How to prove by induction that a program does something? - math

I have a computer program that reads in an array of chars that operands and operators written in postfix notation. The program then scans through the array works out the result by using a stack as shown :
get next char in array until there are no more
if char is operand
push operand into stack
if char is operator
a = pop from stack
b = pop from stack
perform operation using a and b as arguments
push result
result = pop from stack
How do I prove by induction that this program correctly evaluates any postfix expression? (taken from exercise 4.16 Algorithms in Java (Sedgewick 2003))

I'm not sure which expressions you need to prove the algorithm against. But if they look like typical RPN expressions, you'll need to establish something like the following:
1) algoritm works for 2 operands (and one operator)
and
algorithm works for 3 operands (and 2 operators)
==> that would be your base case
2) if algorithm works for n operands (and n-1 operators)
then it would have to work for n+1 operands.
==> that would be the inductive part of the proof
Good luck ;-)
Take heart concerning mathematical proofs, and also their sometimes confusing names. In the case of an inductive proof one is still expected to "figure out" something (some fact or some rule), sometimes by deductive logic, but then these facts and rules put together constitute an broader truth, buy induction; That is: because the base case is established as true and because one proved that if X was true for an "n" case then X would also be true for an "n+1" case, then we don't need to try every case, which could be a big number or even infinite)
Back on the stack-based expression evaluator... One final hint (in addtion to Captain Segfault's excellent explanation you're gonna feel over informed...).
The RPN expressions are such that:
- they have one fewer operator than operand
- they never provide an operator when the stack has fewer than 2 operands
in it (if they didn;t this would be the equivalent of an unbalanced
parenthesis situation in a plain expression, i.e. a invalid expression).
Assuming that the expression is valid (and hence doesn't provide too many operators too soon), the order in which the operand/operators are fed into the algorithm do not matter; they always leave the system in a stable situtation:
- either with one extra operand on the stack (but the knowledge that one extra operand will eventually come) or
- with one fewer operand on the stack (but the knowledge that the number of operands still to come is also one less).
So the order doesn't matter.

You know what induction is? Do you generally see how the algorithm works? (even if you can't prove it yet?)
Your induction hypothesis should say that, after processing the N'th character, the stack is "correct". A "correct" stack for a full RPN expression has just one element (the answer). For a partial RPN expression the stack has several elements.
Your proof is then to think of this algorithm (minus the result = pop from stack line) as a parser that turns partial RPN expressions into stacks, and prove that it turns them into the correct stacks.
It might help to look at your definition of an RPN expression and work backwards from it.

Related

Moral of the story from SICP Ex. 1.20?

In this exercise we are asked to trace Euclid's algorithm using first normal order then applicative order evaluation.
(define (gcd a b)
(if (= b 0)
a
(gcd b (remainder a b))))
I've done the manual trace, and checked it with the several solutions available on the internet. I'm curious here to consolidate the moral of the exercise.
In gcd above, note that b is re-used three times in the function body, plus this function is recursive. This being what gives rise to 18 calls to remainder for normal order, in contrast to only 4 for applicative order.
So, it seems that when a function uses an argument more than once in its body, (and perhaps recursively! as here), then not evaluating it when the function is called (i.e. applicative order), will lead to redundant recomputation of the same thing.
Note that the question is at pains to point out that the special form if does not change its behaviour when normal order is used; that is, if will always run first; if this didn't happen, there could be no termination in this example.
I'm curious regarding delayed evaluation we are seeing here.
As a plus, it might allow us to handle infinite things, like streams.
As a minus, if we have a function like here, it can cause great inefficiency.
To fix the latter it seems like there are two conceptual options. One, wrap it in some data structure that caches its result to avoid recomputation. Two, selectively force the argument to realise when you know it will otherwise cause repeated recomputation.
The thing is, neither of those options seem very nice, because both represent additional "levers" the programmer must know how to use and choose when to use.
Is all of this dealt with more thoroughly later in the book?
Is there any straightforward consolidation of these points which would be worth making clear at this point (without perhaps going into all the detail that is to come).
The short answer is yes, this is covered extensively later in the book.
It is covered in most detail in Chapter 4 where we implement eval and apply, and so get the opportunity to modify their behaviour. For example Exercise 4.31 suggests the following syntax:
(define (f a (b lazy) c (d lazy-memo))
As you can see this identifies three different behaviours.
Parameters a and c have applicative order (they are evaluated before they are passed to the f).
b is normal or lazy, it is evaluated everytime it is used (but only if it is used).
d lazy but it's value it memoized so it is evaluated at most once.
Although this syntax is possible it isn't used. I think the philosopy is that the the language has an expected behaviour (applicative order) and that normal order is only used by default when necessary (e.g., the consequent and alternative of an if statement, and in creating streams). When it is necssary (or desirable) to have a parameter with normal evaluation then we can use delay and force, and if necessary memo-proc (e.g. Exercise 3.77).
So at this point the authors are introducing the ideas of normal and applicative order so that we have some familiarity with them by the time we get into the nitty gritty later on.
In a sense this a recurring theme, applicative order is probably more intuitive, but sometimes we need normal order. Recursive functions are simpler to write, but sometimes we need the performance of iterative functions. Programs where we can use the substition model are easier to reason about, but sometimes we need environmental model because we need mutable state.

Simple example of call-by-need

I'm trying to understand the theorem behind "call-by-need." I do understand the definition, but I'm a bit confused. I would like to see a simple example which shows how call-by-need works.
After reading some previous threads, I found out that Haskell uses this kind of evaluation. Are there any other programming languages which support this feature?
I read about the call-by-name of Scala, and I do understand that call-by-name and call-by-need are similar but different by the fact that call-by-need will keep the evaluated value. But I really would love to see a real-life example (it does not have to be in Haskell), which shows call-by-need.
The function
say_hello numbers = putStrLn "Hello!"
ignores its numbers argument. Under call-by-value semantics, even though an argument is ignored, the parameter at the function call site may need to be evaluated, perhaps because of side effects that the rest of the program depends on.
In Haskell, we might call say_hello as
say_hello [1..]
where [1..] is the infinite list of naturals. Under call-by-value semantics, the CPU would run off trying to build an infinite list and never get to the say_hello at all!
Haskell merely outputs
$ runghc cbn.hs
Hello!
For less dramatic examples, the first ten natural numbers are
ghci> take 10 [1..]
[1,2,3,4,5,6,7,8,9,10]
The first ten odds are
ghci> take 10 $ filter odd [1..]
[1,3,5,7,9,11,13,15,17,19]
Under call-by-need semantics, each value — even a conceptually infinite one as in the examples above — is evaluated only to the extent required and no more.
update: A simple example, as asked for:
ff 0 = 1
ff 1 = 1
ff n = go (ff (n-1))
where
go x = x + x
Under call-by-name, each invocation of go evaluates ff (n-1) twice, each for each appearance of x in its definition (because + is strict in both arguments, i.e. demands the values of the both of them).
Under call-by-need, go's argument is evaluated at most once. Specifically, here, x's value is found out only once, and reused for the second appearance of x in the expression x + x. If it weren't needed, x wouldn't be evaluated at all, just as with call-by-name.
Under call-by-value, go's argument is always evaluated exactly once, prior to entering the function's body, even if it isn't used anywhere in the function's body.
Here's my understanding of it, in the context of Haskell.
According to Wikipedia, "call by need is a memoized variant of call by name where, if the function argument is evaluated, that value is stored for subsequent uses."
Call by name:
take 10 . filter even $ [1..]
With one consumer the produced value disappears after being produced so it might as well be call-by-name.
Call by need:
import qualified Data.List.Ordered as O
h = 1 : map (2*) h <> map (3*) h <> map (5*) h
where
(<>) = O.union
The difference is, here the h list is reused by several consumers, at different tempos, so it is essential that the produced values are remembered. In a call-by-name language there'd be much replication of computational effort here because the computational expression for h would be substituted at each of its occurrences, causing separate calculation for each. In a call-by-need--capable language like Haskell the results of computing the elements of h are shared between each reference to h.
Another example is, most any data defined by fix is only possible under call-by-need. With call-by-value the most we can have is the Y combinator.
See: Sharing vs. non-sharing fixed-point combinator and its linked entries and comments (among them, this, and its links, like Can fold be used to create infinite lists?).

Why is there no generic operators for Common Lisp?

In CL, we have many operators to check for equality that depend on the data type: =, string-equal, char=, then equal, eql and whatnot, so on for other data types, and the same for comparison operators (edit don't forget to answer about these please :) do we have generic <, > etc ? can we make them work for another object ?)
However the language has mechanisms to make them generic, for example generics (defgeneric, defmethod) as described in Practical Common Lisp. I imagine very well the same == operator that will work on integers, strings and characters, at least !
There have been work in that direction: https://common-lisp.net/project/cdr/document/8/cleqcmp.html
I see this as a major frustration, and even a wall, for beginners (of which I am), specially we who come from other languages like python where we use one equality operator (==) for every equality check (with the help of objects to make it so on custom types).
I read a blog post (not a monad tutorial, great serie) today pointing this. The guy moved to Clojure, for other reasons too of course, where there is one (or two?) operators.
So why is it so ? Is there any good reasons ? I can't even find a third party library, not even on CL21. edit: cl21 has this sort of generic operators, of course.
On other SO questions I read about performance. First, this won't apply to the little code I'll write so I don't care, and if you think so do you have figures to make your point ?
edit: despite the tone of the answers, it looks like there is not ;) We discuss in comments.
Kent Pitman has written an interesting article that tackles this subject: The Best of intentions, EQUAL rights — and wrongs — in Lisp.
And also note that EQUAL does work on integers, strings and characters. EQUALP also works for lists, vectors and hash tables an other Common Lisp types but objects… For some definition of work. The note at the end of the EQUALP page has a nice answer to your question:
Object equality is not a concept for which there is a uniquely determined correct algorithm. The appropriateness of an equality predicate can be judged only in the context of the needs of some particular program. Although these functions take any type of argument and their names sound very generic, equal and equalp are not appropriate for every application.
Specifically note that there is a trick in my last “works” definition.
A newer library adds generic interfaces to standard Common Lisp functions: https://github.com/alex-gutev/generic-cl/
GENERIC-CL provides a generic function wrapper over various functions in the Common Lisp standard, such as equality predicates and sequence operations. The goal of the wrapper is to provide a standard interface to common operations, such as testing for the equality of two objects, which is extensible to user-defined types.
It does this for equality, comparison, arithmetic, objects, iterators, sequences, hash-tables, math functions,…
So one can define his own + operator for example.
Yes we have! eq works with all values and it works all the time. It does not depend on the data type at all. It is exactly what you are looking for. It's like the is operator in python. It must be exactly what you were looking for? All the other ones agree with eq when it's t, however they tend to be t for totally different values that have various levels of similarities.
(defparameter *a* "this is a string")
(defparameter *b* *a*)
(defparameter *c* "this is a string")
(defparameter *d* "THIS IS A STRING")
All of these are equalp since they contain the same meaning. equalp is perhaps the sloppiest of equal functions. I don't think 2 and 2.0 are the same, but equalp does. In my mind 2 is 2 while 2.0 is somewhere between 1.95 and 2.04. you see they are not the same.
equal understands me. (equal *c* *d*) is definitely nil and that is good. However it returns t for (equal *a* *c*) as well. Both are arrays of characters and each character are the same value, however the two strings are not the same object. they just happen to look the same.
Notice I'm using string here for every single one of them. We have 4 equal functions that tells you if two values have something in common, but only eq tells you if they are the same.
None of these are type specific. They work on all types, however they are not generics since they were around long before that was added in the language. You could perhaps make 3-4 generic equal functions but would they really be any better than the ones we already have?
Fortunately CL21 introduces (more) generic operators, particularly for sequences it defines length, append, setf, first, rest, subseq, replace, take, drop, fill, take-while, drop-while, last, butlast, find-if, search, remove-if, delete-if, reverse, reduce, sort, split, join, remove-duplicates, every, some, map, sum (and some more). Unfortunately the doc isn't great, it's best to look at the sources. Those should work at least for strings, lists, vectors and define methods of the new abstract-sequence.
see also
https://github.com/cl21/cl21/wiki
https://lispcookbook.github.io/cl-cookbook/cl21.html

Correct way of writing recursive functions in CLP(R) with Prolog

I am very confused in how CLP works in Prolog. Not only do I find it hard to see the benefits (I do see it in specific cases but find it hard to generalise those) but more importantly, I can hardly make up how to correctly write a recursive predicate. Which of the following would be the correct form in a CLP(R) way?
factorial(0, 1).
factorial(N, F):- {
N > 0,
PrevN = N - 1,
factorial(PrevN, NewF),
F = N * NewF}.
or
factorial(0, 1).
factorial(N, F):- {
N > 0,
PrevN = N - 1,
F = N * NewF},
factorial(PrevN, NewF).
In other words, I am not sure when I should write code outside the constraints. To me, the first case would seem more logical, because PrevN and NewF belong to the constraints. But if that's true, I am curious to see in which cases it is useful to use predicates outside the constraints in a recursive function.
There are several overlapping questions and issues in your post, probably too many to coherently address to your complete satisfaction in a single post.
Therefore, I would like to state a few general principles first, and then—based on that—make a few specific comments about the code you posted.
First, I would like to address what I think is most important in your case:
LP &subseteq; CLP
This means simply that CLP can be regarded as a superset of logic programming (LP). Whether it is to be considered a proper superset or if, in fact, it makes even more sense to regard them as denoting the same concept is somewhat debatable. In my personal view, logic programming without constraints is much harder to understand and much less usable than with constraints. Given that also even the very first Prolog systems had a constraint like dif/2 and also that essential built-in predicates like (=)/2 perfectly fit the notion of "constraint", the boundaries, if they exist at all, seem at least somewhat artificial to me, suggesting that:
LP &approx; CLP
Be that as it may, the key concept when working with CLP (of any kind) is that the constraints are available as predicates, and used in Prolog programs like all other predicates.
Therefore, whether you have the goal factorial(N, F) or { N > 0 } is, at least in principle, the same concept: Both mean that something holds.
Note the syntax: The CLP(&Rscr;) constraints have the form { C }, which is {}(C) in prefix notation.
Note that the goal factorial(N, F) is not a CLP(&Rscr;) constraint! Neither is the following:
?- { factorial(N, F) }.
ERROR: Unhandled exception: type_error({factorial(_3958,_3960)},...)
Thus, { factorial(N, F) } is not a CLP(&Rscr;) constraint either!
Your first example therefore cannot work for this reason alone already. (In addition, you have a syntax error in the clause head: factorial (, so it also does not compile at all.)
When you learn working with a constraint solver, check out the predicates it provides. For example, CLP(&Rscr;) provides {}/1 and a few other predicates, and has a dedicated syntax for stating relations that hold about floating point numbers (in this case).
Other constraint solver provide their own predicates for describing the entities of their respective domains. For example, CLP(FD) provides (#=)/2 and a few other predicates to reason about integers. dif/2 lets you reason about any Prolog term. And so on.
From the programmer's perspective, this is exactly the same as using any other predicate of your Prolog system, whether it is built-in or stems from a library. In principle, it's all the same:
A goal like list_length(Ls, L) can be read as: "The length of the list Ls is L."
A goal like { X = A + B } can be read as: The number X is equal to the sum of A and B. For example, if you are using CLP(Q), it is clear that we are talking about rational numbers in this case.
In your second example, the body of the clause is a conjunction of the form (A, B), where A is a CLP(&Rscr;) constraint, and B is a goal of the form factorial(PrevN, NewF).
The point is: The CLP(&Rscr;) constraint is also a goal! Check it out:
?- write_canonical({a,b,c}).
{','(a,','(b,c))}
true.
So, you are simply using {}/1 from library(clpr), which is one of the predicates it exports.
You are right that PrevN and NewF belong to the constraints. However, factorial(PrevN, NewF) is not part of the mini-language that CLP(&Rscr;) implements for reasoning over floating point numbers. Therefore, you cannot pull this goal into the CLP(&Rscr;)-specific part.
From a programmer's perspective, a major attraction of CLP is that it blends in completely seamlessly into "normal" logic programming, to the point that it can in fact hardly be distinguished at all from it: The constraints are simply predicates, and written down like all other goals.
Whether you label a library predicate a "constraint" or not hardly makes any difference: All predicates can be regarded as constraints, since they can only constrain answers, never relax them.
Note that both examples you post are recursive! That's perfectly OK. In fact, recursive predicates will likely be the majority of situations in which you use constraints in the future.
However, for the concrete case of factorial, your Prolog system's CLP(FD) constraints are likely a better fit, since they are completely dedicated to reasoning about integers.

A Functional-Imperative Hybrid

Pure functional programming languages do not allow mutable data, but some computations are more naturally/intuitively expressed in an imperative way -- or an imperative version of an algorithm may be more efficient. I am aware that most functional languages are not pure, and let you assign/reassign variables and do imperative things but generally discourage it.
My question is, why not allow local state to be manipulated in local variables, but require that functions can only access their own locals and global constants (or just constants defined in an outer scope)? That way, all functions maintain referential transparency (they always give the same return value given the same arguments), but within a function, a computation can be expressed in imperative terms (like, say, a while loop).
IO and such could still be accomplished in the normal functional ways - through monads or passing around a "world" or "universe" token.
My question is, why not allow local state to be manipulated in local variables, but require that functions can only access their own locals and global constants (or just constants defined in an outer scope)?
Good question. I think the answer is that mutable locals are of limited practical value but mutable heap-allocated data structures (primarily arrays) are enormously valuable and form the backbone of many important collections including efficient stacks, queues, sets and dictionaries. So restricting mutation to locals only would not give an otherwise purely functional language any of the important benefits of mutation.
On a related note, communicating sequential processes exchanging purely functional data structures offer many of the benefits of both worlds because the sequential processes can use mutation internally, e.g. mutable message queues are ~10x faster than any purely functional queues. For example, this is idiomatic in F# where the code in a MailboxProcessor uses mutable data structures but the messages communicated between them are immutable.
Sorting is a good case study in this context. Sedgewick's quicksort in C is short and simple and hundreds of times faster than the fastest purely functional sort in any language. The reason is that quicksort mutates the array in-place. Mutable locals would not help. Same story for most graph algorithms.
The short answer is: there are systems to allow what you want. For example, you can do it using the ST monad in Haskell (as referenced in the comments).
The ST monad approach is from Haskell's Control.Monad.ST. Code written in the ST monad can use references (STRef) where convenient. The nice part is that you can even use the results of the ST monad in pure code, as it is essentially self-contained (this is basically what you were wanting in the question).
The proof of this self-contained property is done through the type-system. The ST monad carries a state-thread parameter, usually denoted with a type-variable s. When you have such a computation you'll have monadic result, with a type like:
foo :: ST s Int
To actually turn this into a pure result, you have to use
runST :: (forall s . ST s a) -> a
You can read this type like: give me a computation where the s type parameter doesn't matter, and I can give you back the result of the computation, without the ST baggage. This basically keeps the mutable ST variables from escaping, as they would carry the s with them, which would be caught by the type system.
This can be used to good effect on pure structures that are implemented with underlying mutable structures (like the vector package). One can cast off the immutability for a limited time to do something that mutates the underlying array in place. For example, one could combine the immutable Vector with an impure algorithms package to keep the most of the performance characteristics of the in place sorting algorithms and still get purity.
In this case it would look something like:
pureSort :: Ord a => Vector a -> Vector a
pureSort vector = runST $ do
mutableVector <- thaw vector
sort mutableVector
freeze mutableVector
The thaw and freeze functions are linear-time copying, but this won't disrupt the overall O(n lg n) running time. You can even use unsafeFreeze to avoid another linear traversal, as the mutable vector isn't used again.
"Pure functional programming languages do not allow mutable data" ... actually it does, you just simply have to recognize where it lies hidden and see it for what it is.
Mutability is where two things have the same name and mutually exclusive times of existence so that they may be treated as "the same thing at different times". But as every Zen philosopher knows, there is no such thing as "same thing at different times". Everything ceases to exist in an instant and is inherited by its successor in possibly changed form, in a (possibly) uncountably-infinite succession of instants.
In the lambda calculus, mutability thus takes the form illustrated by the following example: (λx (λx f(x)) (x+1)) (x+1), which may also be rendered as "let x = x + 1 in let x = x + 1 in f(x)" or just "x = x + 1, x = x + 1, f(x)" in a more C-like notation.
In other words, "name clash" of the "lambda calculus" is actually "update" of imperative programming, in disguise. They are one and the same - in the eyes of the Zen (who is always right).
So, let's refer to each instant and state of the variable as the Zen Scope of an object. One ordinary scope with a mutable object equals many Zen Scopes with constant, unmutable objects that either get initialized if they are the first, or inherit from their predecessor if they are not.
When people say "mutability" they're misidentifying and confusing the issue. Mutability (as we've just seen here) is a complete red herring. What they actually mean (even unbeknonwst to themselves) is infinite mutability; i.e. the kind which occurs in cyclic control flow structures. In other words, what they're actually referring to - as being specifically "imperative" and not "functional" - is not mutability at all, but cyclic control flow structures along with the infinite nesting of Zen Scopes that this entails.
The key feature that lies absent in the lambda calculus is, thus, seen not as something that may be remedied by the inclusion of an overwrought and overthought "solution" like monads (though that doesn't exclude the possibility of it getting the job done) but as infinitary terms.
A control flow structure is the wrapping of an unwrapped (possibility infinite) decision tree structure. Branches may re-converge. In the corresponding unwrapped structure, they appear as replicated, but separate, branches or subtrees. Goto's are direct links to subtrees. A goto or branch that back-branches to an earlier part of a control flow structure (the very genesis of the "cycling" of a cyclic control flow structure) is a link to an identically-shaped copy of the entire structure being linked to. Corresponding to each structure is its Universally Unrolled decision tree.
More precisely, we may think of a control-flow structure as a statement that precedes an actual expression that conditions the value of that expression. The archetypical case in point is Landin's original case, itself (in his 1960's paper, where he tried to lambda-ize imperative languages): let x = 1 in f(x). The "x = 1" part is the statement, the "f(x)" is the value being conditioned by the statement. In C-like form, we could write this as x = 1, f(x).
More generally, corresponding to each statement S and expression Q is an expression S[Q] which represents the result Q after S is applied. Thus, (x = 1)[f(x)] is just λx f(x) (x + 1). The S wraps around the Q. If S contains cyclic control flow structures, the wrapping will be infinitary.
When Landin tried to work out this strategy, he hit a hard wall when he got to the while loop and went "Oops. Never mind." and fell back into what become an overwrought and overthought solution, while this simple (and in retrospect, obvious) answer eluded his notice.
A while loop "while (x < n) x = x + 1;" - which has the "infinite mutability" mentioned above, may itself be treated as an infinitary wrapper, "if (x < n) { x = x + 1; if (x < 1) { x = x + 1; if (x < 1) { x = x + 1; ... } } }". So, when it wraps around an expression Q, the result is (in C-like notation) "x < n? (x = x + 1, x < n? (x = x + 1, x < n? (x = x + 1, ...): Q): Q): Q", which may be directly rendered in lambda form as "x < n? (λx x < n (λx x < n? (λx·...) (x + 1): Q) (x + 1): Q) (x + 1): Q". This shows directly the connection between cyclicity and infinitariness.
This is an infinitary expression that, despite being infinite, has only a finite number of distinct subexpressions. Just as we can think of there being a Universally Unrolled form to this expression - which is similar to what's shown above (an infinite decision tree) - we can also think of there being a Maximally Rolled form, which could be obtained by labelling each of the distinct subexpressions and referring to the labels, instead. The key subexpressions would then be:
A: x < n? goto B: Q
B: x = x + 1, goto A
The subexpression labels, here, are "A:" and "B:", while the references to the subexpressions so labelled as "goto A" and "goto B", respectively. So, by magic, the very essence of Imperativitity emerges directly out of the infinitary lambda calculus, without any need to posit it separately or anew.
This way of viewing things applies even down to the level of binary files. Every interpretation of every byte (whether it be a part of an opcode of an instruction that starts 0, 1, 2 or more bytes back, or as part of a data structure) can be treated as being there in tandem, so that the binary file is a rolling up of a much larger universally unrolled structure whose physical byte code representation overlaps extensively with itself.
Thus, emerges the imperative programming language paradigm automatically out of the pure lambda calculus, itself, when the calculus is extended to include infinitary terms. The control flow structure is directly embodied in the very structure of the infinitary expression, itself; and thus requires no additional hacks (like Landin's or later descendants, like monads) - as it's already there.
This synthesis of the imperative and functional paradigms arose in the late 1980's via the USENET, but has not (yet) been published. Part of it was already implicit in the treatment (dating from around the same time) given to languages, like Prolog-II, and the much earlier treatment of cyclic recursive structures by infinitary expressions by Irene Guessarian LNCS 99 "Algebraic Semantics".
Now, earlier I said that the magma-based formulation might get you to the same place, or to an approximation thereof. I believe there is a kind of universal representation theorem of some sort, which asserts that the infinitary based formulation provides a purely syntactic representation, and that the semantics that arise from the monad-based representation factors through this as "monad-based semantics" = "infinitary lambda calculus" + "semantics of infinitary languages".
Likewise, we may think of the "Q" expressions above as being continuations; so there may also be a universal representation theorem for continuation semantics, which similarly rolls this formulation back into the infinitary lambda calculus.
At this point, I've said nothing about non-rational infinitary terms (i.e. infinitary terms which possess an infinite number of distinct subterms and no finite Minimal Rolling) - particularly in relation to interprocedural control flow semantics. Rational terms suffice to account for loops and branches, and so provide a platform for intraprocedural control flow semantics; but not as much so for the call-return semantics that are the essential core element of interprocedural control flow semantics, if you consider subprograms to be directly represented as embellished, glorified macros.
There may be something similar to the Chomsky hierarchy for infinitary term languages; so that type 3 corresponds to rational terms, type 2 to "algebraic terms" (those that can be rolled up into a finite set of "goto" references and "macro" definitions), and type 0 for "transcendental terms". That is, for me, an unresolved loose end, as well.

Resources