I need to eliminate rows from a data frame based on the repetition of values in a given column, but only those that are consecutive.
For example, for the following data frame:
df = data.frame(x=c(1,1,1,2,2,4,2,2,1))
df$y <- c(10,11,30,12,49,13,12,49,30)
df$z <- c(1,2,3,4,5,6,7,8,9)
x y z
1 10 1
1 11 2
1 30 3
2 12 4
2 49 5
4 13 6
2 12 7
2 49 8
1 30 9
I would need to eliminate rows with consecutive repeated values in the x column, keep the last repeated row, and maintain the structure of the data frame:
x y z
1 30 3
2 49 5
4 13 6
2 49 8
1 30 9
Following directions from help and some other posts, I have tried using the duplicated function:
df[ !duplicated(x,fromLast=TRUE), ] # which gives me this:
x y z
1 1 10 1
6 4 13 6
7 2 12 7
9 1 30 9
NA NA NA NA
NA.1 NA NA NA
NA.2 NA NA NA
NA.3 NA NA NA
NA.4 NA NA NA
NA.5 NA NA NA
NA.6 NA NA NA
NA.7 NA NA NA
NA.8 NA NA NA
Not sure why I get the NA rows at the end (wasn't happening with a similar table I was testing), but works only partially on the values.
I have also tried using the data.table package as follows:
library(data.table)
dt <- as.data.table(df)
setkey(dt, x)
dt[J(unique(x)), mult ='last']
Works great, but it eliminates ALL duplicates from the data frame, not just those that are consecutive, giving something like this:
x y z
1 30 9
2 49 8
4 13 6
Please, forgive if cross-posting. I tried some of the suggestions but none worked for eliminating only those that are consecutive.
I would appreciate any help.
Thanks
How about:
df[cumsum(rle(df$x)$lengths),]
Explanation:
rle(df$x)
gives you the run lengths and values of consecutive duplicates in the x variable. Then:
rle(df$x)$lengths
extracts the lengths. Finally:
cumsum(rle(df$x)$lengths)
gives the row indices which you can select using [.
EDIT for fun here's a microbenchmark of the answers given so far with rle being mine, consec being what I think is the most fundamentally direct answer, given by #James, and would be the answer I would "accept", and dp being the dplyr answer given by #Nik.
#> Unit: microseconds
#> expr min lq mean median uq max
#> rle 134.389 145.4220 162.6967 154.4180 172.8370 375.109
#> consec 111.411 118.9235 136.1893 123.6285 145.5765 314.249
#> dp 20478.898 20968.8010 23536.1306 21167.1200 22360.8605 179301.213
rle performs better than I thought it would.
You just need to check in there is no duplicate following a number, i.e x[i+1] != x[i] and note the last value will always be present.
df[c(df$x[-1] != df$x[-nrow(df)],TRUE),]
x y z
3 1 30 3
5 2 49 5
6 4 13 6
8 2 49 8
9 1 30 9
A cheap solution with dplyr that I could think of:
Method:
library(dplyr)
df %>%
mutate(id = lag(x, 1),
decision = if_else(x != id, 1, 0),
final = lead(decision, 1, default = 1)) %>%
filter(final == 1) %>%
select(-id, -decision, -final)
Output:
x y z
1 1 30 3
2 2 49 5
3 4 13 6
4 2 49 8
5 1 30 9
This will even work if your data has the same x value at the bottom
New Input:
df2 <- df %>% add_row(x = 1, y = 10, z = 12)
df2
x y z
1 1 10 1
2 1 11 2
3 1 30 3
4 2 12 4
5 2 49 5
6 4 13 6
7 2 12 7
8 2 49 8
9 1 30 9
10 1 10 12
Use same method:
df2 %>%
mutate(id = lag(x, 1),
decision = if_else(x != id, 1, 0),
final = lead(decision, 1, default = 1)) %>%
filter(final == 1) %>%
select(-id, -decision, -final)
New Output:
x y z
1 1 30 3
2 2 49 5
3 4 13 6
4 2 49 8
5 1 10 12
Here is a data.table solution. The trick is to create a shifted version of x with the shift function and compare it with x
library(data.table)
dattab <- as.data.table(df)
dattab[x != shift(x = x, n = 1, fill = -999, type = "lead")] # edited to add closing )
This way you compare each value of x with its immediately following value and throw out where they match. Make sure to set fill to something that is not in x in order for correct handling of the last value.
Related
I am trying to carry a value in one column backwards by a number of rows given in a second column and fill everything in between.
So column y mainly has 1s in it but might have individual numbers up to about 20 (in my real data, up to 3 in my example below). If the number in y is 20, I need the 19 rows before that row and that row itself to equal the value of x for the row where y is 20. If the value in y is 1 the output will just equal x.
y also has many NAs, these NAs are either legitimate NAs where I want an NA output or are placeholders where the filling should occur if a y value afterwards is > 1.
I thought I could use dplyr::lead but I cannot have a variable n value to look forwards a different number of steps, and it wouldn't fill inbetween, and I wondered about making a new, always increasing column and using RcppRoll::roll_max but have similar problems with the flexible window size.
Typically y-values in the lead up to a y > 1 will be 0 or NA, but if there were conflicts I would want to adopt the later value still eg in row 8 of my data frame y is 1 followed by y = 2 in row 9 so I want the value associated with row 9 in both cases. If y in NA and there is not covered by filling backwards, I want it to remain NA (or 0 would be fine)
Thanks for any thoughts
set.seed(1)
test <- data.frame(x = sample(1:15,replace = F), y = c(NA,NA,NA,1,NA,NA,3,1,2,1,1,NA,NA,NA,2))
desired_out <- test
desired_out$out <- c(NA,NA,NA,1,11,11,11,8,8,12,5,NA,NA,14,14)
desired_out
#> x y out
#> 1 9 NA NA
#> 2 4 NA NA
#> 3 7 NA NA
#> 4 1 1 1
#> 5 2 NA 11
#> 6 13 NA 11
#> 7 11 3 11
#> 8 3 1 8
#> 9 8 2 8
#> 10 12 1 12
#> 11 5 1 5
#> 12 6 NA NA
#> 13 15 NA NA
#> 14 10 NA 14
#> 15 14 2 14
#try adopting #sirius answer before I specified about the extra NAs
test$y <- ifelse(is.na(test$y),0,test$y)
test$out <- with( test, rep( x, y ) )
#> Error in `$<-.data.frame`(`*tmp*`, out, value = c(1L, 11L, 11L, 11L, 3L, : replacement has 11 rows, data has 15
Created on 2021-04-08 by the reprex package (v0.3.0)
Things got a bit complex, but essentially calculate all the repeated x's for each y > 0, and then let subsequent x'es overwrite earlier ones
set.seed(1)
test <- data.frame(x = sample(1:15,replace = F), y = c(NA,NA,NA,1,NA,NA,3,1,2,1,1,NA,NA,NA,2))
desired_out <- test
desired_out$out <- c(NA,NA,NA,1,11,11,11,8,8,12,5,NA,NA,14,14)
desired_out
test %<>% mutate( id = seq(n()) ) %>%
filter( !is.na(y) & y != 0 ) %>%
group_by(id) %>%
slice( rep(1,y) ) %>%
mutate( id = rev( max(id)+1-1:n() ) ) %>%
group_by(id) %>%
summarize( out = as.numeric(last(x)) ) %>%
right_join( test %>% mutate( id=seq(n()) ) ) %>%
arrange( id ) %>% select( -id ) %>% relocate( x, y, out )
identical( as.data.frame(test), desired_out ) ## TRUE
test
Output:
> test
# A tibble: 15 x 3
x y out
<int> <dbl> <dbl>
1 9 NA NA
2 4 NA NA
3 7 NA NA
4 1 1 1
5 2 NA 11
6 13 NA 11
7 11 3 11
8 3 1 8
9 8 2 8
10 12 1 12
11 5 1 5
12 6 NA NA
13 15 NA NA
14 10 NA 14
15 14 2 14
What the algorithm does, which after a few piped lines is no longer very clear, is the following:
temporarily add id as original row number
take away 0 and NA rows for y
repeat each row y times
within each such repeated row, create a new id that counts backwards (these will be the new row numbers for the x-values to
go)
group by id again this time to let later values overwrite earlier values (so keep only the highest row number for any collision)
join these data back on the original data, using the newly calculated row numbers, repeated x's will now be inserted
sort and clean up
Sequencing and indexing to the rescue:
test$rn <- seq_len(nrow(test))
src <- with(test[!is.na(test$y),],
list(val = rep(x,y), idx = rep(rn,y) - sequence(y) + 1) )
test$out[src$idx] <- src$val
test$rn <- NULL
# x y out
#1 9 NA NA
#2 4 NA NA
#3 7 NA NA
#4 1 1 1
#5 2 NA 11
#6 13 NA 11
#7 11 3 11
#8 3 1 8
#9 8 2 8
#10 12 1 12
#11 5 1 5
#12 6 NA NA
#13 15 NA NA
#14 10 NA 14
#15 14 2 14
I'm generating a row number, getting the row numbers prior to the key rows, and then overwriting those rows with repeats of the selected rows. Sometimes they specify the same location, but the later value will be taken as you can see in the output.
Should be pretty efficient as everything is vectorised and there's only one major assignment operation back to the original dataset for updating all the rows at once. Here's 4.5M rows processed in a fraction of a second:
test <- test[rep(1:15, 3e5),]
system.time({
test$rn <- seq_len(nrow(test))
src <- with(test[!is.na(test$y),],
list(val = rep(x,y), idx = rep(rn,y) - sequence(y) + 1) )
test$out[src$idx] <- src$val
test$rn <- NULL
})
# user system elapsed
# 0.28 0.00 0.28
I have a dataframe that I want to drop those columns with NA's rate > 70% or there is dominant value taking over 99% of rows. How can I do that in R?
I find it easier to select rows with logic vector in subset function, but how can I do the similar for columns? For example, if I write:
isNARateLt70 <- function(column) {//some code}
apply(dataframe, 2, isNARateLt70)
Then how can I continue to use this vector to subset dataframe?
If you have a data.frame like
dd <- data.frame(matrix(rpois(7*4,10),ncol=7, dimnames=list(NULL,letters[1:7])))
# a b c d e f g
# 1 11 2 5 9 7 6 10
# 2 10 5 11 13 11 11 8
# 3 14 8 6 16 9 11 9
# 4 11 8 12 8 11 6 10
You can subset with a logical vector using one of
mycols<-c(T,F,F,T,F,F,T)
dd[mycols]
dd[, mycols]
There's really no need to write a function when we have colMeans (thanks #MrFlick for the advice to change from colSums()/nrow(), and shown at the bottom of this answer).
Here's how I would approach your function if you want to use sapply on it later.
> d <- data.frame(x = rep(NA, 5), y = c(1, NA, NA, 1, 1),
z = c(rep(NA, 3), 1, 2))
> isNARateLt70 <- function(x) mean(is.na(x)) <= 0.7
> sapply(d, isNARateLt70)
# x y z
# FALSE TRUE TRUE
Then, to subset with the above line your data using the above line of code, it's
> d[sapply(d, isNARateLt70)]
But as mentioned, colMeans works just the same,
> d[colMeans(is.na(d)) <= 0.7]
# y z
# 1 1 NA
# 2 NA NA
# 3 NA NA
# 4 1 1
# 5 1 2
Maybe this will help too. The 2 parameter in apply() means apply this function column wise on the data.frame cars.
> columns <- apply(cars, 2, function(x) {mean(x) > 10})
> columns
speed dist
TRUE TRUE
> cars[1:10, columns]
speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10
7 10 18
8 10 26
9 10 34
10 11 17
Here was discussed the question of calculation of means and medians of vector t, for each value of vector y (from 1 to 4) where x=1, z=1, using aggregate function in R.
x y z t
1 1 1 10
1 0 1 15
2 NA 1 14
2 3 0 15
2 2 1 17
2 1 NA 19
3 4 2 18
3 0 2 NA
3 2 2 45
4 3 2 NA
4 1 3 59
5 0 3 0
5 4 3 45
5 4 4 74
5 1 4 86
Multiple aggregation in R with 4 parameters
But how can I for each value (from 1 to 5) of vector x calculate (mean(y)+mean(z))/(mean(z)-mean(t)) ? And do not make calculations for values 0 and NA in any vector. For example, in vector y the 3rd value is 0, so the 3rd number in every vector (y,z,t) should not be used. And in result the the third row (for x=3) should be NA.
Here is the code for calculating means of y,z and t and it`s needed to add the formula for calculation (mean(y)+mean(z))/(mean(z)-mean(t)):
data <- data.table(dataframe)
bar <- data[,.N,by=x]
foo <- data[ ,list(mean.y =mean(y, na.rm = T),
mean.z=mean(z, na.rm = T),
mean.t=mean(t,na.rm = T)),
by=x]
In this code for calculating means all rows are used, but for calculating (mean(y)+mean(z))/(mean(z)-mean(t)), any row where y or z or t equal to zero or NA should not be used.
Update:
Oh, this can be further simplified, as data.table doesn't subset NA by default (especially with such cases in mind, similar to base::subset). So, you just have to do:
dt[y != 0 & z != 0 & t != 0,
list(ans = (mean(y) + mean(z))/(mean(z) - mean(t))), by = x]
FWIW, here's how I'd do it in data.table:
dt[(y | NA) & (z | NA) & (t | NA),
list(ans=(mean(y)+mean(z))/(mean(z)-mean(t))), by=x]
# x ans
# 1: 1 -0.22222222
# 2: 2 -0.18750000
# 3: 3 -0.16949153
# 4: 4 -0.07142857
# 5: 5 -0.10309278
Let's break it down with the general syntax: dt[i, j, by]:
In i, we filter out for your conditions using a nice little hack TRUE | NA = TRUE and FALSE | NA = NA and NA | NA = NA (you can test these out in your R session).
Since you say you need only the non-zero non-NA values, it's just a matter of |ing each column with NA - which'll return TRUE only for your condition. That settles the subset by condition part.
Then for each group in by, we aggregate according to your function, in j, to get the result.
HTH
Here's one solution:
# create your sample data frame
df <- read.table(text = " x y z t
1 1 1 10
1 0 1 15
2 NA 1 14
2 3 0 15
2 2 1 17
2 1 NA 19
3 4 2 18
3 0 2 NA
3 2 2 45
4 3 2 NA
4 1 3 59
5 0 3 0
5 4 3 45
5 4 4 74
5 1 4 86", header = TRUE)
library('dplyr')
dfmeans <- df %>%
filter(!is.na(y) & !is.na(z) & !is.na(t)) %>% # remove rows with NAs
filter(y != 0 & z != 0 & t != 0) %>% # remove rows with zeroes
group_by(x) %>%
summarize(xmeans = (mean(y) + mean(z)) / (mean(z) - mean(t)))
I'm sure there is a simpler way to remove the rows with NAs and zeroes, but it's not coming to me. Anyway, dfmeans looks like this:
# x xmeans
# 1 1 -0.22222222
# 2 2 -0.18750000
# 3 3 -0.16949153
# 4 4 -0.07142857
# 5 5 -0.10309278
And if you just want the values from xmeans use dfmeans$xmeans.
This is a my df (data.frame):
group value
1 10
1 20
1 25
2 5
2 10
2 15
I need to calculate difference between values in consecutive rows by group.
So, I need a that result.
group value diff
1 10 NA # because there is a no previous value
1 20 10 # value[2] - value[1]
1 25 5 # value[3] value[2]
2 5 NA # because group is changed
2 10 5 # value[5] - value[4]
2 15 5 # value[6] - value[5]
Although, I can handle this problem by using ddply, but it takes too much time. This is because I have a lot of groups in my df. (over 1,000,000 groups in my df)
Are there any other effective approaches to handle this problem?
The package data.table can do this fairly quickly, using the shift function.
require(data.table)
df <- data.table(group = rep(c(1, 2), each = 3), value = c(10,20,25,5,10,15))
#setDT(df) #if df is already a data frame
df[ , diff := value - shift(value), by = group]
# group value diff
#1: 1 10 NA
#2: 1 20 10
#3: 1 25 5
#4: 2 5 NA
#5: 2 10 5
#6: 2 15 5
setDF(df) #if you want to convert back to old data.frame syntax
Or using the lag function in dplyr
df %>%
group_by(group) %>%
mutate(Diff = value - lag(value))
# group value Diff
# <int> <int> <int>
# 1 1 10 NA
# 2 1 20 10
# 3 1 25 5
# 4 2 5 NA
# 5 2 10 5
# 6 2 15 5
For alternatives pre-data.table::shift and pre-dplyr::lag, see edits.
You can use the base function ave() for this
df <- data.frame(group=rep(c(1,2),each=3),value=c(10,20,25,5,10,15))
df$diff <- ave(df$value, factor(df$group), FUN=function(x) c(NA,diff(x)))
which returns
group value diff
1 1 10 NA
2 1 20 10
3 1 25 5
4 2 5 NA
5 2 10 5
6 2 15 5
try this with tapply
df$diff<-as.vector(unlist(tapply(df$value,df$group,FUN=function(x){ return (c(NA,diff(x)))})))
Since dplyr 1.1.0, you can shorten the dplyr version with inline temporary grouping with .by:
mutate(df, diff = value - lag(value), .by = group)
With the help of sebastian-c, I figured out my problem with daily data. Please see: R ifelse condition: frequency of continuously NA
And now I have a data set with hourly data:
set.seed(1234)
day <- c(rep(1:2, each=24))
hr <- c(rep(0:23, 2))
v <- c(rep(NA, 48))
A <- data.frame(cbind(day, hr, v))
A$v <- sample(c(NA, rnorm(100)), nrow(A), prob=c(0.5, rep(0.5/100, 100)), replace=TRUE)
What I need to do is: If there are more(>=) 4 continuously missing day-hours(7AM-7PM) or >= 3 continuously missing night-hours(7PM-7AM), I will delete the entire day from the data frame, otherwise just run linear interpolation. Thus, the second day should be entirely deleted from the data frame since there are 4 continuously NA during day-time (7AM-10AM). The result is preferably remain data frame. Please help, thank you!
If I modify the NA_run function from the question you linked to take a variable named v instead of value and return the boolean rather than the data.frame:
NA_run <- function(x, maxlen){
runs <- rle(is.na(x$v))
any(runs$lengths[runs$values] >= maxlen)
}
I can then write a wrapper function to call it twice for daytime and nighttime:
dropfun <- function(x) {
dt <- x$hr > 7 & x$hr < 19
daytime <- NA_run(x[dt,], 4)
nighttime <- NA_run(x[!dt,], 3)
any(daytime, nighttime)
}
Which gives me a data.frame of days to drop.
> ddply(A, .(day), dropfun)
day V1
1 1 TRUE
2 2 FALSE
>
We can alter the dropfun to return the dataframe instead though:
dropfun <- function(x) {
dt <- x$hr > 7 & x$hr < 19
daytime <- NA_run(x[dt,], 4)
nighttime <- NA_run(x[!dt,], 3)
if(any(daytime, nighttime)) NULL else x
}
> ddply(A, .(day), dropfun)
day hr v
1 2 0 NA
2 2 1 NA
3 2 2 2.54899107
4 2 3 NA
5 2 4 -0.03476039
6 2 5 NA
7 2 6 0.65658846
8 2 7 0.95949406
9 2 8 NA
10 2 9 1.08444118
11 2 10 0.95949406
12 2 11 NA
13 2 12 -1.80603126
14 2 13 NA
15 2 14 NA
16 2 15 0.97291675
17 2 16 NA
18 2 17 NA
19 2 18 NA
20 2 19 -0.29429386
21 2 20 0.87820363
22 2 21 NA
23 2 22 0.56305582
24 2 23 -0.11028549
>