BTYD Individual Level Estimations For All Observations - r

I am using BTYD BG NBD in R and did the individual level estimates.
For instance following the documentation in page 20 of:
BTYD Walkthrough
Code for Data Prep:
system.file("data/cdnowElog.csv", package = "BTYD")%>%
dc.ReadLines(., cust.idx = 2, date.idx = 3, sales.idx = 5)%>%
dc.MergeTransactionsOnSameDate()%>%
mutate(date = parse_date_time(date, "%Y%m%d")) -> elog
end.of.cal.period <- as.Date("1997-09-30")
elog.cal <- elog[which(elog$date <= end.of.cal.period), ]
split.data <- dc.SplitUpElogForRepeatTrans(elog.cal);
birth.periods <- split.data$cust.data$birth.per
last.dates <- split.data$cust.data$last.date
clean.elog <- split.data$repeat.trans.elog;
freq.cbt <- dc.CreateFreqCBT(clean.elog);
tot.cbt <- dc.CreateFreqCBT(elog)
cal.cbt <- dc.MergeCustomers(tot.cbt, freq.cbt)
cal.cbs.dates <- data.frame(birth.periods, last.dates, end.of.cal.period)
cal.cbs <- dc.BuildCBSFromCBTAndDates(cal.cbt, cal.cbs.dates,per="week")
params <- pnbd.EstimateParameters(cal.cbs);
one could get estimates for a particular observation.
Code for Individual Level Estimation:
cal.cbs["1516",]
# x t.x T.cal
# 26.00 30.86 31.00
x <- cal.cbs["1516", "x"]
t.x <- cal.cbs["1516", "t.x"]
T.cal <- cal.cbs["1516", "T.cal"]
bgnbd.ConditionalExpectedTransactions(params, T.star = 52,
x, t.x, T.cal)
# [1] 25.76
My question is, is it possible to recursively run this such that I could get a data frame containing the expectations for each row instead of hard coding a particular ID number such as "1516" in this case?
Thanks!

Yes, it is straightforward with dplyr's mutate()
cal.cbs%>%
data.frame()%>%
mutate(`Conditional Expectation` = bgnbd.ConditionalExpectedTransactions(params, T.star = 52, x, t.x, T.cal))
x t.x T.cal Conditional Expectation
1 2 30.428571 38.85714 2.3224971
2 1 1.714286 38.85714 1.0646350
3 0 0.000000 38.85714 0.5607707
4 0 0.000000 38.85714 0.5607707
5 0 0.000000 38.85714 0.5607707
6 7 29.428571 38.85714 6.0231497

Related

How to optimzie my function by dropping loops

I have the following function that uses nested loops and honestly I'm not sure how to proceed with making the code run more efficient. It runs fine for 100 sims in my opinion but when I ran for 2000 sims it took almost 12 seconds.
This code will generate any n Brownian Motion simulations and works well, the issue is once the simulation size is increased to say 500+ then it starts to bog down, and when it hits 2k then it's pretty slow ie 12.
Here is the function:
ts_brownian_motion <- function(.time = 100, .num_sims = 10, .delta_time = 1,
.initial_value = 0) {
# TidyEval ----
T <- as.numeric(.time)
N <- as.numeric(.num_sims)
delta_t <- as.numeric(.delta_time)
initial_value <- as.numeric(.initial_value)
# Checks ----
if (!is.numeric(T) | !is.numeric(N) | !is.numeric(delta_t) | !is.numeric(initial_value)){
rlang::abort(
message = "All parameters must be numeric values.",
use_cli_format = TRUE
)
}
# Initialize empty data.frame to store the simulations
sim_data <- data.frame()
# Generate N simulations
for (i in 1:N) {
# Initialize the current simulation with a starting value of 0
sim <- c(initial_value)
# Generate the brownian motion values for each time step
for (t in 1:(T / delta_t)) {
sim <- c(sim, sim[t] + rnorm(1, mean = 0, sd = sqrt(delta_t)))
}
# Bind the time steps, simulation values, and simulation number together in a data.frame and add it to the result
sim_data <- rbind(
sim_data,
data.frame(
t = seq(0, T, delta_t),
y = sim,
sim_number = i
)
)
}
# Clean up
sim_data <- sim_data %>%
dplyr::as_tibble() %>%
dplyr::mutate(sim_number = forcats::as_factor(sim_number)) %>%
dplyr::select(sim_number, t, y)
# Return ----
attr(sim_data, ".time") <- .time
attr(sim_data, ".num_sims") <- .num_sims
attr(sim_data, ".delta_time") <- .delta_time
attr(sim_data, ".initial_value") <- .initial_value
return(sim_data)
}
Here is some output of the function:
> ts_brownian_motion(.time = 10, .num_sims = 25)
# A tibble: 275 × 3
sim_number t y
<fct> <dbl> <dbl>
1 1 0 0
2 1 1 -2.13
3 1 2 -1.08
4 1 3 0.0728
5 1 4 0.562
6 1 5 0.255
7 1 6 -1.28
8 1 7 -1.76
9 1 8 -0.770
10 1 9 -0.536
# … with 265 more rows
# ℹ Use `print(n = ...)` to see more rows
As suggested in the comments, if you want speed, you should use cumsum. You need to be clear what type of Brownian Motion you want (arithmetic, geometric). For geometric Brownian motion, you'll need to correct the approximation error by adjusting the mean. As an example, the NMOF package (which I maintain), contains a function gbm that implements geometric Brownian Motion through cumsum. Here is an example call for 2000 paths with 100 timesteps each.
library("NMOF")
library("zoo") ## for plotting
timesteps <- 100
system.time(b <- NMOF::gbm(2000, tau = 1, timesteps = 100, r = 0, v = 1))
## user system elapsed
## 0.013 0.000 0.013
dim(b) ## each column is one path, starting at time zero
## [1] 101 2000
plot(zoo(b[, 1:5], 0:timesteps), plot.type = "single")

R: Tetrachoric correlation for multiple variables at one go?

You can see I'm a beginner at this when I'm not even able to reproduce my problem with a dummy dataset... Anyways, here goes: I want to calculate tetrachoric correlations between one grouping variable and multiple other variables. Like this:
library(psych)
set.seed(42)
n <- 16
dat <- data.frame(id=1:n,
group=c(rep("a", times=5), rep("b", times=3)),
x=sample(1:2, n, replace=TRUE),
y=sample(1:2, n, replace=TRUE),
z=sample(1:2, n, replace=TRUE))
dat
id group x y z
1 1 a 1 1 2
2 2 a 1 2 2
3 3 a 1 1 2
4 4 a 1 2 2
5 5 a 2 1 1
6 6 b 2 2 1
7 7 b 2 1 1
8 8 b 2 1 1
tetrachoric(as.matrix(dat[,c("group","y")]))
Now with this example (not with my actual dataset) I get an error which I'm unable to solve:
Error in apply(x, 2, function(x) min(x, na.rm = TRUE)) :
dim(X) must have a positive length
In addition: Warning messages:
1: In var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm = na.rm) :
NAs introduced by coercion
2: In tetrachoric(as.matrix(dat[, c("group", "y")])) :
Item = group had no variance and was deleted
My question is still what would be the best solution to get all the correlations with a single piece of code? Thank you for help!
The help file for tetrachoric says "The tetrachoric correlation is the inferred Pearson Correlation from a two x two table with the assumption of bivariate normality", so presumably you need to pass it a 2x2 table. You could write a little function that would hand the tetrachoric the appropriate table and collect the results:
myfun <- function(x,y, ...){
tabs <- lapply(seq_along(y), function(i)table(x,y[,i]))
l <- lapply(tabs, function(x)tetrachoric(x, ...))
rho <- sapply(l, function(x)x$rho)
tau <- sapply(l, function(x)x$tau)
colnames(tau) <- colnames(y)
names(rho) <- colnames(y)
ret <- list(rho = rho ,
tau = tau)
ret
}
myfun(dat$group, dat[,c("x", "y", "z")])
# $rho
# x y z
# 0.5397901 -0.2605839 0.6200705
#
# $tau
# x y z
# a 0.3186394 0.3186394 0.2690661
# 1 0.1573107 0.1573107 -0.6045853

Adjust implausible imputed values in an optimized way

I have a dataset with some imputed values. According to a predefined edit rule, some of these imputed values are implausible. For that reason, I want to adjust these implausible imputed values, but the adjustment should be as small as possible.
Here is a simplified example:
# Seed
set.seed(111)
# Example data
data <- data.frame(x1 = round(rnorm(200, 5, 5), 0),
x2 = factor(round(runif(200, 1, 3), 0)),
x3 = round(rnorm(200, 2, 10), 0),
x4 = factor(round(runif(200, 0, 5), 0)))
data[data$x1 > 5 & data$x2 == 1, ]$x3 <- 4
data[data$x1 > 5 & data$x2 == 1, ]$x4 <- 5
# Missings
data$x1[sample(1:nrow(data), 25)] <- NA
data$x2[sample(1:nrow(data), 50)] <- NA
data$x3[sample(1:nrow(data), 40)] <- NA
data$x4[sample(1:nrow(data), 35)] <- NA
# Imputation
library("mice")
imp <- mice(data, m = 1)
# Imputed data
data_imp <- complete(imp, "repeated")
# So far everything works well.
# However, there is a predefined edit rule, which should not be violated.
# Edit Rule:
# If x1 > 5 and x2 == 1
# Then x3 > 3 and x4 > 4
# Because of the imputation, some of the observations have implausible values.
implausible <- data_imp[data_imp$x1 > 5 & data_imp$x2 == 1 &
(data_imp$x3 <= 3 | (data_imp$x4 != 4 & data_imp$x4 != 5)), ]
implausible
# Example 1)
# In row 26 x1 has a value > 5 and x2 equals 1.
# For that reason, x3 would have to be larger than 3 (here x3 is -17).
# Like you can see in the original data, x2 has been imputed in row 26.
data[rownames(implausible), ]
# Hence, x2 would have to be adjusted, so that it randomly gets a different category.
# Example 2)
# In row 182 are also implausible values.
# Three of the variables have been imputed in this row.
# Therefore, all/some of the imputed cells would have to be adjusted,
# but the adjustment should be as small as possible.
I have already made some research and found some relevant papers/books, in which some optimization algorithms are described:
Pannekoek & Zhang (2011): https://www.researchgate.net/publication/269410841_Partial_donor_Imputation_with_Adjustments
de Waal, Pannekoek & Scholtus (2011): Handbook of Statistical Data Editing and Imputation
However, I am struggling with the implementation of these algorithms in R. Is there a Package available, which helps with these kind of calculations. I'd really appreciate some help with my code or some hints about the topic!

view values used by function boot to bootstrap estimates

I have written the code below to obtain a bootstrap estimate of a mean. My objective is to view the numbers selected from the data set, ideally in the order they are selected, by the function boot in the boot package.
The data set only contains three numbers: 1, 10, and 100 and I am only using two bootstrap samples.
The estimated mean is 23.5 and the R code below indicates that the six numbers included one '1', four '10' and one '100'. However, there are 30 possible combinations of those numbers that would have resulted in a mean of 23.5.
Is there a way for me to determine which of those 30 possible combinations is the combination that actually appeared in the two bootstrap samples?
library(boot)
set.seed(1234)
dat <- c(1, 10, 100)
av <- function(dat, i) { sum(dat[i])/length(dat[i]) }
av.boot <- boot(dat, av, R = 2)
av.boot
#
# ORDINARY NONPARAMETRIC BOOTSTRAP
#
#
# Call:
# boot(data = dat, statistic = av, R = 2)
#
#
# Bootstrap Statistics :
# original bias std. error
# t1* 37 -13.5 19.09188
#
mean(dat) + -13.5
# [1] 23.5
# The two samples must have contained one '1', four '10' and one '100',
# but there are 30 possibilities.
# Which of these 30 possible sequences actual occurred?
# This code shows there must have been one '1', four '10' and one '100'
# and shows the 30 possible combinations
my.combos <- expand.grid(V1 = c(1, 10, 100),
V2 = c(1, 10, 100),
V3 = c(1, 10, 100),
V4 = c(1, 10, 100),
V5 = c(1, 10, 100),
V6 = c(1, 10, 100))
my.means <- apply(my.combos, 1, function(x) {( (x[1] + x[2] + x[3])/3 + (x[4] + x[5] + x[6])/3 ) / 2 })
possible.samples <- my.combos[my.means == 23.5,]
dim(possible.samples)
n.1 <- rowSums(possible.samples == 1)
n.10 <- rowSums(possible.samples == 10)
n.100 <- rowSums(possible.samples == 100)
n.1[1]
n.10[1]
n.100[1]
length(unique(n.1)) == 1
length(unique(n.10)) == 1
length(unique(n.100)) == 1
I think you can determine the numbers sampled and the order in which they are sampled with the code below. You have to extract the function ordinary.array from the boot package and paste that function into your R code. Then specify the values for n, R and strata, where n is the number of observations in the data set and R is the number of replicate samples you want.
I do not know how general this approach is, but it worked with a couple of simple examples I tried, including the example below.
library(boot)
set.seed(1234)
dat <- c(1, 10, 100, 1000)
av <- function(dat, i) { sum(dat[i])/length(dat[i]) }
av.boot <- boot(dat, av, R = 3)
av.boot
#
# ORDINARY NONPARAMETRIC BOOTSTRAP
#
#
# Call:
# boot(data = dat, statistic = av, R = 3)
#
#
# Bootstrap Statistics :
# original bias std. error
# t1* 277.75 -127.5 132.2405
#
#
mean(dat) + -127.5
# [1] 150.25
# boot:::ordinary.array
ordinary.array <- function (n, R, strata)
{
inds <- as.integer(names(table(strata)))
if (length(inds) == 1L) {
output <- sample.int(n, n * R, replace = TRUE)
dim(output) <- c(R, n)
}
else {
output <- matrix(as.integer(0L), R, n)
for (is in inds) {
gp <- seq_len(n)[strata == is]
output[, gp] <- if (length(gp) == 1)
rep(gp, R)
else bsample(gp, R * length(gp))
}
}
output
}
# I think the function ordinary.array determines which elements
# of the data are sampled in each of the R samples
set.seed(1234)
ordinary.array(n=4,R=3,1)
# [,1] [,2] [,3] [,4]
# [1,] 1 3 1 3
# [2,] 3 4 1 3
# [3,] 3 3 3 3
#
# which equals:
((1+100+1+100) / 4 + (100+1000+1+100) / 4 + (100+100+100+100) / 4) / 3
# [1] 150.25

Using split function in R

I am trying to simulate three small datasets, which contains x1,x2,x3,x4, trt and IND.
However, when I try to split simulated data by IND using "split" in R I get Warning messages and outputs are correct. Could someone please give me a hint what I did wrong in my R code?
# Step 2: simulate data
Alpha = 0.05
S = 3 # number of replicates
x = 8 # number of covariates
G = 3 # number of treatment groups
N = 50 # number of subjects per dataset
tot = S*N # total subjects for a simulation run
# True parameters
alpha = c(0.5, 0.8) # intercepts
b1 = c(0.1,0.2,0.3,0.4) # for pi_1 of trt A
b2 = c(0.15,0.25,0.35,0.45) # for pi_2 of trt B
b = c(1.1,1.2,1.3,1.4);
##############################################################################
# Scenario 1: all covariates are independent standard normally distributed #
##############################################################################
set.seed(12)
x1 = rnorm(n=tot, mean=0, sd=1);x2 = rnorm(n=tot, mean=0, sd=1);
x3 = rnorm(n=tot, mean=0, sd=1);x4 = rnorm(n=tot, mean=0, sd=1);
###############################################################################
p1 = exp(alpha[1]+b1[1]*x1+b1[2]*x2+b1[3]*x3+b1[4]*x4)/
(1+exp(alpha[1]+b1[1]*x1+b1[2]*x2+b1[3]*x3+b1[4]*x4) +
exp(alpha[2]+b2[1]*x1+b2[2]*x2+b2[3]*x3+b2[4]*x4))
p2 = exp(alpha[2]+b2[1]*x1+b2[2]*x2+b2[3]*x3+b2[4]*x4)/
(1+exp(alpha[1]+b1[1]*x1+b1[2]*x2+b1[3]*x3+b1[4]*x4) +
exp(alpha[2]+b2[1]*x1+b2[2]*x2+b2[3]*x3+b2[4]*x4))
p3 = 1/(1+exp(alpha[1]+b1[1]*x1+b1[2]*x2+b1[3]*x3+b1[4]*x4) +
exp(alpha[2]+b2[1]*x1+b2[2]*x2+b2[3]*x3+b2[4]*x4))
# To assign subjects to one of treatment groups based on response probabilities
tmp = function(x){sample(c("A","B","C"), 1, prob=x, replace=TRUE)}
trt = apply(cbind(p1,p2,p3),1,tmp)
IND=rep(1:S,each=N) #create an indicator for split simulated data
sim=data.frame(x1,x2,x3,x4,trt, IND)
Aset = subset(sim, trt=="A")
Bset = subset(sim, trt=="B")
Cset = subset(sim, trt=="C")
Anew = split(Aset, f = IND)
Bnew = split(Bset, f = IND)
Cnew = split(Cset, f = IND)
The warning message:
> Anew = split(Aset, f = IND)
Warning message:
In split.default(x = seq_len(nrow(x)), f = f, drop = drop, ...) :
data length is not a multiple of split variable
and the output becomes
$`2`
x1 x2 x3 x4 trt IND
141 1.0894068 0.09765185 -0.46702047 0.4049424 A 3
145 -1.2953113 -1.94291045 0.09926239 -0.5338715 A 3
148 0.0274979 0.72971804 0.47194731 -0.1963896 A 3
$`3`
[1] x1 x2 x3 x4 trt IND
<0 rows> (or 0-length row.names)
I have checked my R code several times however, I can't figure out what I did wrong. Many thanks in advance
IND is the global variable for the full data, sim. You want to use the specific one for the subset, eg
Anew <- split(Aset, f = Aset$IND)
It's a warning, not an error, which means split executed successfully, but may not have done what you wanted to do.
From the "details" section of the help file:
f is recycled as necessary and if the length of x is not a multiple of
the length of f a warning is printed. Any missing values in f are
dropped together with the corresponding values of x.
Try checking the length of your IND against the size of your dataframe, maybe.
Not sure what your goal is once you have your data split, but this sounds like a good candidate for the plyr package.
> library(plyr)
> ddply(sim, .(trt,IND), summarise, x1mean=mean(x1), x2sum=sum(x2), x3min=min(x3), x4max=max(x4))
trt IND x1mean x2sum x3min x4max
1 A 1 -0.49356448 -1.5650528 -1.016615 2.0027822
2 A 2 0.05908053 5.1680463 -1.514854 0.8184445
3 A 3 0.22898716 1.8584443 -1.934188 1.6326763
4 B 1 0.01531230 1.1005720 -2.002830 2.6674931
5 B 2 0.17875088 0.2526760 -1.546043 1.2021935
6 B 3 0.13398967 -4.8739380 -1.565945 1.7887837
7 C 1 -0.16993037 -0.5445507 -1.954848 0.6222546
8 C 2 -0.04581149 -6.3230167 -1.491114 0.8714535
9 C 3 -0.41610973 0.9085831 -1.797661 2.1174894
>
Where you can substitute summarise and its following arguments for any function that returns a data.frame or something that can be coerced to one. If lists are the target, ldply is your friend.

Resources