1.0;}")
to your app to prevent them from flickering. Working example:
library(shiny)
library(ggplot2)
library(tidyr)
# Dashboard-like layout
ui <- shinyServer(fluidPage(
tags$style(type="text/css", ".recalculating {opacity: 1.0;}"),
fluidRow(
column(
6,
plotOutput("streaming_data_1")
),
column(
6,
plotOutput("streaming_data_2")
)
),
fluidRow(
column(
6,
plotOutput("streaming_data_3")
),
column(
6,
plotOutput("streaming_data_4")
)
)
))
server <- shinyServer(function(input, output, session){
myData <- reactiveVal()
# show the first and last timestamp in the streaming charts
realtime_graph_x_labels <- reactiveValues(first = "",last ="")
get_new_data <- function(){
epochTimeStamp <- as.character(as.integer(Sys.time()))
sensor_1 <- -runif(1,min = 10, max = 30)
sensor_2 <- runif(1,min = 0,max = 100)
sensor_3 <- runif(1,min = 0,max = 100000)
sensor_4 <- runif(1,min = 0,max = 10)
newData <- data.frame(ts = epochTimeStamp, val_1 = sensor_1, val_2 = sensor_2, val_3 = sensor_3, val_4 = sensor_4)
return(newData)
}
observe({
invalidateLater(1000, session)
isolate({
# fetch the new data
new_data <- get_new_data()
# If myData is empty, we initialize it with just the new data.
if(is.null(myData()))
{
myData(new_data)
realtime_graph_x_labels$first <- as.character(head(myData()$ts,1))
}
else # row bind the new data to the existing data, and set that as the new value.
myData(rbind(myData(),new_data))
realtime_graph_x_labels$last <- as.character(tail(myData()$ts,1))
})
})
# When displaying two charts, there is no flickering / refreshing, which is desired
output$streaming_data_1 <- renderPlot({
myData() %>%
ggplot(aes(ts,val_1, group = 1))+geom_line() +
scale_x_discrete(breaks = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last), labels = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last)) +
labs(title ="Sensor 1") +
theme(plot.margin = unit(c(1,4,1,1),"lines"))
})
output$streaming_data_2<- renderPlot({
myData() %>%
ggplot(aes(ts,val_2, group = 1))+geom_line() +
scale_x_discrete(breaks = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last), labels = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last)) +
labs(title ="Sensor 2") +
theme(plot.margin = unit(c(1,4,1,1),"lines"))
})
# When adding the 3rd chart, every charts start to flicker / refresh when ploting new value
output$streaming_data_3<- renderPlot({
myData() %>%
ggplot(aes(ts,val_3, group = 1))+geom_line() +
scale_x_discrete(breaks = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last), labels = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last)) +
labs(title ="Sensor 3") +
theme(plot.margin = unit(c(1,4,1,1),"lines"))
})
output$streaming_data_4<- renderPlot({
myData() %>%
ggplot(aes(ts,val_4, group = 1))+geom_line() +
scale_x_discrete(breaks = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last), labels = c(realtime_graph_x_labels$first, realtime_graph_x_labels$last)) +
labs(title ="Sensor 4") +
theme(plot.margin = unit(c(1,4,1,1),"lines"))
})
})
shinyApp(ui=ui,server=server)

Invalid input: date_trans works with objects of class Date only

Implementing this with ggplot2 and shiny by having two input selections for the date ranges and have the plot adjust the x(date values) adjust accordingly, however, I get this error below:
Invalid input: date_trans works with objects of class Date only
How can I resolve this? Here is my code below:
library(shiny)
library(ggplot2)
library(dplyr)
data <- read.csv("C:/Users/user/Documents/R/R-3.3.1/R CODE/MyData2.csv", header = TRUE) # reading .csv
newdata <- as.data.frame(data) # converting csv to DF
newdata$event_date <- as.factor(newdata$event_date)
str(newdata)
ui <- fluidPage(
selectInput("select", label = h3("Select Model"),
choices = list("Toyota Camry", "Nissan Altima")),
dateInput("strtdate", "Select start date:"),
dateInput("enddate", "Select end date:"),
plotOutput("hist")
)
server <- function(input, output) {
output$hist <- renderPlot({
df <- newdata %>% select(event_date,PlatformName,total_events) %>% filter(PlatformName == input$select) %>% group_by(event_date, PlatformName) %>% summarize(total_events = sum(total_events))
gg <- ggplot(df, aes(x= event_date, y = total_events, group =PlatformName)) +
geom_line(aes(color = PlatformName)) +
labs(title="Total Events vs. Time", x="Event Dates", y="Total Events") +
aes(xmin = input$strtdate,
xmax = input$enddate) +
theme(plot.title=element_text(size=20, face="bold", hjust = 0.5),
axis.text.x=element_text(size=10, angle=90,hjust=1,vjust=0.5),
axis.text.y=element_text(size=5),
axis.title.x=element_text(size=10),
axis.title.y=element_text(size=10))
print(gg)
})
}
shinyApp(ui = ui, server = server)
Solved the issue. Just needed to convert the specific date column in a date format.
Via:
newdata$event_date <- as.Date(newdata$event_date)
Thus, new code:
library(shiny)
library(ggplot2)
library(dplyr)
data <- read.csv("C:/Users/user/Documents/R/R-3.3.1/R CODE/MyData2.csv", header = TRUE) # reading .csv
newdata <- as.data.frame(data) # converting csv to DF
newdata$event_date <- as.factor(newdata$event_date) #CODE IMPLEMENTAITON
str(newdata)
ui <- fluidPage(
selectInput("select", label = h3("Select Model"),
choices = list("Toyota Camry", "Nissan Altima")),
dateInput("strtdate", "Select start date:"),
dateInput("enddate", "Select end date:"),
plotOutput("hist")
)
server <- function(input, output) {
output$hist <- renderPlot({
df <- newdata %>% select(event_date,PlatformName,total_events) %>% filter(PlatformName == input$select) %>% group_by(event_date, PlatformName) %>% summarize(total_events = sum(total_events))
gg <- ggplot(df, aes(x= event_date, y = total_events, group =PlatformName)) +
geom_line(aes(color = PlatformName)) +
labs(title="Total Events vs. Time", x="Event Dates", y="Total Events") +
aes(xmin = input$strtdate,
xmax = input$enddate) +
theme(plot.title=element_text(size=20, face="bold", hjust = 0.5),
axis.text.x=element_text(size=10, angle=90,hjust=1,vjust=0.5),
axis.text.y=element_text(size=5),
axis.title.x=element_text(size=10),
axis.title.y=element_text(size=10))
print(gg)
})
}
shinyApp(ui = ui, server = server)

Interactive plot in Shiny with rhandsontable and reactiveValues

I would really appreciate some help with the following code:
library(shiny)
library(rhandsontable)
library(tidyr)
dataa <- as.data.frame(cbind(rnorm(100, sd=2), rchisq(100, df = 0, ncp = 2.), rnorm(100)))
ldataa <- gather(dataa, key="variable", value = "value")
thresholds <- as.data.frame(cbind(1,1,1))
ui <- fluidPage(fluidRow(
plotOutput(outputId = "plot", click="plot_click")),
fluidRow(rHandsontableOutput("hot"))
)
server <- function(input, output) {
values <- reactiveValues(
df=thresholds
)
observeEvent(input$plot_click, {
values$trsh <- input$plot_click$x
})
observeEvent(input$hot_select, {
values$trsh <- 1
})
output$hot = renderRHandsontable({
rhandsontable(values$df, readOnly = F, selectCallback = TRUE)
})
output$plot <- renderPlot({
if (!is.null(input$hot_select)) {
x_val = colnames(dataa)[input$hot_select$select$c]
dens.plot <- ggplot(ldataa) +
geom_density(data=subset(ldataa,variable==x_val), aes(x=value), adjust=0.8) +
geom_rug(data=subset(ldataa,variable==x_val), aes(x=value)) +
geom_vline(xintercept = 1, linetype="longdash", alpha=0.3) +
geom_vline(xintercept = values$trsh)
dens.plot
}
})
}
shinyApp(ui = ui, server = server)
I have a plot and a handsontable object in the app.
Clicking on whichever cell loads a corresponding plot, with a threshold value. Clicking the plot changes the position of one of the vertical lines.
I would like to get the x value from clicking the plot into the corresponding cell, and I would like to be able to set the position of the vertical line by typing in a value in the cell too.
I'm currently a bit stuck with how I should feed back values into a reactiveValue dataframe.
Many thanks in advance.
This works as I imagined:
(The trick was to fill right columns of "df" with input$plot_click$x by indexing them with values$df[,input$hot_select$select$c].)
library(shiny)
library(rhandsontable)
library(tidyr)
dataa <- as.data.frame(cbind(rnorm(100, sd=2), rchisq(100, df = 0, ncp = 2.), rnorm(100)))
ldataa <- gather(dataa, key="variable", value = "value")
thresholds <- as.data.frame(cbind(1,1,1))
ui <- fluidPage(fluidRow(
plotOutput(outputId = "plot", click="plot_click")),
fluidRow(rHandsontableOutput("hot"))
)
server <- function(input, output) {
values <- reactiveValues(
df=thresholds
)
observeEvent(input$plot_click, {
values$df[,input$hot_select$select$c] <- input$plot_click$x
})
output$hot = renderRHandsontable({
rhandsontable(values$df, readOnly = F, selectCallback = TRUE)
})
output$plot <- renderPlot({
if (!is.null(input$hot_select)) {
x_val = colnames(dataa)[input$hot_select$select$c]
dens.plot <- ggplot(ldataa) +
geom_density(data=subset(ldataa,variable==x_val), aes(x=value), adjust=0.8) +
geom_rug(data=subset(ldataa,variable==x_val), aes(x=value)) +
geom_vline(xintercept = 1, linetype="longdash", alpha=0.3) +
geom_vline(xintercept = values$df[,input$hot_select$select$c])
dens.plot
}
})
}
shinyApp(ui = ui, server = server)
Update your reactiveValue dataframe from inside of an observeEvent, where you are watching for whichever event is useful, i.e. a click or something.
observeEvent(input$someInput{
values$df <- SOMECODE})

Resources