Left/Right recursion and Bison parsing stack behavior - recursion

So in my < 24 hours of bison/flex investigation I've seen lots of documentation that indicates that left recursion is better than right recursion. Some places even mention that with left recursion, you need constant space on the Bison parser stack whereas right recursion requires order N space. However, I can't quite find any sources that explains what is going on explicitly.
As an example (parser that only adds and subtracts):
Scanner:
%%
[0-9]+ {return NUMBER;}
%%
Parser:
%%
/* Left */
expression:
NUMBER
| expression '+' NUMBER { $$ = $1 + $3; }
| expression '-' NUMBER { $$ = $1 - $3; }
;
/* Right */
expression:
NUMBER
| NUMBER '+' expression { $$ = $1 + $3; }
| NUMBER '-' expression { $$ = $1 - $3; }
;
%%
For the example of 1+5-2, it seems with left recursion, the parser receives '1' from the lexer and sees that '1' matches expression: NUMBER and pushes an expression of value 1 to the parser stack. It sees + and pushes. Then it sees 5 and the expression(1), + and 5 matches expression: expression '+' NUMBER so it pops twice, does the math and pushes a new expression with value 6 on the stack and then repeats for the subtraction. At any one point, there is at max, 3 symbols on the stack. So it's like an in-place calculation and operates left to right.
With right recursion, I'm not sure why it has to load all symbols on the stack but I'm going to attempt at describing why that might be the case. It sees a 1 and matches expression: NUMBER so it pushes an expression with value 1 on the stack. It pushes '+' on the stack. When it sees the 5, my first thought is that 5 on it's own could match expression: NUMBER and hence be an expression of value 5 and then it plus the last two symbols on the stack could match expression: NUMBER '+' expression but my assumption is that because expression is on the right of the rule, that it can't jump the gun and evaluate 5 as an expression as a NUMBER since with LALR(1), it already knows more symbols are coming so it has to wait until it hits the end of the list?
TL;DR;
Can someone maybe explain with some detail how Bison manages its parse stack relative to how it does its shift/reduction with the parser grammar rules? Silly/contrived examples welcome!

With LR (bottom-up) parsing, each non-terminal is reduced precisely when its last token is encountered. (LALR parsing is a simplified LR parse which handles lookahead slightly less precisely.) Until a non-terminal is reduced, all its components live on the stack. So if you use right recursion and you are parsing
NUMBER + NUMBER + NUMBER + NUMBER
the reductions won't start until you get to the end, because each NUMBER starts an expression and all the expressions end at the last NUMBER.
If you use left recursion, each NUMBER terminates an expression, so a reduction happens each time a NUMBER is encountered.
That's not the reason to use left-recursion though. You use left-recursion because it accurately describes the language. If you have 7 - 2 - 1, you want the result to be 4, because that's what algebraic rules require: the expression is parsed as though it were (7 - 2) - 1, so 7 - 2 must be reduced first. With right-recursion, you would incorrectly evsluate that as 6, because the 2 - 1 would reduce first.
Most operators associate to the left, so you use left-recursion. For the occasional operator which associates to the right, you need right recursion and you have to live with the stack growing. It's not a big deal. Your machine has tons of memory.
As an example, consider assignment. a = b = 42 means a = (b = 42). If you did it left associatively, you'd first set a to b, and then attempt to set something to 42; (a = b) = 42 wouldn't make sense in most languages and it is certainly not the expected action.
LL (topdown) parsing uses lookahead to predict which production will be reduced. It can't handle left-recursion at all because the prediction ends up in a recursive loop: expression starts with an expression which starts with an expression … and the parser never manages to predict a NUMBER. So with LL parsers, you have to use right-recursion and then your grammar does not correctly describe the language (assuming that the language has left-associative operators, as is usually the case). Some people don't mind this, but I think that grammars should actually indicate the correct parse, and I find the modification necessary to make a grammar parseable with a top-down parser to be messy and hard to read. Your mileage may vary.
By the way, "force down your throat" is a very ungenerous description of documentation which is trying to give you good advice. It is good to be skeptical -- you understand things better if you work at figuring out why they work the way they do -- but many people just want the good advice.

So after reading this rather important page in the bison documentation:
https://www.gnu.org/software/bison/manual/html_node/Lookahead.html#Lookahead
combined with running with
%debug
and
yydebug = 1;
in my main()
I think I see exactly what is happening.
With left recursion, it sees a 1 and shifts it. The lookahead is now +. Then it determines that it can reduce the 1 to an expression via expression: NUMBER. So it pops and puts an expression on the stack. It shifts + and NUMBER(5) and then sees it can reduce via expression: expression '+' NUMBER and pops 3x and pushes a new expression(6). Basically, by using the lookahead and the rules, bison can determine if it needs to shift or reduce at any time as it reads the tokens. As this repeats, at most there are 3 symbols/groupings on the parse stack (for this simplified expression evaluation section).
With right recursion, it sees a 1 and shifts it. The lookahead is now +. The parser sees no reason to reduce 1 to an expression(1) because there is no rule that goes expression '+' so it just continues shifting each token until it gets to the end of the input. At this point, there is [NUMBER, +, NUMBER, -, NUMBER] on the stack so it sees that the most recent number can be reduced to expression(2) and then shifts that. Then the rules start getting applied (`expression: NUMBER '-' expression') etc etc.
So the key to my understanding is that Bison uses the lookahead token to make intelligent decisions about reducing now or just shifting based on the rules it has at its disposal.

Related

Perl 6 calculate the average of an int array at once using reduce

I'm trying to calculate the average of an integer array using the reduce function in one step. I can't do this:
say (reduce {($^a + $^b)}, <1 2 3>) / <1 2 3>.elems;
because it calculates the average in 2 separate pieces.
I need to do it like:
say reduce {($^a + $^b) / .elems}, <1 2 3>;
but it doesn't work of course.
How to do it in one step? (Using map or some other function is welcomed.)
TL;DR This answer starts with an idiomatic way to write equivalent code before discussing P6 flavored "tacit" programming and increasing brevity. I've also added "bonus" footnotes about the hyperoperation Håkon++ used in their first comment on your question.5
Perhaps not what you want, but an initial idiomatic solution
We'll start with a simple solution.1
P6 has built in routines2 that do what you're asking. Here's a way to do it using built in subs:
say { sum($_) / elems($_) }(<1 2 3>); # 2
And here it is using corresponding3 methods:
say { .sum / .elems }(<1 2 3>); # 2
What about "functional programming"?
First, let's replace .sum with an explicit reduction:
.reduce(&[+]) / .elems
When & is used at the start of an expression in P6 you know the expression refers to a Callable as a first class citizen.
A longhand way to refer to the infix + operator as a function value is &infix:<+>. The shorthand way is &[+].
As you clearly know, the reduce routine takes a binary operation as an argument and applies it to a list of values. In method form (invocant.reduce) the "invocant" is the list.
The above code calls two methods -- .reduce and .elems -- that have no explicit invocant. This is a form of "tacit" programming; methods written this way implicitly (or "tacitly") use $_ (aka "the topic" or simply "it") as their invocant.
Topicalizing (explicitly establishing what "it" is)
given binds a single value to $_ (aka "it") for a single statement or block.
(That's all given does. Many other keywords also topicalize but do something else too. For example, for binds a series of values to $_, not just one.)
Thus you could write:
say .reduce(&[+]) / .elems given <1 2 3>; # 2
Or:
$_ = <1 2 3>;
say .reduce(&[+]) / .elems; # 2
But given that your focus is FP, there's another way that you should know.
Blocks of code and "it"
First, wrap the code in a block:
{ .reduce(&[+]) / .elems }
The above is a Block, and thus a lambda. Lambdas without a signature get a default signature that accepts one optional argument.
Now we could again use given, for example:
say do { .reduce(&[+]) / .elems } given <1 2 3>; # 2
But we can also just use ordinary function call syntax:
say { .reduce(&[+]) / .elems }(<1 2 3>)
Because a postfix (...) calls the Callable on its left, and because in the above case one argument is passed in the parens to a block that expects one argument, the net result is the same as the do4 and the given in the prior line of code.
Brevity with built ins
Here's another way to write it:
<1 2 3>.&{.sum/.elems}.say; #2
This calls a block as if it were a method. Imo that's still eminently readable, especially if you know P6 basics.
Or you can start to get silly:
<1 2 3>.&{.sum/$_}.say; #2
This is still readable if you know P6. The / is a numeric (division) operator. Numeric operators coerce their operands to be numeric. In the above $_ is bound to <1 2 3> which is a list. And in Perls, a collection in numeric context is its number of elements.
Changing P6 to suit you
So far I've stuck with standard P6.
You can of course write subs or methods and name them using any Unicode letters. If you want single letter aliases for sum and elems then go ahead:
my (&s, &e) = &sum, &elems;
But you can also extend or change the language as you see fit. For example, you can create user defined operators:
#| LHS ⊛ RHS.
#| LHS is an arbitrary list of input values.
#| RHS is a list of reducer function, then functions to be reduced.
sub infix:<⊛> (#lhs, *#rhs (&reducer, *#fns where *.all ~~ Callable)) {
reduce &reducer, #fns».(#lhs)
}
say <1 2 3> ⊛ (&[/], &sum, &elems); # 2
I won't bother to explain this for now. (Feel free to ask questions in the comments.) My point is simply to highlight that you can introduce arbitrary (prefix, infix, circumfix, etc.) operators.
And if custom operators aren't enough you can change any of the rest of the syntax. cf "braid".
Footnotes
1 This is how I would normally write code to do the computation asked for in the question. #timotimo++'s comment nudged me to alter my presentation to start with that, and only then shift gears to focus on a more FPish solution.
2 In P6 all built in functions are referred to by the generic term "routine" and are instances of a sub-class of Routine -- typically a Sub or Method.
3 Not all built in sub routines have correspondingly named method routines. And vice-versa. Conversely, sometimes there are correspondingly named routines but they don't work exactly the same way (with the most common difference being whether or not the first argument to the sub is the same as the "invocant" in the method form.) In addition, you can call a subroutine as if it were a method using the syntax .&foo for a named Sub or .&{ ... } for an anonymous Block, or call a method foo in a way that looks rather like a subroutine call using the syntax foo invocant: or foo invocant: arg2, arg3 if it has arguments beyond the invocant.
4 If a block is used where it should obviously be invoked then it is. If it's not invoked then you can use an explicit do statement prefix to invoke it.
5 Håkon's first comment on your question used "hyperoperation". With just one easy to recognize and remember "metaop" (for unary operations) or a pair of them (for binary operations), hyperoperations distribute an operation to all the "leaves"6 of a data structure (for an unary) or create a new one based on pairing up the "leaves" of a pair of data structures (for binary operations). NB. Hyperoperations are done in parallel7.
6 What is a "leaf" for a hyperoperation is determined by a combination of the operation being applied (see the is nodal trait) and whether a particular element is Iterable.
7 Hyperoperation is applied in parallel, at least semantically. Hyperoperation assumes8 that the operations on the "leaves" have no mutually interfering side-effects -- that is to say, that any side effect when applying the operation to one "leaf" can safely be ignored in respect to applying the operation to any another "leaf".
8 By using a hyperoperation the developer is declaring that the assumption of no meaningful side-effects is correct. The compiler will act on the basis it is, but will not check that it is true. In the safety sense it's like a loop with a condition. The compiler will follow the dev's instructions, even if the result is an infinite loop.
Here is an example using given and the reduction meta operator:
given <1 2 3> { say ([+] $_)/$_.elems } ;

Count all possible computer programs of length N

I will make this easy to understand using Javascript as language
Using ascii as alphabet, and given all possible "statements" of length N formed using ascii, how many will be a valid JS program. Example for length 8
var i=0; //Is a string 8 characters long, and valid JS
jar i=0; //Is a string 8 characters long, but invalid JS
gfjsjhh3 //Is a string 8 characters long, but invalid JS
now imagine we have all possible strings 8 characters long.
How many will be valid JS?
Further rules:
1) variables are as short as possible
2) no blank spaces except where necessary
More formal definition of problem:
If we are given a grammar G for alphabet K, and also the collection of all possible combinations (statements) of length N that can be formed with K(or K* up to length N), how many of those statements will satisfy grammar G.
I know you are thinking this is some academic, away from reality stuff. However, if the number of statements that are programs is much less than the total number of combinations, you could use small "numbers" to refer to locations where these sparse programs appear in the sea of combinations, and be able to send this "address" instead of the whole program, greatly reducing payload
The grammar is usually only one aspect of validity checks, check out ES6 §5.3. And grammars are very poor to capture your “as short as possible” requirement. But grammars are a good tool to reason about things, so let's concentrate on that. It will still allow invalid programs, and programs with long variable names, but as a starting point for proof of concept (whatever you concept may be) it should suffice.
You might start by thinking about derivation trees based on some BNF grammar for JS. Something like sections §11 to §15 of the ES6 standard, but make sure that the grammar you use is going down to the character level, not treating a whole identifier as a single terminal. For your hypothetical compression scheem, if you encode the choice at each node of the tree, you have something like the compression effect you describe.
In order to count the number of programs of a given length, you could do dynamic programming on the BNF rules. So if you have a rule which says
IndexedMemberExpression ::= MemberExpression '[' Expression ']'
(loosely modeled after ES6 §12.3) then you know that an IndexedMemberExpression of length n is made up of a MemberExpression of length i and an Expression of length n − i − 2, for some 0 ≤ i ≤ n − 2, so if you know how many ways there are for those, you know for the whole expression. Have one array of length 1000 for each BNF non-terminal, fill them in order of increasing length, and you get the number of derivation trees (i.e. grammatically correct programs) for the root rule.
Actually an IndexedMemberExpression is just one kind of MemberExpression, and you'd want to sum all of those up. So it's more like this:
allocate an arry of size 1000 for each non-terminal,
and initialize all the elements to zero
for n from 0 to 1000:
…
# compute PrimaryExpression[n] first
# rule MemberExpression ::= PrimaryExpression
MemberExpression[n] = PrimaryExpression[n]
# rule MemberExpression ::= MemberExpression '[' Expression ']'
if n >= 2:
for i from 0 to n - 2:
MemberExpression[n] += MemberExpression[i] * Expression[n-i-2]
# rule MemberExpression ::= MemberExpression '.' IdentifierName
if n >= 1:
for i from 0 to n - 1:
MemberExpression[n] += MemberExpression[i] * IdentifierName[n-i-1]
…
Do this for all the rules, in an order which makes sure that you fully update each non-terminal on the left hand side of the increments before using it for the first time on the right hand side.
Note that for almost any character sequence of length n, the corresponding string literal will be a valid JS expression of length n + 2. So don't expect the number of valid programs to have a radically different asymptotic behavior compared to the number of arbitrary character sequences.

How does is_integer(X) procedure work?

I read in Mellish, Clocksin book about Prolog and got to this:
is_integer(0).
is_integer(X) :- is_integer(Y), X is Y + 1.
with the query ?- is_integer(X). the zero output is easy but how does it get 1, 2, 3, 4...
I know it is not easy to explain writing only but I will appreciate any attempt.
After the 1-st result X=0 I hit ; then the query becomes is_integer(0) or is still is_integer(X)?
It's long time I search for a good explanation to this issue. Thanks in advance.
This strikes to the heart of what makes Prolog so interesting and difficult. You're definitely not stupid, it's just extremely different.
There are two rules here. The existence of alternatives causes choice points to be created. You can think of the choice point as a moment when Prolog saw an alternate way of proceeding with the computation. Prolog always tries rules in the order they appear in the database, which will correspond to the order they appear in the source file. So when you issue the query is_integer(X), the first rule matches and unifies X with 0. This is your first result.
When you press ';' you are telling Prolog to fail, that this answer is not acceptable, which triggers backtracking. The only thing for Prolog to do is try entering the other rule, which begins is_integer(Y). Y is a new variable; it may or may not wind up instantiated to the same value as X, so far you haven't seen any reason why that wouldn't be the case.
This call, is_integer(Y) essentially duplicates the computation that's been attempted so far. It will enter the first rule, is_integer(0) and try that. This rule will succeed, Y will be unified with 0 and then X will be unified with Y+1, and the rule will exit having unified X with 1.
When you press ';' again, Prolog will back up to the nearest choice point. This time, the nearest choice point is the call is_integer(Y) within the second rule for is_integer/1. So the depth of the call stack is greater, but we haven't left the second rule. Indeed, each subsequent result will be had by backtracking from the first to the second rule at this location in the previous location's activation of the second rule. I doubt very seriously a verbal explanation like the preceeding is going to help, so please look at this trashy ASCII art of how the call tree is evolving like this:
1 2 2
/ \
1 2
/
1
^ ^ ^
| | |
0 | |
1+0 |
1+(1+0)
where the numbers are indicating which rule is activated and the level is indicating the depth of the call stack. The next several steps will evolve like this:
2 2
\ \
2 2
\ \
2 2
/ \
1 2
/
1
^ ^
| |
1+(1+(1+0)) |
= 3 1+(1+(1+(1+0)))
= 4
Notice that we always produce a value by increasing the stack depth by 1 and reaching the first rule.
The answer of Daniel is very good, I just want to offer another way to look at it.
Take this trivial Prolog definition of natural numbers based on TNT (so 0 is 0, 1 is s(0), 2 is s(s(0)) etc):
n(0). % (1)
n(s(N)) :- n(N). % (2)
The declarative meaning is very clear. (1) says that 0 is a number. (2) says that s(N) is a number if N is a number. When called with a free variable:
?- n(X).
it gives you the expected X = 0 (from (1)), then looks at (2), and goes into a "new" invocation of n/1. In this new invocation, (1) succeeds, the recursive call to n/1 succeeds, and (2) succeeds with X = s(0). Then it looks at (2) of the new invocation, and so on, and so on.
This works by unification in the head of the second clause. Nothing stops you, however, from saying:
n_(0).
n_(S) :- n_(N), S = s(N).
This simply delays the unification of S with s(N) until after n_(N) is evaluated. As nothing happens between evaluating n_(N) and the unification, the result, when called with a free variable, is identical.
Do you see how this is isomorphic to your is_integer/1 predicate?
A word of warning. As pointed out in the comments, this query:
?- n_(0).
as well as the corresponding
?- is_integer(0).
have the annoying property of not terminating (you can call them with any natural number, not only 0). This is because after the first clause has been reached recursively, and the call succeeds, the second clause still gets evaluated. At that point you are "past" the end-of-recursion of the first clause.
n/1 defined above does not suffer from this, as Prolog can recognize by looking at the two clause heads that only one of them can succeed (in other words, the two clauses are mutually exclusive).
I attempted to put into a graphic #daniel's great answer. I found his answer enlightening and could not have figured out what was going on here without his help. I hope that this image helps someone the way that #daniel's answer helped me!

modifying an element of a list in-place in J, can it be done?

I have been playing with an implementation of lookandsay (OEIS A005150) in J. I have made two versions, both very simple, using while. type control structures. One recurs, the other loops. Because I am compulsive, I started running comparative timing on the versions.
look and say is the sequence 1 11 21 1211 111221 that s, one one, two ones, etc.
For early elements of the list (up to around 20) the looping version wins, but only by a tiny amount. Timings around 30 cause the recursive version to win, by a large enough amount that the recursive version might be preferred if the stack space were adequate to support it. I looked at why, and I believe that it has to do with handling intermediate results. The 30th number in the sequence has 5808 digits. (32nd number, 9898 digits, 34th, 16774.)
When you are doing the problem with recursion, you can hold the intermediate results in the recursive call, and the unstacking at the end builds the results so that there is minimal handling of the results.
In the list version, you need a variable to hold the result. Every loop iteration causes you to need to add two elements to the result.
The problem, as I see it, is that I can't find any way in J to modify an extant array without completely reassigning it. So I am saying
try. o =. o,e,(0&{y) catch. o =. e,(0&{y) end.
to put an element into o where o might not have a value when we start. That may be notably slower than
o =. i.0
.
.
.
o =. (,o),e,(0&{y)
The point is that the result gets the wrong shape without the ravels, or so it seems. It is inheriting a shape from i.0 somehow.
But even functions like } amend don't modify a list, they return a list that has a modification made to it, and if you want to save the list you need to assign it. As the size of the assigned list increases (as you walk the the number from the beginning to the end making the next number) the assignment seems to take more time and more time. This assignment is really the only thing I can see that would make element 32, 9898 digits, take less time in the recursive version while element 20 (408 digits) takes less time in the loopy version.
The recursive version builds the return with:
e,(0&{y),(,lookandsay e }. y)
The above line is both the return line from the function and the recursion, so the whole return vector gets built at once as the call gets to the end of the string and everything unstacks.
In APL I thought that one could say something on the order of:
a[1+rho a] <- new element
But when I try this in NARS2000 I find that it causes an index error. I don't have access to any other APL, I might be remembering this idiom from APL Plus, I doubt it worked this way in APL\360 or APL\1130. I might be misremembering it completely.
I can find no way to do that in J. It might be that there is no way to do that, but the next thought is to pre-allocate an array that could hold results, and to change individual entries. I see no way to do that either - that is, J does not seem to support the APL idiom:
a<- iota 5
a[3] <- -1
Is this one of those side effect things that is disallowed because of language purity?
Does the interpreter recognize a=. a,foo or some of its variants as a thing that it should fastpath to a[>:#a]=.foo internally?
This is the recursive version, just for the heck of it. I have tried a bunch of different versions and I believe that the longer the program, the slower, and generally, the more complex, the slower. Generally, the program can be chained so that if you want the nth number you can do lookandsay^: n ] y. I have tried a number of optimizations, but the problem I have is that I can't tell what environment I am sending my output into. If I could tell that I was sending it to the next iteration of the program I would send it as an array of digits rather than as a big number.
I also suspect that if I could figure out how to make a tacit version of the code, it would run faster, based on my finding that when I add something to the code that should make it shorter, it runs longer.
lookandsay=: 3 : 0
if. 0 = # ,y do. return. end. NB. return on empty argument
if. 1 ~: ##$ y do. NB. convert rank 0 argument to list of digits
y =. (10&#.^:_1) x: y
f =. 1
assert. 1 = ##$ y NB. the converted argument must be rank 1
else.
NB. yw =. y
f =. 0
end.
NB. e should be a count of the digits that match the leading digit.
e=.+/*./\y=0&{y
if. f do.
o=. e,(0&{y),(,lookandsay e }. y)
assert. e = 0&{ o
10&#. x: o
return.
else.
e,(0&{y),(,lookandsay e }. y)
return.
end.
)
I was interested in the characteristics of the numbers produced. I found that if you start with a 1, the numerals never get higher than 3. If you start with a numeral higher than 3, it will survive as a singleton, and you can also get a number into the generated numbers by starting with something like 888888888 which will generate a number with one 9 in it and a single 8 at the end of the number. But other than the singletons, no digit gets higher than 3.
Edit:
I did some more measuring. I had originally written the program to accept either a vector or a scalar, the idea being that internally I'd work with a vector. I had thought about passing a vector from one layer of code to the other, and I still might using a left argument to control code. With I pass the top level a vector the code runs enormously faster, so my guess is that most of the cpu is being eaten by converting very long numbers from vectors to digits. The recursive routine always passes down a vector when it recurs which might be why it is almost as fast as the loop.
That does not change my question.
I have an answer for this which I can't post for three hours. I will post it then, please don't do a ton of research to answer it.
assignments like
arr=. 'z' 15} arr
are executed in place. (See JWiki article for other supported in-place operations)
Interpreter determines that only small portion of arr is updated and does not create entire new list to reassign.
What happens in your case is not that array is being reassigned, but that it grows many times in small increments, causing memory allocation and reallocation.
If you preallocate (by assigning it some large chunk of data), then you can modify it with } without too much penalty.
After I asked this question, to be honest, I lost track of this web site.
Yes, the answer is that the language has no form that means "update in place, but if you use two forms
x =: x , most anything
or
x =: most anything } x
then the interpreter recognizes those as special and does update in place unless it can't. There are a number of other specials recognized by the interpreter, like:
199(1000&|#^)199
That combined operation is modular exponentiation. It never calculates the whole exponentiation, as
199(1000&|^)199
would - that just ends as _ without the #.
So it is worth reading the article on specials. I will mark someone else's answer up.
The link that sverre provided above ( http://www.jsoftware.com/jwiki/Essays/In-Place%20Operations ) shows the various operations that support modifying an existing array rather than creating a new one. They include:
myarray=: myarray,'blah'
If you are interested in a tacit version of the lookandsay sequence see this submission to RosettaCode:
las=: ,#((# , {.);.1~ 1 , 2 ~:/\ ])&.(10x&#.inv)#]^:(1+i.#[)
5 las 1
11 21 1211 111221 312211

How to prove by induction that a program does something?

I have a computer program that reads in an array of chars that operands and operators written in postfix notation. The program then scans through the array works out the result by using a stack as shown :
get next char in array until there are no more
if char is operand
push operand into stack
if char is operator
a = pop from stack
b = pop from stack
perform operation using a and b as arguments
push result
result = pop from stack
How do I prove by induction that this program correctly evaluates any postfix expression? (taken from exercise 4.16 Algorithms in Java (Sedgewick 2003))
I'm not sure which expressions you need to prove the algorithm against. But if they look like typical RPN expressions, you'll need to establish something like the following:
1) algoritm works for 2 operands (and one operator)
and
algorithm works for 3 operands (and 2 operators)
==> that would be your base case
2) if algorithm works for n operands (and n-1 operators)
then it would have to work for n+1 operands.
==> that would be the inductive part of the proof
Good luck ;-)
Take heart concerning mathematical proofs, and also their sometimes confusing names. In the case of an inductive proof one is still expected to "figure out" something (some fact or some rule), sometimes by deductive logic, but then these facts and rules put together constitute an broader truth, buy induction; That is: because the base case is established as true and because one proved that if X was true for an "n" case then X would also be true for an "n+1" case, then we don't need to try every case, which could be a big number or even infinite)
Back on the stack-based expression evaluator... One final hint (in addtion to Captain Segfault's excellent explanation you're gonna feel over informed...).
The RPN expressions are such that:
- they have one fewer operator than operand
- they never provide an operator when the stack has fewer than 2 operands
in it (if they didn;t this would be the equivalent of an unbalanced
parenthesis situation in a plain expression, i.e. a invalid expression).
Assuming that the expression is valid (and hence doesn't provide too many operators too soon), the order in which the operand/operators are fed into the algorithm do not matter; they always leave the system in a stable situtation:
- either with one extra operand on the stack (but the knowledge that one extra operand will eventually come) or
- with one fewer operand on the stack (but the knowledge that the number of operands still to come is also one less).
So the order doesn't matter.
You know what induction is? Do you generally see how the algorithm works? (even if you can't prove it yet?)
Your induction hypothesis should say that, after processing the N'th character, the stack is "correct". A "correct" stack for a full RPN expression has just one element (the answer). For a partial RPN expression the stack has several elements.
Your proof is then to think of this algorithm (minus the result = pop from stack line) as a parser that turns partial RPN expressions into stacks, and prove that it turns them into the correct stacks.
It might help to look at your definition of an RPN expression and work backwards from it.

Resources