Jupyter notebook autocomplete shows too much - jupyter-notebook

I tried to autocomplete the path in jupyter notebook. After I press 'tab', it shows much more than folder or file. I think those are build-in function of python. Is there any way to show only path and files while autocomplete the path?
Thanks!

This is a known issue, not critical and developers have just so much time. It should not be too hard to fix, IPython is open source, you are welcome ton contribute !

Related

Embedding executed Jupyter notebook in rst-based documentation

I would like to embed a Jupyter notebook in an RST file. Preferably, this notebook can be interactive, but it can at least be seen. It would also be nice if these notebooks could be executed in the documentation build, but I don't know if that is possible.
I am not looking for a solution that would not involve having the notebook embedded in an rst file -- I know that nbsphinx can build documentation from ipynb files, but that is not what I am looking for.
Thank you!

how can i share a Jupyter Notebook?

I am using Julia but didn't really like the IDE (more of a notebook guy). So I used for the first time Jupyter (lab and notebooks).
I started Jupyter from Anaconda and made my notebook. The thing is I want to share it. Like other people can access a link and get to run my code.
I don't really know how GitHub works, but I somehow managed to upload the notebook there. I saw this thing called "Binder" that could run my code on another computer. But I try to put my Github link there and just get an error.
Can someone that used Jupyter can explain it to me?
Ah, I almost forgot, when I google Jupyter Notebook and start one with Julia I can use this Binder Thing. But when I do it on my own I can't.
Here I put the screenshot I made on the Demo of Jupyter+binder so you can see it says to send a binder link
While there are many options, the best and the easiest way is through Jupyter's menu:
File -> Download as -> HTML
You end up with a HTML containing all code cells and all results (including pictures) which is perhaps the best for viewing by others.
Github can be used to natively publish a *.ipynb and show it to users as a static HTML, however I find it not very stables (rendering keeps failing from time to time) and hence I opt for generating the HTML file yourself and use eg. Github pages for hosting it.
Another interesting option is to share just the *.ipynb file and recommend people Open Source https://nteract.io/ as the viewer.
Yet another option that is sometimes use is to host a JupyterHub on an AWS EC2 instance (a single t2.micro is free for one year within the AWS free tier) and give my collaborators logins and passwords (this though requires quite a bit of configuration work).

.R files not opening suddenly on anaconda

I use Anaconda for both python and R, I updated today, after that none of my R files are opening. I wrote a block of code, saved and tried to open, but after it opens, the entire file is empty.
I tried uninstalling and installing again, but its the same. Can anyone help me out with this please, my college project work is struck in between and I see all my developed codes gone suddenly.
Thank You in Advance
I’ve had this happen to me a few times. My work around is the navigate to the file in file explorer, right click on it, and open in a text editor. This should provide you your code. From there copy and paste back into your IDE. Further, saving the file with UTF-8 encoding supposedly helps as well, but I have yet to determine if this is a full workaround.

What is the easiest way to create a webapp from an interactive Jupyter Notebook?

I have a Jupyter Notebook that plots some data and lets the user interact with it via a slider.
What would be the easiest way to make a web app with a similar functionality? (reusing as much of the code...)
I believe the easiest way is to use voilà.
After installing you just have to run:
voila <path-to-notebook> <options>
And you will have a server running your notebook as a web app, with all the input code omitted.
AppMode is "A Jupyter extension that turns notebooks into web applications".
From the README:
Appmode consist of a server-side and a notebook extension for Jupyter.
Together these two extensions provide the following features:
One can view any notebook in appmode by clicking on the Appmode button in the toolbar. Alternatively one can change the url from
baseurl/notebooks/foo.ipynb to baseurl/apps/foo.ipynb. This also
allows for direct links into appmode.
When a notebook is opened in appmode, all code cells are automatically executed. In order to present a clean UI, all code cells
are hidden and the markdown cells are read-only.
A notebook can be opened multiple times in appmode without interference. This is achieved by creating temporary copies of the
notebook for each active appmode view. Each appmode view has its
dedicated ipython kernel. When an appmode page is closed the kernel is
shutdown and the temporary copy gets removed.
To allow for passing information between notebooks via url parameters, the current url is injected into the variable
jupyter_notebook_url.
To be complete - there exists also https://www.streamlit.io/ .
I still dont understand the exact difference between voila and streamlit.
At the moment I just struggle with the possibility to re-run everything with new parameters... I have bad luck with voila still.
Edit: I see that streamlit requires a raw python, not .ipynb, this fact would mean that this answer is completely wrong, I will search a bit more on streamlit before further action/comment.
Edit2: Voila looks great. However, I found few things that uncover the underlying complexity and thus a troubles that may arise.
callbacks. Widgets work great in jupyter, but since it is not possible to re-run one cell, sometimes the logic must be modified to work in Voila.
interactive java objects need a special treatment, e.g. matplotlib has a cheap solution, but there was nothing for e.g. jsroot
links. It is easy to create (a file and) a download link in jupyter, Voila can also serve a file, but it needs another extra treatment.
After all, I pose myself a question - is it better to learn many tricks and modifications to jupyter or to use some other system? I am going to see if streamlit can give em some answer.
The Jupyter Dashboards Bundlers extension from the Jupyter Incubator is one way to do it while retaining interactivity.
EDIT: While pip installing this package will also install the cms package dependency, like dashboard_bundlers, cms needs to be explicitly enabled/quick-setup as a notebook extension for the dashboard tools to work.
#raphaelts has the right idea and should be the accepted answer. As of Dec 2019, Voila is the most appropriate method to deploy Jupyter notebooks to production as a stand alone webapp. Think internal datascience teams sharing their analytics workload with internal C-Suite teams using SPA stlye Notebooks with all the code hidden and custom GUI/interactions thrown in. Recently discussed on HN
https://news.ycombinator.com/item?id=20160634 and the official announcement from the Jupyter maintainer https://blog.jupyter.org/and-voil%C3%A0-f6a2c08a4a93enter link description here
As mentioned above, voilà is a very powerful tool which hides the input cells from your notebooks and therefore provides a clean interface. In order to deploy your notebook with voilà you need to follow the specific steps of your organization. But if you want to quickly run it on your machine, simply install it with pip install voila. Then you can enter start from the command-line: voila my_notebook.ipynb or use the "Voila" button which should have appeared in your Jupyter notebook.
Note, however, that using voilà is only one part of the story. You also need to build the required interactivity, ie. to set up how to respond to input changes. There are quite a few frameworks for this.
The simplest one is to use the interact function or the observe method from the Ipywidgets library. This is very direct, but things can easily get out of control as you start having more and more widgets and complexity.
There are complete frameworks, some of them mentioned above. E.g. streamlit, dash and holoviz. These are very powerful and suited for larger projects.
But if you want to keep it simple, I also recommend to check out autocalc. It is a very easy-to-use library, which lets you define the dependencies between your widgets/variables and let all the recalculation be triggered automatically. A tutorial can be found here.
Disclaimer: I am the author of the autocalc package.
The easiest way is to use the Mercury framework. You can reuse all your code. To convert the notebook to web app you will need to add the YAML header in the first cell of the notebook (very similar to R Markdown). The widgets are generated based on YAML. The end-user can tweak widgets values and click the Run button to execute the notebook from the top to the bottom. You can easily hide the notebook's code (if you want) by setting the show-code: False in the YAML. The example notebook and corresponding web app are below.
Example of the notebook with YAML header
Example web app generated from notebook with Mercury

is it possible to embed an interactive IPython Notebook in my website/blog?

Suppose I've created my wonderful IPython notebook (that is, a .ipynb file).
Now, is it possible to make it available for users of my website/blog?
With "available" I mean the following: they arrive to my website, find the notebook and immediately start to play with it (run code, display plots, change parameters etc etc)... But, without need the need to install anything on their local machine.
I already know the existence of Jupyther, that make it possible to share notebooks. But, as in this example, what the user would find is a simple web page, and in order to run the code he would have to download the .ipynb --> save it in local machine ---> open it with a pre-installed IPython interpreter.
This is something I would like to avoid.
Hope I was clear.
Thanks in advance for your time.
Gabriele
You can use tmpnb, which provides temporary notebook servers that get discarded after a while. If you want to have a different UI that better fits into a blog post, have a look at thebe.

Resources