I am writing a solution for the following problem.
A is a list containing all elements 2^I * 3^Q where I and Q are integers in an ascending order.
Write a function f such that:
f(N) returns A[N]
The first few elements are:
A[0] = 1
A[1] = 2
A[2] = 3
A[3] = 4
A[4] = 6
A[5] = 8
A[6] = 9
A[7] = 12
My solution was to generate a list containing the first 225 elements by double looping in 15 times each, then sorted this list and return A[N]
Is there any way to generate the N'th element of this sequence without creating and sorting a list first?
Here are two approaches that solve your problem without creating such a large list. Each approach has its disadvantages.
First, you could set a counter to 0. Then scan all the integers from 1 on up. For each integer, divide out all the multiples of 2 and of 3 in its factorization. If 1 remains, increment the counter; otherwise, leave the counter unchanged. When the counter reaches N you have found the value of A[N]. For example, you increase the counter for integers 1, 2, 3, and 4, but not for 5. This approach uses very little memory but would take much time.
A second approach uses a min priority queue, such as Python's heapq. Again, set a counter to zero, but also initialize the priority queue to hold only the number 1 and note that the highest power of 3 seen so far is also 1. Increment the counter then peek at the minimum number in the queue. If the counter is N you just got your value of A[N]. Otherwise, pop that min value and immediately push double its value. (The pop and push can be done in one operation in many priority queues.) If that value was a the highest power of 3 seen so far, also push three times its value and note that this new value is now the highest power of 3.
This second approach uses a priority queue that takes some memory but the largest size will only be on the order of the square root of N. I would expect the time to be roughly equal to your sorting the large list, but I am not sure. This approach has the most complicated code and requires you to have a min priority queue.
Your algorithm has the advantage of simplicity and the disadvantage of a large list. In fact, given N it is not at all obvious the maximum powers of 2 and of 3 are, so you would be required to make the list much larger than needed. For example, your case of calculating "the first 225 elements by double looping in 15 times each" actually only works up to N=82.
Below I have Python code for all three approaches. Using timeit for N=200 I got these timings:
1.19 ms for sorting a long list (your approach) (powerof2=powerof3=30)
8.44 s for factoring increasing integers
88 µs for the min priority queue (maximum size of the queue was 17)
The priority queue wins by a large margin--much larger than I expected. Here is the Python 3.6.4 code for all three approaches:
"""A is a list containing all elements 2^I * 3^Q where I and Q are
integers in an ascending order. Write a function f such that
f(N) returns A[N].
Do this without actually building the list A.
Based on the question <https://stackoverflow.com/questions/49615681/
generating-an-item-from-an-ordered-sequence-of-exponentials>
"""
import heapq # min priority queue
def ordered_exponential_0(N, powerof2, powerof3):
"""Return the Nth (zero-based) product of powers of 2 and 3.
This uses the questioner's algorithm
"""
A = [2**p2 * 3**p3 for p2 in range(powerof2) for p3 in range(powerof3)]
A.sort()
return A[N]
def ordered_exponential_1(N):
"""Return the Nth (zero-based) product of powers of 2 and 3.
This uses the algorithm of factoring increasing integers.
"""
i = 0
result = 1
while i < N:
result += 1
num = result
while num % 2 == 0:
num //= 2
while num % 3 == 0:
num //= 3
if num == 1:
i += 1
return result
def ordered_exponential_2(N):
"""Return the Nth (zero-based) product of powers of 2 and 3.
This uses the algorithm using a priority queue.
"""
i = 0
powerproducts = [1] # initialize min priority queue to only 1
highestpowerof3 = 1
while i < N:
powerproduct = powerproducts[0] # next product of powers of 2 & 3
heapq.heapreplace(powerproducts, 2 * powerproduct)
if powerproduct == highestpowerof3:
highestpowerof3 *= 3
heapq.heappush(powerproducts, highestpowerof3)
i += 1
return powerproducts[0]
Related
Let's assume I have an N-bit stream of generated bits. (In my case 64kilobits.)
Whats the probability of finding a sequence of X "all true" bits, contained within a stream of N bits. Where X = (2 to 16), and N = (16 to 1000000), and X < N.
For example:
If N=16 and X=5, whats the likelyhood of finding 11111 within a 16-bit number.
Like this pseudo-code:
int N = 1<<16; // (64KB)
int X = 5;
int Count = 0;
for (int i = 0; i < N; i++) {
int ThisCount = ContiguousBitsDiscovered(i, X);
Count += ThisCount;
}
return Count;
That is, if we ran an integer in a loop from 0 to 64K-1... how many times would 11111 appear within those numbers.
Extra rule: 1111110000000000 doesn't count, because it has 6 true values in a row, not 5. So:
1111110000000000 = 0x // because its 6 contiguous true bits, not 5.
1111100000000000 = 1x
0111110000000000 = 1x
0011111000000000 = 1x
1111101111100000 = 2x
I'm trying to do some work involving physically-based random-number generation, and detecting "how random" the numbers are. Thats what this is for.
...
This would be easy to solve if N were less than 32 or so, I could just "run a loop" from 0 to 4GB, then count how many contiguous bits were detected once the loop was completed. Then I could store the number and use it later.
Considering that X ranges from 2 to 16, I'd literally only need to store 15 numbers, each less than 32 bits! (if N=32)!
BUT in my case N = 65,536. So I'd need to run a loop, for 2^65,536 iterations. Basically impossible :)
No way to "experimentally calculate the values for a given X, if N = 65,536". So I need maths, basically.
Fix X and N, obiously with X < N. You have 2^N possible values of combinations of 0 and 1 in your bit number, and you have N-X +1 possible sequences of 1*X (in this part I'm only looking for 1's together) contained in you bit number. Consider for example N = 5 and X = 2, this is a possible valid bit number 01011, so fixed the last two characteres (the last two 1's) you have 2^2 possible combinations for that 1*Xsequence. Then you have two cases:
Border case: Your 1*X is in the border, then you have (2^(N -X -1))*2 possible combinations
Inner case: You have (2^(N -X -2))*(N-X-1) possible combinations.
So, the probability is (border + inner )/2^N
Examples:
1)N = 3, X =2, then the proability is 2/2^3
2) N = 4, X = 2, then the probaility is 5/16
A bit brute force, but I'd do something like this to avoid getting mired in statistics theory:
Multiply the probabilities (1 bit = 0.5, 2 bits = 0.5*0.5, etc) while looping
Keep track of each X and when you have the product of X bits, flip it and continue
Start with small example (N = 5, X=1 - 5) to make sure you get edge cases right, compare to brute force approach.
This can probably be expressed as something like Sum (Sum 0.5^x (x = 1 -> 16) (for n = 1 - 65536) , but edge cases need to be taken into account (i.e. 7 bits doesn't fit, discard probability), which gives me a bit of a headache. :-)
#Andrex answer is plain wrong as it counts some combinations several times.
For example consider the case N=3, X=1. Then the combination 101 happens only 1/2^3 times but the border calculation counts it two times: one as the sequence starting with 10 and another time as the sequence ending with 01.
His calculations gives a (1+4)/8 probability whereas there are only 4 unique sequences that have at least a single contiguous 1 (as opposed to cases such as 011):
001
010
100
101
and so the probability is 4/8.
To count the number of unique sequences you need to account for sequences that can appear multiple times. As long as X is smaller than N/2 this will happens. Not sure how you can count them tho.
This problem gives you a positive integer number which is less than or equal to 100000 (10^5). You have to find out the following things for the number:
i. Is the number prime number? If it is a prime number, then print YES.
ii. If the number is not a prime number, then can we express the number as summation of unique prime numbers? If it is possible, then print YES. Here unique means, you can use any prime number only for one time.
If above two conditions fail for any integer number, then print NO. For more clarification please see the input, output section and their explanations.
Input
At first you are given an integer T (T<=100), which is the number of test cases. For each case you will be given a positive integer X which is less than or equal 100000.
Output
For every test case, print only YES or NO.
Sample
Input Output
3
7
6
10 YES
NO
YES
Case – 1 Explanation: 7 is a prime number.
Case – 2 Explanation: 6 is not a prime number. 6 can be expressed as 6 = 3 + 3 or 6 = 2 + 2 + 2. But you can’t use any prime number more than 1 time. Also there is no way to express 6 as two or three unique prime numbers summation.
Case – 3 Explanation: 10 is not prime number but 10 can be expressed as 10 = 3 + 7 or 10 = 2 + 3 + 5. In this two expressions, every prime number is used only for one time.
Without employing any mathematical tricks (not sure if any exist...you'd think as a mathematician I'd have more insight here), you will have to iterate over every possible summation. Hence, you'll definitely need to iterate over every possible prime, so I'd recommend the first step being to find all the primes at most 10^5. A basic (Sieve of Eratosthenes)[https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes] will probably be good enough, though faster sieves exist nowadays. I know your question is language agnostic, but you could consider the following as vectorized pseudocode for such a sieve.
import numpy as np
def sieve(n):
index = np.ones(n+1, dtype=bool)
index[:2] = False
for i in range(2, int(np.sqrt(n))):
if index[i]:
index[i**2::i] = False
return np.where(index)[0]
There are some other easy optimizations, but for simplicity this assumes that we have an array index where the indices correspond exactly to whether the number is prime or not. We start with every number being prime, mark 0 and 1 as not prime, and then for every prime we find we mark every multiple of it as not prime. The np.where() at the end just returns the indices where our index corresponds to True.
From there, we can consider a recursive algorithm for actually solving your problem. Note that you might feasibly have a huge number of distinct primes necessary. The number 26 is the sum of 4 distinct primes. It is also the sum of 3 and 23. Since the checks are more expensive for 4 primes than for 2, I think it's reasonable to start by checking the smallest number possible.
In this case, the way we're going to do that is to define an auxiliary function to find whether a number is the sum of precisely k primes and then sequentially test that auxiliary function for k from 1 to whatever the maximum possible number of addends is.
primes = sieve(10**5)
def sum_of_k_primes(x, k, excludes=()):
if k == 1:
if x not in excludes and x in primes:
return (x,)+excludes
else:
return ()
for p in (p for p in primes if p not in excludes):
if x-p < 2:
break
temp = sum_of_k_primes(x-p, k-1, (p,)+excludes)
if temp:
return temp
return ()
Running through this, first we check the case where k is 1 (this being the base case for our recursion). That's the same as asking if x is prime and isn't in one of the primes we've already found (the tuple excludes, since you need uniqueness). If k is at least 2, the rest of the code executes instead. We check all the primes we might care about, stopping early if we'd get an impossible result (no primes in our list are less than 2). We recursively call the same function for smaller k, and if we succeed we propagate that result up the call stack.
Note that we're actually returning the smallest possible tuple of unique prime addends. This is empty if you want your answer to be "NO" as specified, but otherwise it allows you to easily come up with an explanation for why you answered "YES".
partial = np.cumsum(primes)
def max_primes(x):
return np.argmax(partial > x)
def sum_of_primes(x):
for k in range(1, max_primes(x)+1):
temp = sum_of_k_primes(x, k)
if temp:
return temp
return ()
For the rest of the code, we store the partial sums of all the primes up to a given point (e.g. with primes 2, 3, 5 the partial sums would be 2, 5, 10). This gives us an easy way to check what the maximum possible number of addends is. The function just sequentially checks if x is prime, if it is a sum of 2 primes, 3 primes, etc....
As some example output, we have
>>> sum_of_primes(1001)
(991, 7, 3)
>>> sum_of_primes(26)
(23, 3)
>>> sum_of_primes(27)
(19, 5, 3)
>>> sum_of_primes(6)
()
At a first glance, I thought caching some intermediate values might help, but I'm not convinced that the auxiliary function would ever be called with the same arguments twice. There might be a way to use dynamic programming to do roughly the same thing but in a table with a minimum number of computations to prevent any duplicated efforts with the recursion. I'd have to think more about it.
As far as the exact output your teacher is expecting and the language this needs to be coded in, that'll be up to you. Hopefully this helps on the algorithmic side of things a little.
My previous qs. was unclear so I am again putting it in clear terms.
I need an efficient algorithm to count the number of arithmetic progressions in a series. The number of elements in a single AP should be >2.
eg. if the series is {1,2,2,3,4,4} then the different solutions are listed below(with index numbers):
0,1,3
0,2,3
0,1,3,4
0,1,3,5
0,2,3,4
0,2,3,5
hence the answer should be 6
I am not able to code it when these numbers become large and size of array increases. I need an efficient algorithm for this.
First of all, you answer is incorrect. Numbers 2,3,4 (indexes also 2,3,4) form an AP.
Second, here is a simple brute force algorithm:
def find (vec,value,start):
for i from start to length(vec):
if vec[i] == value:
return i
return None
for i from 0 to length(vec) - 2:
for j from i to length(vec) - 1:
next = 2 * vec[j] - vec[i] # the next element in the AP
pos = find(vec,next,j+1)
if pos is None:
continue
print "found AP:\n %d\n %d\n %d" % (i,j,pos)
prev = vec[j]
here = next
until (pos = find(vec,next = 2*here-prev,pos+1)) is None:
print ' '+str(pos)
prev = here
here = next
I don't think you can do better than this O(n^4) because the total number of APs to be printed is O(n^4) (consider a vector of zeros).
If, on the other hand, you want to only print maximal APs, i.e., APs which are not contained in any other AP, then the problem becomes much more interesting...
I lack the math skills to make this function.
basically, i want to return 2 random prime numbers that when multiplied, yield a number of bits X given as argument.
for example:
if I say my X is 3 then a possible solution would be:
p = 2 and q = 3 becouse 2 * 3 = 6 (110 has 3 bits).
A problem with this statement is that it starts by asking for two "random" prime numbers. Without any explicit statement of the distribution of the required random primes, we are already stuck. (This is the beginning of a classic paradox, where we are asked to generate a "random" integer.)
But suppose that we change the statement to finding any two arbitrary primes, that yield the desired product with a given number of bits x. The answer is trivial.
The set of numbers that have exactly x bits in their binary representation is the half open set of integers [2^(x-1),2^x-1].
Choose an arbitrary prime number that is less than or equal to (2^x-1)/2. Call it p1.
Next, choose a second prime number that lies in the interval (2^(x-1)/p1,(2^x-1)/p1). Call it p2.
It must be true that p1*p2 will be in the desired interval.
For example, given x = 10, so the product must lie in the interval [512,1023], the set of integers with exactly 10 bits. (Note, there are apparently 147 such numbers in that interval, with exactly two prime factors.)
Step 1:
Choose p1 as any prime no larger than 1023/2 = 511.5. I'll pick p1 = 137. Then the second prime factor must be a prime that lies in the interval
[512 1023]/137
ans =
3.7372 7.4672
thus either 5 or 7.
dec2bin(137*[5 7])
ans =
1010101101
1110111111
If you know the number of bits, you can generate a number 2^(x-2) < x < 2^(x-1). Then take the square root and find the closest primes on either side of it. Multiplying them together will, in most cases, get you a number in the correct range. If it's too high, you can take the two primes directly on the lower side of it.
pseudocode:
x = bits
primelist[] = makeprimelist()
rand = randnum between 2^(x-2) and 2^(x-1)
n = findposition(primelist, rand)
do
result = primelist[n]*primelist[n+1]
n--
while result > 2^(x-1)
Note that numbers generated this way will allways have '1' as the highest significant bit, so would be possible to generate a number of x-1 bits and just tack the 1 onto the end.
I can have any number row which consists from 2 to 10 numbers. And from this row, I have to get geometrical progression.
For example:
Given number row: 125 5 625 I have to get answer 5. Row: 128 8 512 I have to get answer 4.
Can you give me a hand? I don't ask for a program, just a hint, I want to understand it by myself and write a code by myself, but damn, I have been thinking the whole day and couldn't figure this out.
Thank you.
DON'T WRITE THE WHOLE PROGRAM!
Guys, you don't get it, I can't just simple make a division. I actually have to get geometrical progression + show all numbers. In 128 8 512 row all numbers would be: 8 32 128 512
Seth's answer is the right one. I'm leaving this answer here to help elaborate on why the answer to 128 8 512 is 4 because people seem to be having trouble with that.
A geometric progression's elements can be written in the form c*b^n where b is the number you're looking for (b is also necessarily greater than 1), c is a constant and n is some arbritrary number.
So the best bet is to start with the smallest number, factorize it and look at all possible solutions to writing it in the c*b^n form, then using that b on the remaining numbers. Return the largest result that works.
So for your examples:
125 5 625
Start with 5. 5 is prime, so it can be written in only one way: 5 = 1*5^1. So your b is 5. You can stop now, assuming you know the row is in fact geometric. If you need to determine whether it's geometric then test that b on the remaining numbers.
128 8 512
8 can be written in more than one way: 8 = 1*8^1, 8 = 2*2^2, 8 = 2*4^1, 8 = 4*2^1. So you have three possible values for b, with a few different options for c. Try the biggest first. 8 doesn't work. Try 4. It works! 128 = 2*4^3 and 512 = 2*4^4. So b is 4 and c is 2.
3 15 375
This one is a bit mean because the first number is prime but isn't b, it's c. So you'll need to make sure that if your first b-candidate doesn't work on the remaining numbers you have to look at the next smallest number and decompose it. So here you'd decompose 15: 15 = 15*?^0 (degenerate case), 15 = 3*5^1, 15 = 5*3^1, 15 = 1*15^1. The answer is 5, and 3 = 3*5^0, so it works out.
Edit: I think this should be correct now.
This algorithm does not rely on factoring, only on the Euclidean Algorithm, and a close variant thereof. This makes it slightly more mathematically sophisticated then a solution that uses factoring, but it will be MUCH faster. If you understand the Euclidean Algorithm and logarithms, the math should not be a problem.
(1) Sort the set of numbers. You have numbers of the form ab^{n1} < .. < ab^{nk}.
Example: (3 * 2, 3*2^5, 3*2^7, 3*2^13)
(2) Form a new list whose nth element of the (n+1)st element of the sorted list divided by the (n)th. You now have b^{n2 - n1}, b^{n3 - n2}, ..., b^{nk - n(k-1)}.
(Continued) Example: (2^4, 2^2, 2^6)
Define d_i = n_(i+1) - n_i (do not program this -- you couldn't even if you wanted to, since the n_i are unknown -- this is just to explain how the program works).
(Continued) Example: d_1 = 4, d_2 = 2, d_3 = 6
Note that in our example problem, we're free to take either (a = 3, b = 2) or (a = 3/2, b = 4). The bottom line is any power of the "real" b that divides all entries in the list from step (2) is a correct answer. It follows that we can raise b to any power that divides all the d_i (in this case any power that divides 4, 2, and 6). The problem is we know neither b nor the d_i. But if we let m = gcd(d_1, ... d_(k-1)), then we CAN find b^m, which is sufficient.
NOTE: Given b^i and b^j, we can find b^gcd(i, j) using:
log(b^i) / log(b^j) = (i log b) / (j log b) = i/j
This permits us to use a modified version of the Euclidean Algorithm to find b^gcd(i, j). The "action" is all in the exponents: addition has been replaced by multiplication, multiplication with exponentiation, and (consequently) quotients with logarithms:
import math
def power_remainder(a, b):
q = int(math.log(a) / math.log(b))
return a / (b ** q)
def power_gcd(a, b):
while b != 1:
a, b = b, power_remainder(a, b)
return a
(3) Since all the elements of the original set differ by powers of r = b^gcd(d_1, ..., d_(k-1)), they are all of the form cr^n, as desired. However, c may not be an integer. Let me know if this is a problem.
The simplest approach would be to factorize the numbers and find the greatest number they have in common. But be careful, factorization has an exponential complexity so it might stop working if you get big numbers in the row.
What you want is to know the Greatest Common Divisor of all numbers in a row.
One method is to check if they all can be divided by the smaller number in the row.
If not, try half the smaller number in the row.
Then keep going down until you find a number that divides them all or your divisor equals 1.
Seth Answer is not correct, applyin that solution does not solves 128 8 2048 row for example (2*4^x), you get:
8 128 2048 =>
16 16 =>
GCD = 16
It is true that the solution is a factor of this result but you will need to factor it and check one by one what is the correct answer, in this case you will need to check the solutions factors in reverse order 16, 8, 4, 2 until you see 4 matches all the conditions.