how I can find the generator of primitive group in Sage - sage

I am not familiar with sage,(I dont know anythink about it) but I have very basic question. I need the generators of primitive group(15,2) for my reaserch., could anyone give me the generators of primitive group(15,2) ,with using Sage? I would be appreciate

You must be referring to The primitive group from the GAP tables of primitive groups. Interestingly, it's not clear to me whether these are in exact correspondence with "primitive permutation groups", though I assume they are.
Anyway, since you are using that notation, I assume that this will do it for you:
sage: P = PrimitiveGroup(15,2)
sage: P.gens()
[(1,4,5)(2,8,10)(3,12,15)(6,13,11)(7,9,14), (1,15,7,5,12)(2,9,13,14,8)(3,6,10,11,4)]
Note that although P apparently is isomorphic to the alternating group on six elements, nonetheless it appears (as you probably wish) as a permutation group on 15 elements.

Related

compute the tableau's nonbasic term in SCIP separator

In traditional Simplex Algorithm notation, we have x at the current basis selection B as so:
xB = AB-1b - AB-1ANxN. How can I compute the AB-1AN term inside a separator in SCIP, or at least iterate over its columns?
I see three helpful methods: getLPColsData, getLPRowsData, getLPBasisInd. I'm just not sure exactly what data those methods represent, particularly the last one, with its negative row indexes. How do I use those to get the value I want?
Do those methods return the same data no matter what LP algorithm is used? Or do I need to account for dual vs primal? How does the use of the "revised" algorithm play into my calculation?
Update: I discovered the getLPBInvARow and getLPBInvRow. That seems to be much closer to what I'm after. I don't yet understand their results; they seem to include more/less dimensions than expected. I'm still looking for understanding at how to use them to get the rays away from the corner.
you are correct that getLPBInvRow or getLPBInvARow are the methods you want. getLPBInvARow directly returns you a of the simplex tableau, but it is not more efficient to use than getLPBInvRow and doing the multiplication yourself since the LP solver needs to also compute the actual tableau first.
I suggest you look into either sepa_gomory.c or sepa_gmi.c for examples of how to use these methods. How do they include less dimensions than expected? They both return sparse vectors.

Correct way of writing recursive functions in CLP(R) with Prolog

I am very confused in how CLP works in Prolog. Not only do I find it hard to see the benefits (I do see it in specific cases but find it hard to generalise those) but more importantly, I can hardly make up how to correctly write a recursive predicate. Which of the following would be the correct form in a CLP(R) way?
factorial(0, 1).
factorial(N, F):- {
N > 0,
PrevN = N - 1,
factorial(PrevN, NewF),
F = N * NewF}.
or
factorial(0, 1).
factorial(N, F):- {
N > 0,
PrevN = N - 1,
F = N * NewF},
factorial(PrevN, NewF).
In other words, I am not sure when I should write code outside the constraints. To me, the first case would seem more logical, because PrevN and NewF belong to the constraints. But if that's true, I am curious to see in which cases it is useful to use predicates outside the constraints in a recursive function.
There are several overlapping questions and issues in your post, probably too many to coherently address to your complete satisfaction in a single post.
Therefore, I would like to state a few general principles first, and then—based on that—make a few specific comments about the code you posted.
First, I would like to address what I think is most important in your case:
LP ⊆ CLP
This means simply that CLP can be regarded as a superset of logic programming (LP). Whether it is to be considered a proper superset or if, in fact, it makes even more sense to regard them as denoting the same concept is somewhat debatable. In my personal view, logic programming without constraints is much harder to understand and much less usable than with constraints. Given that also even the very first Prolog systems had a constraint like dif/2 and also that essential built-in predicates like (=)/2 perfectly fit the notion of "constraint", the boundaries, if they exist at all, seem at least somewhat artificial to me, suggesting that:
LP ≈ CLP
Be that as it may, the key concept when working with CLP (of any kind) is that the constraints are available as predicates, and used in Prolog programs like all other predicates.
Therefore, whether you have the goal factorial(N, F) or { N > 0 } is, at least in principle, the same concept: Both mean that something holds.
Note the syntax: The CLP(ℛ) constraints have the form { C }, which is {}(C) in prefix notation.
Note that the goal factorial(N, F) is not a CLP(ℛ) constraint! Neither is the following:
?- { factorial(N, F) }.
ERROR: Unhandled exception: type_error({factorial(_3958,_3960)},...)
Thus, { factorial(N, F) } is not a CLP(ℛ) constraint either!
Your first example therefore cannot work for this reason alone already. (In addition, you have a syntax error in the clause head: factorial (, so it also does not compile at all.)
When you learn working with a constraint solver, check out the predicates it provides. For example, CLP(ℛ) provides {}/1 and a few other predicates, and has a dedicated syntax for stating relations that hold about floating point numbers (in this case).
Other constraint solver provide their own predicates for describing the entities of their respective domains. For example, CLP(FD) provides (#=)/2 and a few other predicates to reason about integers. dif/2 lets you reason about any Prolog term. And so on.
From the programmer's perspective, this is exactly the same as using any other predicate of your Prolog system, whether it is built-in or stems from a library. In principle, it's all the same:
A goal like list_length(Ls, L) can be read as: "The length of the list Ls is L."
A goal like { X = A + B } can be read as: The number X is equal to the sum of A and B. For example, if you are using CLP(Q), it is clear that we are talking about rational numbers in this case.
In your second example, the body of the clause is a conjunction of the form (A, B), where A is a CLP(ℛ) constraint, and B is a goal of the form factorial(PrevN, NewF).
The point is: The CLP(ℛ) constraint is also a goal! Check it out:
?- write_canonical({a,b,c}).
{','(a,','(b,c))}
true.
So, you are simply using {}/1 from library(clpr), which is one of the predicates it exports.
You are right that PrevN and NewF belong to the constraints. However, factorial(PrevN, NewF) is not part of the mini-language that CLP(ℛ) implements for reasoning over floating point numbers. Therefore, you cannot pull this goal into the CLP(ℛ)-specific part.
From a programmer's perspective, a major attraction of CLP is that it blends in completely seamlessly into "normal" logic programming, to the point that it can in fact hardly be distinguished at all from it: The constraints are simply predicates, and written down like all other goals.
Whether you label a library predicate a "constraint" or not hardly makes any difference: All predicates can be regarded as constraints, since they can only constrain answers, never relax them.
Note that both examples you post are recursive! That's perfectly OK. In fact, recursive predicates will likely be the majority of situations in which you use constraints in the future.
However, for the concrete case of factorial, your Prolog system's CLP(FD) constraints are likely a better fit, since they are completely dedicated to reasoning about integers.

"Adding" a value to a tuple?

I am attempting to represent dice rolls in Julia. I am generating all the rolls of a ndsides with
sort(collect(product(repeated(1:sides, n)...)), by=sum)
This produces something like:
[(1,1),(2,1),(1,2),(3,1),(2,2),(1,3),(4,1),(3,2),(2,3),(1,4) … (6,3),(5,4),(4,5),(3,6),(6,4),(5,5),(4,6),(6,5),(5,6),(6,6)]
I then want to be able to reasonably modify those tuples to represent things like dropping the lowest value in the roll or adding a constant number, etc., e.g., converting (2,5) into (10,2,5) or (5,).
Does Julia provide nice functions to easily modify (not necessarily in-place) n-tuples or will it be simpler to move to a different structure to represent the rolls?
Thanks.
Tuples are immutable, so you can't modify them in-place. There is very good support for other mutable data structures, so there aren't many methods that take a tuple and return a new, slightly modified copy. One way to do this is by splatting a section of the old tuple into a new tuple, so, for example, to create a new tuple like an existing tuple t but with the first element set to 5, you would write: tuple(5, t[2:end]...). But that's awkward, and there are much better solutions.
As spencerlyon2 suggests in his comment, a one dimensional Array{Int,1} is a great place to start. You can take a look at the Data Structures manual page to get an idea of the kinds of operations you can use; one-dimensional Arrays are iterable, indexable, and support the dequeue interface.
Depending upon how important performance is and how much work you're doing, it may be worthwhile to create your own data structure. You'll be able to add your own, specific methods (e.g., reroll!) for that type. And by taking advantage of some of the domain restrictions (e.g., if you only ever want to have a limited number of dice rolls), you may be able to beat the performance of the general Array.
You can construct a new tuple based on spreading or slicing another:
julia> b = (2,5)
(2, 5)
julia> (10, b...)
(10, 2, 5)
julia> b[2:end]
(5,)

How to quantitatively measure how simplified a mathematical expression is

I am looking for a simple method to assign a number to a mathematical expression, say between 0 and 1, that conveys how simplified that expression is (being 1 as fully simplified). For example:
eval('x+1') should return 1.
eval('1+x+1+x+x-5') should returns some value less than 1, because it is far from being simple (i.e., it can be further simplified).
The parameter of eval() could be either a string or an abstract syntax tree (AST).
A simple idea that occurred to me was to count the number of operators (?)
EDIT: Let simplified be equivalent to how close a system is to the solution of a problem. E.g., given an algebra problem (i.e. limit, derivative, integral, etc), it should assign a number to tell how close it is to the solution.
The closest metaphor I can come up with it how a maths professor would look at an incomplete problem and mentally assess it in order to tell how close the student is to the solution. Like in a math exam, were the student didn't finished a problem worth 20 points, but the professor assigns 8 out of 20. Why would he come up with 8/20, and can we program such thing?
I'm going to break a stack-overflow rule and post this as an answer instead of a comment, because not only I'm pretty sure the answer is you can't (at least, not the way you imagine), but also because I believe it can be educational up to a certain degree.
Let's assume that a criteria of simplicity can be established (akin to a normal form). It seems to me that you are very close to trying to solve an analogous to entscheidungsproblem or the halting problem. I doubt that in a complex rule system required for typical algebra, you can find a method that gives a correct and definitive answer to the number of steps of a series of term reductions (ipso facto an arbitrary-length computation) without actually performing it. Such answer would imply knowing in advance if such computation could terminate, and so contradict the fact that automatic theorem proving is, for any sufficiently powerful logic capable of representing arithmetic, an undecidable problem.
In the given example, the teacher is actually either performing that computation mentally (going step by step, applying his own sequence of rules), or gives an estimation based on his experience. But, there's no generic algorithm that guarantees his sequence of steps are the simplest possible, nor that his resulting expression is the simplest one (except for trivial expressions), and hence any quantification of "distance" to a solution is meaningless.
Wouldn't all this be true, your problem would be simple: you know the number of steps, you know how many steps you've taken so far, you divide the latter by the former ;-)
Now, returning to the criteria of simplicity, I also advice you to take a look on Hilbert's 24th problem, that specifically looked for a "Criteria of simplicity, or proof of the greatest simplicity of certain proofs.", and the slightly related proof compression. If you are philosophically inclined to further understand these subjects, I would suggest reading the classic Gödel, Escher, Bach.
Further notes: To understand why, consider a well-known mathematical artefact called the Mandelbrot fractal set. Each pixel color is calculated by determining if the solution to the equation z(n+1) = z(n)^2 + c for any specific c is bounded, that is, "a complex number c is part of the Mandelbrot set if, when starting with z(0) = 0 and applying the iteration repeatedly, the absolute value of z(n) remains bounded however large n gets." Despite the equation being extremely simple (you know, square a number and sum a constant), there's absolutely no way to know if it will remain bounded or not without actually performing an infinite number of iterations or until a cycle is found (disregarding complex heuristics). In this sense, every fractal out there is a rough approximation that typically usages an escape time algorithm as an heuristic to provide an educated guess whether the solution will be bounded or not.

Multidimensional vectors in Scheme?

I earlier asked a question about arrays in scheme (turns out they're called vectors but are basically otherwise the same as you'd expect).
Is there an easy way to do multidimensional arrays vectors in PLT Scheme though? For my purposes I'd like to have a procedure called make-multid-vector or something.
By the way if this doesn't already exist, I don't need a full code example of how to implement it. If I have to roll this myself I'd appreciate some general direction though. The way I'd probably do it is to just iterate through each element of the currently highest dimension of the vector to add another dimension, but I can see that being a bit ugly using scheme's recursive setup.
Also, this seems like something I should have been able to find myself so please know that I did actually google it and nothing came up.
The two common approaches are the same as in many languages, either use a vector of vectors, or (more efficiently) use a single vector of X*Y and compute the location of each reference. But there is a library that does that -- look in the docs for srfi/25, which you can get with (require srfi/25).

Resources