Check if a point lies on a line vector - vector

To get another point (r) on the line that passes through point p in the direction v we can use the following formula, and substitute any value for a:
To test if r is on the line, we must only find a value for a that satisfies. In my current implementation, I check if a is the same for each component of the vectors by reorganizing the equation for r to:
In code terms, this looks like the following:
boolean isPointOnLine(Vector2f r, Vector2f p, Vector2f v) {
return (p.x - r.x) / v.x == (p.y - r.y) / v.y;
}
However, this method does not work: If any component of v is 0, the fraction will evaluate to infinity. Hence we get an incorrect result.
How do I check if r is on the line correctly?

In 3D you do the following:
If a point r=(x,y,z) is on the line with p=(px,py,pz) another point on the line and v=(vx,vy,vz) the direction calculate the following
CROSS(v,r-p)=0
or by component
(py-ry)*vz - (pz-rz)*vy==0
(pz-rz)*vx - (px-rx)*vz==0
(px-rx)*vy - (py-ry)*vx==0
For the 2D version, make all z-components zero
(px-rx)*vy - (py-ry)*vx == 0
No division needed, no edge cases and simple fast multiplication.
Of course due to round-off the result will be never be exactly zero. So what you need is a formula for the minimum distance, and a check if the distance is within some tolerance
d = ((px-rx)*vy-(py-ry)*vx)/sqrt(vx*vx+vy*vy) <= tol

It turns out that the equation I had was in fact correct, the division by 0 is just an edge case that must be handled beforehand. The final function looks like this:
boolean isPointOnLine(Vector2f r, Vector2f p, Vector2f v) {
if (v.x == 0) {
return r.x == p.x;
}
if (v.y == 0) {
return r.y == p.y;
}
return (p.x - r.x) / v.x == (p.y - r.y) / v.y;
}

Related

Checking for a counterexample to a conjecture on even deficient-perfect numbers using Pari-GP

I am trying to check for counterexamples to the conjecture stated in this MSE question, using the Pari-GP interpreter of Sage Cell Server.
I reproduce the statement of the conjecture here: If N > 8 is an even deficient-perfect number and Q = N/(2N - sigma(N)), then Q is prime.
Here, sigma(N) is the classical sum of divisors of N.
I am using the following code:
for(x=9, 1000, if(((Mod(x,(2*x - sigma(x))) == 0)) && ((fromdigits(Vecrev(digits(x / (2*x - sigma(x)))))) == (x / (2*x - sigma(x)))) && !(isprime((x / (2*x - sigma(x))))), print(x,factor(x))))
However, the Pari-GP interpreter of Sage Cell Server would not accept it, and instead gives the following error message:
*** at top-level: for(x=9,1000,if(((Mod(x,(2*x-sigma(x)))==0))&&
*** ^----------------------------
*** Mod: impossible inverse in %: 0.
What am I doing wrong?
Here's a better implementation of your algorithm
{
forfactored(X = 9, 10^7,
my (s = sigma(X), t = 2*X[1] - s);
if (t <= 0, next);
my ([q, r] = divrem(X[1], t));
if (r == 0 && fromdigits(Vecrev(digits(q))) == q && !ispseudoprime(q),
print(X)))
}
It's a bit more readable but most importantly it avoids factoring the same x over and over again: each time you write sigma(x), we need to factor x (the interpreter is not clever enough to compute subexpressions once). In fact, it doesn't perform a single factorization, through the use of forfactored which performs a sieve instead (and the variable X contains [x, factor(x)]). This is about 3 times faster than the original implementation in this range.
I let it run to 10^9 (about 10 minutes), there was no further counterexample.
I got it to work myself.
Here is the code that I used:
for(x=9, 10000000, if((2*x > sigma(x)) && ((Mod(x,(2*x - sigma(x))) == 0)) && ((fromdigits(Vecrev(digits(x / (2*x - sigma(x)))))) == (x / (2*x - sigma(x)))) && !(isprime((x / (2*x - sigma(x))))), print(x,factor(x))))
The search returns the odd counterexample N = 9018009, which is expected.
It did not return any even counterexamples, in the specified range.

Calculate bessel function in MATLAB using Jm+1=2mj(m) -j(m-1) formula

I tried to implement bessel function using that formula, this is the code:
function result=Bessel(num);
if num==0
result=bessel(0,1);
elseif num==1
result=bessel(1,1);
else
result=2*(num-1)*Bessel(num-1)-Bessel(num-2);
end;
But if I use MATLAB's bessel function to compare it with this one, I get too high different values.
For example if I type Bessel(20) it gives me 3.1689e+005 as result, if instead I type bessel(20,1) it gives me 3.8735e-025 , a totally different result.
such recurrence relations are nice in mathematics but numerically unstable when implementing algorithms using limited precision representations of floating-point numbers.
Consider the following comparison:
x = 0:20;
y1 = arrayfun(#(n)besselj(n,1), x); %# builtin function
y2 = arrayfun(#Bessel, x); %# your function
semilogy(x,y1, x,y2), grid on
legend('besselj','Bessel')
title('J_\nu(z)'), xlabel('\nu'), ylabel('log scale')
So you can see how the computed values start to differ significantly after 9.
According to MATLAB:
BESSELJ uses a MEX interface to a Fortran library by D. E. Amos.
and gives the following as references for their implementation:
D. E. Amos, "A subroutine package for Bessel functions of a complex
argument and nonnegative order", Sandia National Laboratory Report,
SAND85-1018, May, 1985.
D. E. Amos, "A portable package for Bessel functions of a complex
argument and nonnegative order", Trans. Math. Software, 1986.
The forward recurrence relation you are using is not stable. To see why, consider that the values of BesselJ(n,x) become smaller and smaller by about a factor 1/2n. You can see this by looking at the first term of the Taylor series for J.
So, what you're doing is subtracting a large number from a multiple of a somewhat smaller number to get an even smaller number. Numerically, that's not going to work well.
Look at it this way. We know the result is of the order of 10^-25. You start out with numbers that are of the order of 1. So in order to get even one accurate digit out of this, we have to know the first two numbers with at least 25 digits precision. We clearly don't, and the recurrence actually diverges.
Using the same recurrence relation to go backwards, from high orders to low orders, is stable. When you start with correct values for J(20,1) and J(19,1), you can calculate all orders down to 0 with full accuracy as well. Why does this work? Because now the numbers are getting larger in each step. You're subtracting a very small number from an exact multiple of a larger number to get an even larger number.
You can just modify the code below which is for the Spherical bessel function. It is well tested and works for all arguments and order range. I am sorry it is in C#
public static Complex bessel(int n, Complex z)
{
if (n == 0) return sin(z) / z;
if (n == 1) return sin(z) / (z * z) - cos(z) / z;
if (n <= System.Math.Abs(z.real))
{
Complex h0 = bessel(0, z);
Complex h1 = bessel(1, z);
Complex ret = 0;
for (int i = 2; i <= n; i++)
{
ret = (2 * i - 1) / z * h1 - h0;
h0 = h1;
h1 = ret;
if (double.IsInfinity(ret.real) || double.IsInfinity(ret.imag)) return double.PositiveInfinity;
}
return ret;
}
else
{
double u = 2.0 * abs(z.real) / (2 * n + 1);
double a = 0.1;
double b = 0.175;
int v = n - (int)System.Math.Ceiling((System.Math.Log(0.5e-16 * (a + b * u * (2 - System.Math.Pow(u, 2)) / (1 - System.Math.Pow(u, 2))), 2)));
Complex ret = 0;
while (v > n - 1)
{
ret = z / (2 * v + 1.0 - z * ret);
v = v - 1;
}
Complex jnM1 = ret;
while (v > 0)
{
ret = z / (2 * v + 1.0 - z * ret);
jnM1 = jnM1 * ret;
v = v - 1;
}
return jnM1 * sin(z) / z;
}
}

Math Problem: Scale a graph so that it matches another

I have 2 tables of values and want to scale the first one so that it matches the 2nd one as good as possible. Both have the same length. If both are drawn as graphs in a diagram they should be as close to each other as possible. But I do not want quadratic, but simple linear weights.
My problem is, that I have no idea how to actually compute the best scaling factor because of the Abs function.
Some pseudocode:
//given:
float[] table1= ...;
float[] table2= ...;
//wanted:
float factor= ???; // I have no idea how to compute this
float remainingDifference=0;
for(int i=0; i<length; i++)
{
float scaledValue=table1[i] * factor;
//Sum up the differences. I use the Abs function because negative differences are differences too.
remainingDifference += Abs(scaledValue - table2[i]);
}
I want to compute the scaling factor so that the remainingDifference is minimal.
Simple linear weights is hard like you said.
a_n = first sequence
b_n = second sequence
c = scaling factor
Your residual function is (sums are from i=1 to N, the number of points):
SUM( |a_i - c*b_i| )
Taking the derivative with respect to c yields:
d/dc SUM( |a_i - c*b_i| )
= SUM( b_i * (a_i - c*b_i)/|a_i - c*b_i| )
Setting to 0 and solving for c is hard. I don't think there's an analytic way of doing that. You may want to try https://math.stackexchange.com/ to see if they have any bright ideas.
However if you work with quadratic weights, it becomes significantly simpler:
d/dc SUM( (a_i - c*b_i)^2 )
= SUM( 2*(a_i - c*b_i)* -c )
= -2c * SUM( a_i - c*b_i ) = 0
=> SUM(a_i) - c*SUM(b_i) = 0
=> c = SUM(a_i) / SUM(b_i)
I strongly suggest the latter approach if you can.
I would suggest trying some sort of variant on Newton Raphson.
Construct a function Diff(k) that looks at the difference in area between your two graphs between fixed markers A and B.
mathematically I guess it would be integral ( x = A to B ){ f(x) - k * g(x) }dx
anyway realistically you could just subtract the values,
like if you range from X = -10 to 10, and you have a data point for f(i) and g(i) on each integer i in [-10, 10], (ie 21 datapoints )
then you just sum( i = -10 to 10 ){ f(i) - k * g(i) }
basically you would expect this function to look like a parabola -- there will be an optimum k, and deviating slightly from it in either direction will increase the overall area difference
and the bigger the difference, you would expect the bigger the gap
so, this should be a pretty smooth function ( if you have a lot of data points )
so you want to minimise Diff(k)
so you want to find whether derivative ie d/dk Diff(k) = 0
so just do Newton Raphson on this new function D'(k)
kick it off at k=1 and it should zone in on a solution pretty fast
that's probably going to give you an optimal computation time
if you want something simpler, just start with some k1 and k2 that are either side of 0
so say Diff(1.5) = -3 and Diff(2.9) = 7
so then you would pick a k say 3/10 of the way (10 = 7 - -3) between 1.5 and 2.9
and depending on whether that yields a positive or negative value, use it as the new k1 or k2, rinse and repeat
In case anyone stumbles upon this in the future, here is some code (c++)
The trick is to first sort the samples by the scaling factor that would result in the best fit for the 2 samples each. Then start at both ends iterate to the factor that results in the minimum absolute deviation (L1-norm).
Everything except for the sort has a linear run time => Runtime is O(n*log n)
/*
* Find x so that the sum over std::abs(pA[i]-pB[i]*x) from i=0 to (n-1) is minimal
* Then return x
*/
float linearFit(const float* pA, const float* pB, int n)
{
/*
* Algebraic solution is not possible for the general case
* => iterative algorithm
*/
if (n < 0)
throw "linearFit has invalid argument: expected n >= 0";
if (n == 0)
return 0;//If there is nothing to fit, any factor is a perfect fit (sum is always 0)
if (n == 1)
return pA[0] / pB[0];//return x so that pA[0] = pB[0]*x
//If you don't like this , use a std::vector :P
std::unique_ptr<float[]> targetValues_(new float[n]);
std::unique_ptr<int[]> indices_(new int[n]);
//Get proper pointers:
float* targetValues = targetValues_.get();//The value for x that would cause pA[i] = pB[i]*x
int* indices = indices_.get(); //Indices of useful (not nan and not infinity) target values
//The code above guarantees n > 1, so it is safe to get these pointers:
int m = 0;//Number of useful target values
for (int i = 0; i < n; i++)
{
float a = pA[i];
float b = pB[i];
float targetValue = a / b;
targetValues[i] = targetValue;
if (std::isfinite(targetValue))
{
indices[m++] = i;
}
}
if (m <= 0)
return 0;
if (m == 1)
return targetValues[indices[0]];//If there is only one target value, then it has to be the best one.
//sort the indices by target value
std::sort(indices, indices + m, [&](int ia, int ib){
return targetValues[ia] < targetValues[ib];
});
//Start from the extremes and meet at the optimal solution somewhere in the middle:
int l = 0;
int r = m - 1;
// m >= 2 is guaranteed => l > r
float penaltyFactorL = std::abs(pB[indices[l]]);
float penaltyFactorR = std::abs(pB[indices[r]]);
while (l < r)
{
if (l == r - 1 && penaltyFactorL == penaltyFactorR)
{
break;
}
if (penaltyFactorL < penaltyFactorR)
{
l++;
if (l < r)
{
penaltyFactorL += std::abs(pB[indices[l]]);
}
}
else
{
r--;
if (l < r)
{
penaltyFactorR += std::abs(pB[indices[r]]);
}
}
}
//return the best target value
if (l == r)
return targetValues[indices[l]];
else
return (targetValues[indices[l]] + targetValues[indices[r]])*0.5;
}

How to calculate both positive and negative angle between two lines?

There is a very handy set of 2d geometry utilities here.
The angleBetweenLines has a problem, though. The result is always positive. I need to detect both positive and negative angles, so if one line is 15 degrees "above" or "below" the other line, the shape obviously looks different.
The configuration I have is that one line remains stationary, while the other line rotates, and I need to understand what direction it is rotating in, by comparing it with the stationary line.
EDIT: in response to swestrup's comment below, the situation is actually that I have a single line, and I record its starting position. The line then rotates from its starting position, and I need to calculate the angle from its starting position to current position. E.g if it has rotated clockwise, it is positive rotation; if counterclockwise, then negative. (Or vice versa.)
How to improve the algorithm so it returns the angle as both positive or negative depending on how the lines are positioned?
Here's the implementation of brainjam's suggestion. (It works with my constraints that the difference between the lines is guaranteed to be small enough that there's no need to normalize anything.)
CGFloat angleBetweenLinesInRad(CGPoint line1Start, CGPoint line1End, CGPoint line2Start, CGPoint line2End) {
CGFloat a = line1End.x - line1Start.x;
CGFloat b = line1End.y - line1Start.y;
CGFloat c = line2End.x - line2Start.x;
CGFloat d = line2End.y - line2Start.y;
CGFloat atanA = atan2(a, b);
CGFloat atanB = atan2(c, d);
return atanA - atanB;
}
I like that it's concise. Would the vector version be more concise?
#duffymo's answer is correct, but if you don't want to implement cross-product, you can use the atan2 function. This returns an angle between -π and π, and you can use it on each of the lines (or more precisely the vectors representing the lines).
If you get an angle θ for the first (stationary line), you'll have to normalize the angle φ for the second line to be between θ-π and θ+π (by adding ±2π). The angle between the two lines will then be φ-θ.
This is an easy problem involving 2D vectors. The sine of the angle between two vectors is related to the cross-product between the two vectors. And "above" or "below" is determined by the sign of the vector that's produced by the cross-product: if you cross two vectors A and B, and the cross-product produced is positive, then A is "below" B; if it's negative, A is "above" B. See Mathworld for details.
Here's how I might code it in Java:
package cruft;
import java.text.DecimalFormat;
import java.text.NumberFormat;
/**
* VectorUtils
* User: Michael
* Date: Apr 18, 2010
* Time: 4:12:45 PM
*/
public class VectorUtils
{
private static final int DEFAULT_DIMENSIONS = 3;
private static final NumberFormat DEFAULT_FORMAT = new DecimalFormat("0.###");
public static void main(String[] args)
{
double [] a = { 1.0, 0.0, 0.0 };
double [] b = { 0.0, 1.0, 0.0 };
double [] c = VectorUtils.crossProduct(a, b);
System.out.println(VectorUtils.toString(c));
}
public static double [] crossProduct(double [] a, double [] b)
{
assert ((a != null) && (a.length >= DEFAULT_DIMENSIONS ) && (b != null) && (b.length >= DEFAULT_DIMENSIONS));
double [] c = new double[DEFAULT_DIMENSIONS];
c[0] = +a[1]*b[2] - a[2]*b[1];
c[1] = +a[2]*b[0] - a[0]*b[2];
c[2] = +a[0]*b[1] - a[1]*b[0];
return c;
}
public static String toString(double [] a)
{
StringBuilder builder = new StringBuilder(128);
builder.append("{ ");
for (double c : a)
{
builder.append(DEFAULT_FORMAT.format(c)).append(' ');
}
builder.append("}");
return builder.toString();
}
}
Check the sign of the 3rd component. If it's positive, A is "below" B; if it's negative, A is "above" B - as long as the two vectors are in the two quadrants to the right of the y-axis. Obviously, if they're both in the two quadrants to the left of the y-axis the reverse is true.
You need to think about your intuitive notions of "above" and "below". What if A is in the first quadrant (0 <= θ <= 90) and B is in the second quadrant (90 <= θ <= 180)? "Above" and "below" lose their meaning.
The line then rotates from its
starting position, and I need to
calculate the angle from its starting
position to current position. E.g if
it has rotated clockwise, it is
positive rotation; if
counterclockwise, then negative. (Or
vice versa.)
This is exactly what the cross-product is for. The sign of the 3rd component is positive for counter-clockwise and negative for clockwise (as you look down at the plane of rotation).
One 'quick and dirty' method you can use is to introduce a third reference line R. So, given two lines A and B, calculate the angles between A and R and then B and R, and subtract them.
This does about twice as much calculation as is actually necessary, but is easy to explain and debug.
// Considering two vectors CA and BA
// Computing angle from CA to BA
// Thanks to code shared by Jaanus, but atan2(y,x) is used wrongly.
float getAngleBetweenVectorsWithSignInDeg(Point2f C, Point2f A, Point2f B)
{
float a = A.x - C.x;
float b = A.y - C.y;
float c = B.x - C.x;
float d = B.y - C.y;
float angleA = atan2(b, a);
float angleB = atan2(d, c);
cout << "angleA: " << angleA << "rad, " << angleA * 180 / M_PI << " deg" << endl;
cout << "angleB: " << angleB << "rad, " << angleB * 180 / M_PI << " deg" << endl;
float rotationAngleRad = angleB - angleA;
float thetaDeg = rotationAngleRad * 180.0f / M_PI;
return thetaDeg;
}
That function is working in RADS
There are 2pi RADS in a full circle (360 degrees)
Thus I believe the answear you are looking for is simply the returned value - 2pi
If you are asking to have that one function return both values at the same time, then you are asking to break the language, a function can only return a single value. You could pass it two pointers that it can use to set the value of so that the change can persist after the frunction ends and your program can continue to work. But not really a sensible way of solving this problem.
Edit
Just noticed that the function actually converts the Rads to Degrees as it returns the value. But the same principle will work.

2d game : fire at a moving target by predicting intersection of projectile and unit

Okay, this all takes place in a nice and simple 2D world... :)
Suppose I have a static object A at position Apos, and a linearly moving object B at Bpos with bVelocity, and an ammo round with velocity Avelocity...
How would I find out the angle that A has to shoot, to hit B, taking into account B's linear velocity and the speed of A's ammo ?
Right now the aim's at the current position of the object, which means that by the time my projectile gets there the unit has moved on to safer positions :)
I wrote an aiming subroutine for xtank a while back. I'll try to lay out how I did it.
Disclaimer: I may have made one or more silly mistakes anywhere in here; I'm just trying to reconstruct the reasoning with my rusty math skills. However, I'll cut to the chase first, since this is a programming Q&A instead of a math class :-)
How to do it
It boils down to solving a quadratic equation of the form:
a * sqr(x) + b * x + c == 0
Note that by sqr I mean square, as opposed to square root. Use the following values:
a := sqr(target.velocityX) + sqr(target.velocityY) - sqr(projectile_speed)
b := 2 * (target.velocityX * (target.startX - cannon.X)
+ target.velocityY * (target.startY - cannon.Y))
c := sqr(target.startX - cannon.X) + sqr(target.startY - cannon.Y)
Now we can look at the discriminant to determine if we have a possible solution.
disc := sqr(b) - 4 * a * c
If the discriminant is less than 0, forget about hitting your target -- your projectile can never get there in time. Otherwise, look at two candidate solutions:
t1 := (-b + sqrt(disc)) / (2 * a)
t2 := (-b - sqrt(disc)) / (2 * a)
Note that if disc == 0 then t1 and t2 are equal.
If there are no other considerations such as intervening obstacles, simply choose the smaller positive value. (Negative t values would require firing backward in time to use!)
Substitute the chosen t value back into the target's position equations to get the coordinates of the leading point you should be aiming at:
aim.X := t * target.velocityX + target.startX
aim.Y := t * target.velocityY + target.startY
Derivation
At time T, the projectile must be a (Euclidean) distance from the cannon equal to the elapsed time multiplied by the projectile speed. This gives an equation for a circle, parametric in elapsed time.
sqr(projectile.X - cannon.X) + sqr(projectile.Y - cannon.Y)
== sqr(t * projectile_speed)
Similarly, at time T, the target has moved along its vector by time multiplied by its velocity:
target.X == t * target.velocityX + target.startX
target.Y == t * target.velocityY + target.startY
The projectile can hit the target when its distance from the cannon matches the projectile's distance.
sqr(projectile.X - cannon.X) + sqr(projectile.Y - cannon.Y)
== sqr(target.X - cannon.X) + sqr(target.Y - cannon.Y)
Wonderful! Substituting the expressions for target.X and target.Y gives
sqr(projectile.X - cannon.X) + sqr(projectile.Y - cannon.Y)
== sqr((t * target.velocityX + target.startX) - cannon.X)
+ sqr((t * target.velocityY + target.startY) - cannon.Y)
Substituting the other side of the equation gives this:
sqr(t * projectile_speed)
== sqr((t * target.velocityX + target.startX) - cannon.X)
+ sqr((t * target.velocityY + target.startY) - cannon.Y)
... subtracting sqr(t * projectile_speed) from both sides and flipping it around:
sqr((t * target.velocityX) + (target.startX - cannon.X))
+ sqr((t * target.velocityY) + (target.startY - cannon.Y))
- sqr(t * projectile_speed)
== 0
... now resolve the results of squaring the subexpressions ...
sqr(target.velocityX) * sqr(t)
+ 2 * t * target.velocityX * (target.startX - cannon.X)
+ sqr(target.startX - cannon.X)
+ sqr(target.velocityY) * sqr(t)
+ 2 * t * target.velocityY * (target.startY - cannon.Y)
+ sqr(target.startY - cannon.Y)
- sqr(projectile_speed) * sqr(t)
== 0
... and group similar terms ...
sqr(target.velocityX) * sqr(t)
+ sqr(target.velocityY) * sqr(t)
- sqr(projectile_speed) * sqr(t)
+ 2 * t * target.velocityX * (target.startX - cannon.X)
+ 2 * t * target.velocityY * (target.startY - cannon.Y)
+ sqr(target.startX - cannon.X)
+ sqr(target.startY - cannon.Y)
== 0
... then combine them ...
(sqr(target.velocityX) + sqr(target.velocityY) - sqr(projectile_speed)) * sqr(t)
+ 2 * (target.velocityX * (target.startX - cannon.X)
+ target.velocityY * (target.startY - cannon.Y)) * t
+ sqr(target.startX - cannon.X) + sqr(target.startY - cannon.Y)
== 0
... giving a standard quadratic equation in t. Finding the positive real zeros of this equation gives the (zero, one, or two) possible hit locations, which can be done with the quadratic formula:
a * sqr(x) + b * x + c == 0
x == (-b ± sqrt(sqr(b) - 4 * a * c)) / (2 * a)
+1 on Jeffrey Hantin's excellent answer here. I googled around and found solutions that were either too complex or not specifically about the case I was interested in (simple constant velocity projectile in 2D space.) His was exactly what I needed to produce the self-contained JavaScript solution below.
The one point I would add is that there are a couple special cases you have to watch for in addition to the discriminant being negative:
"a == 0": occurs if target and projectile are traveling the same speed. (solution is linear, not quadratic)
"a == 0 and b == 0": if both target and projectile are stationary. (no solution unless c == 0, i.e. src & dst are same point.)
Code:
/**
* Return the firing solution for a projectile starting at 'src' with
* velocity 'v', to hit a target, 'dst'.
*
* #param ({x, y}) src position of shooter
* #param ({x, y, vx, vy}) dst position & velocity of target
* #param (Number) v speed of projectile
*
* #return ({x, y}) Coordinate at which to fire (and where intercept occurs). Or `null` if target cannot be hit.
*/
function intercept(src, dst, v) {
const tx = dst.x - src.x;
const ty = dst.y - src.y;
const tvx = dst.vx;
const tvy = dst.vy;
// Get quadratic equation components
const a = tvx * tvx + tvy * tvy - v * v;
const b = 2 * (tvx * tx + tvy * ty);
const c = tx * tx + ty * ty;
// Solve quadratic
const ts = quad(a, b, c); // See quad(), below
// Find smallest positive solution
let sol = null;
if (ts) {
const t0 = ts[0];
const t1 = ts[1];
let t = Math.min(t0, t1);
if (t < 0) t = Math.max(t0, t1);
if (t > 0) {
sol = {
x: dst.x + dst.vx * t,
y: dst.y + dst.vy * t
};
}
}
return sol;
}
/**
* Return solutions for quadratic
*/
function quad(a, b, c) {
let sol = null;
if (Math.abs(a) < 1e-6) {
if (Math.abs(b) < 1e-6) {
sol = Math.abs(c) < 1e-6 ? [0, 0] : null;
} else {
sol = [-c / b, -c / b];
}
} else {
let disc = b * b - 4 * a * c;
if (disc >= 0) {
disc = Math.sqrt(disc);
a = 2 * a;
sol = [(-b - disc) / a, (-b + disc) / a];
}
}
return sol;
}
// For example ...
const sol = intercept(
{x:2, y:4}, // Starting coord
{x:5, y:7, vx: 2, vy:1}, // Target coord and velocity
5 // Projectile velocity
)
console.log('Fire at', sol)
First rotate the axes so that AB is vertical (by doing a rotation)
Now, split the velocity vector of B into the x and y components (say Bx and By). You can use this to calculate the x and y components of the vector you need to shoot at.
B --> Bx
|
|
V
By
Vy
^
|
|
A ---> Vx
You need Vx = Bx and Sqrt(Vx*Vx + Vy*Vy) = Velocity of Ammo.
This should give you the vector you need in the new system. Transform back to old system and you are done (by doing a rotation in the other direction).
Jeffrey Hantin has a nice solution for this problem, though his derivation is overly complicated. Here's a cleaner way of deriving it with some of the resultant code at the bottom.
I'll be using x.y to represent vector dot product, and if a vector quantity is squared, it means I am dotting it with itself.
origpos = initial position of shooter
origvel = initial velocity of shooter
targpos = initial position of target
targvel = initial velocity of target
projvel = velocity of the projectile relative to the origin (cause ur shooting from there)
speed = the magnitude of projvel
t = time
We know that the position of the projectile and target with respect to t time can be described with some equations.
curprojpos(t) = origpos + t*origvel + t*projvel
curtargpos(t) = targpos + t*targvel
We want these to be equal to each other at some point (the point of intersection), so let's set them equal to each other and solve for the free variable, projvel.
origpos + t*origvel + t*projvel = targpos + t*targvel
turns into ->
projvel = (targpos - origpos)/t + targvel - origvel
Let's forget about the notion of origin and target position/velocity. Instead, let's work in relative terms since motion of one thing is relative to another. In this case, what we now have is relpos = targetpos - originpos and relvel = targetvel - originvel
projvel = relpos/t + relvel
We don't know what projvel is, but we do know that we want projvel.projvel to be equal to speed^2, so we'll square both sides and we get
projvel^2 = (relpos/t + relvel)^2
expands into ->
speed^2 = relvel.relvel + 2*relpos.relvel/t + relpos.relpos/t^2
We can now see that the only free variable is time, t, and then we'll use t to solve for projvel. We'll solve for t with the quadratic formula. First separate it out into a, b and c, then solve for the roots.
Before solving, though, remember that we want the best solution where t is smallest, but we need to make sure that t is not negative (you can't hit something in the past)
a = relvel.relvel - speed^2
b = 2*relpos.relvel
c = relpos.relpos
h = -b/(2*a)
k2 = h*h - c/a
if k2 < 0, then there are no roots and there is no solution
if k2 = 0, then there is one root at h
if 0 < h then t = h
else, no solution
if k2 > 0, then there are two roots at h - k and h + k, we also know r0 is less than r1.
k = sqrt(k2)
r0 = h - k
r1 = h + k
we have the roots, we must now solve for the smallest positive one
if 0<r0 then t = r0
elseif 0<r1 then t = r1
else, no solution
Now, if we have a t value, we can plug t back into the original equation and solve for the projvel
projvel = relpos/t + relvel
Now, to the shoot the projectile, the resultant global position and velocity for the projectile is
globalpos = origpos
globalvel = origvel + projvel
And you're done!
My implementation of my solution in Lua, where vec*vec represents vector dot product:
local function lineartrajectory(origpos,origvel,speed,targpos,targvel)
local relpos=targpos-origpos
local relvel=targvel-origvel
local a=relvel*relvel-speed*speed
local b=2*relpos*relvel
local c=relpos*relpos
if a*a<1e-32 then--code translation for a==0
if b*b<1e-32 then
return false,"no solution"
else
local h=-c/b
if 0<h then
return origpos,relpos/h+targvel,h
else
return false,"no solution"
end
end
else
local h=-b/(2*a)
local k2=h*h-c/a
if k2<-1e-16 then
return false,"no solution"
elseif k2<1e-16 then--code translation for k2==0
if 0<h then
return origpos,relpos/h+targvel,h
else
return false,"no solution"
end
else
local k=k2^0.5
if k<h then
return origpos,relpos/(h-k)+targvel,h-k
elseif -k<h then
return origpos,relpos/(h+k)+targvel,h+k
else
return false,"no solution"
end
end
end
end
Following is polar coordinate based aiming code in C++.
To use with rectangular coordinates you would need to first convert the targets relative coordinate to angle/distance, and the targets x/y velocity to angle/speed.
The "speed" input is the speed of the projectile. The units of the speed and targetSpeed are irrelevent, as only the ratio of the speeds are used in the calculation. The output is the angle the projectile should be fired at and the distance to the collision point.
The algorithm is from source code available at http://www.turtlewar.org/ .
// C++
static const double pi = 3.14159265358979323846;
inline double Sin(double a) { return sin(a*(pi/180)); }
inline double Asin(double y) { return asin(y)*(180/pi); }
bool/*ok*/ Rendezvous(double speed,double targetAngle,double targetRange,
double targetDirection,double targetSpeed,double* courseAngle,
double* courseRange)
{
// Use trig to calculate coordinate of future collision with target.
// c
//
// B A
//
// a C b
//
// Known:
// C = distance to target
// b = direction of target travel, relative to it's coordinate
// A/B = ratio of speed and target speed
//
// Use rule of sines to find unknowns.
// sin(a)/A = sin(b)/B = sin(c)/C
//
// a = asin((A/B)*sin(b))
// c = 180-a-b
// B = C*(sin(b)/sin(c))
bool ok = 0;
double b = 180-(targetDirection-targetAngle);
double A_div_B = targetSpeed/speed;
double C = targetRange;
double sin_b = Sin(b);
double sin_a = A_div_B*sin_b;
// If sin of a is greater than one it means a triangle cannot be
// constructed with the given angles that have sides with the given
// ratio.
if(fabs(sin_a) <= 1)
{
double a = Asin(sin_a);
double c = 180-a-b;
double sin_c = Sin(c);
double B;
if(fabs(sin_c) > .0001)
{
B = C*(sin_b/sin_c);
}
else
{
// Sin of small angles approach zero causing overflow in
// calculation. For nearly flat triangles just treat as
// flat.
B = C/(A_div_B+1);
}
// double A = C*(sin_a/sin_c);
ok = 1;
*courseAngle = targetAngle+a;
*courseRange = B;
}
return ok;
}
Here's an example where I devised and implemented a solution to the problem of predictive targeting using a recursive algorithm: http://www.newarteest.com/flash/targeting.html
I'll have to try out some of the other solutions presented because it seems more efficient to calculate it in one step, but the solution I came up with was to estimate the target position and feed that result back into the algorithm to make a new more accurate estimate, repeating several times.
For the first estimate I "fire" at the target's current position and then use trigonometry to determine where the target will be when the shot reaches the position fired at. Then in the next iteration I "fire" at that new position and determine where the target will be this time. After about 4 repeats I get within a pixel of accuracy.
I just hacked this version for aiming in 2d space, I didn't test it very thoroughly yet but it seems to work. The idea behind it is this:
Create a vector perpendicular to the vector pointing from the muzzle to the target.
For a collision to occur, the velocities of the target and the projectile along this vector (axis) should be the same!
Using fairly simple cosine stuff I arrived at this code:
private Vector3 CalculateProjectileDirection(Vector3 a_MuzzlePosition, float a_ProjectileSpeed, Vector3 a_TargetPosition, Vector3 a_TargetVelocity)
{
// make sure it's all in the horizontal plane:
a_TargetPosition.y = 0.0f;
a_MuzzlePosition.y = 0.0f;
a_TargetVelocity.y = 0.0f;
// create a normalized vector that is perpendicular to the vector pointing from the muzzle to the target's current position (a localized x-axis):
Vector3 perpendicularVector = Vector3.Cross(a_TargetPosition - a_MuzzlePosition, -Vector3.up).normalized;
// project the target's velocity vector onto that localized x-axis:
Vector3 projectedTargetVelocity = Vector3.Project(a_TargetVelocity, perpendicularVector);
// calculate the angle that the projectile velocity should make with the localized x-axis using the consine:
float angle = Mathf.Acos(projectedTargetVelocity.magnitude / a_ProjectileSpeed) / Mathf.PI * 180;
if (Vector3.Angle(perpendicularVector, a_TargetVelocity) > 90.0f)
{
angle = 180.0f - angle;
}
// rotate the x-axis so that is points in the desired velocity direction of the projectile:
Vector3 returnValue = Quaternion.AngleAxis(angle, -Vector3.up) * perpendicularVector;
// give the projectile the correct speed:
returnValue *= a_ProjectileSpeed;
return returnValue;
}
I made a public domain Unity C# function here:
http://ringofblades.com/Blades/Code/PredictiveAim.cs
It is for 3D, but you can easily modify this for 2D by replacing the Vector3s with Vector2s and using your down axis of choice for gravity if there is gravity.
In case the theory interests you, I walk through the derivation of the math here:
http://www.gamasutra.com/blogs/KainShin/20090515/83954/Predictive_Aim_Mathematics_for_AI_Targeting.php
I've seen many ways to solve this problem mathematically, but this was a component relevant to a project my class was required to do in high school, and not everyone in this programming class had a background with calculus, or even vectors for that matter, so I created a way to solve this problem with more of a programming approach. The point of intersection will be accurate, although it may hit 1 frame later than in the mathematical computations.
Consider:
S = shooterPos, E = enemyPos, T = targetPos, Sr = shooter range, D = enemyDir
V = distance from E to T, P = projectile speed, Es = enemy speed
In the standard implementation of this problem [S,E,P,Es,D] are all givens and you are solving either to find T or the angle at which to shoot so that you hit T at the proper timing.
The main aspect of this method of solving the problem is to consider the range of the shooter as a circle encompassing all possible points that can be shot at any given time. The radius of this circle is equal to:
Sr = P*time
Where time is calculated as an iteration of a loop.
Thus to find the distance an enemy travels given the time iteration we create the vector:
V = D*Es*time
Now, to actually solve the problem we want to find a point at which the distance from the target (T) to our shooter (S) is less than the range of our shooter (Sr). Here is somewhat of a pseudocode implementation of this equation.
iteration = 0;
while(TargetPoint.hasNotPassedShooter)
{
TargetPoint = EnemyPos + (EnemyMovementVector)
if(distanceFrom(TargetPoint,ShooterPos) < (ShooterRange))
return TargetPoint;
iteration++
}
Basically , intersection concept is not really needed here, As far as you are using projectile motion, you just need to hit at a particular angle and instantiate at the time of shooting so that you get the exact distance of your target from the Source and then once you have the distance, you can calculate the appropriate velocity with which it should shot in order to hit the Target.
The following link makes teh concept clear and is considered helpful, might help:
Projectile motion to always hit a moving target
I grabbed one of the solutions from here, but none of them take into account movement of the shooter. If your shooter is moving, you might want to take that into account (as the shooter's velocity should be added to your bullet's velocity when you fire). Really all you need to do is subtract your shooter's velocity from the target's velocity. So if you're using broofa's code above (which I would recommend), change the lines
tvx = dst.vx;
tvy = dst.vy;
to
tvx = dst.vx - shooter.vx;
tvy = dst.vy - shooter.vy;
and you should be all set.

Resources