I have written the code below to obtain a bootstrap estimate of a mean. My objective is to view the numbers selected from the data set, ideally in the order they are selected, by the function boot in the boot package.
The data set only contains three numbers: 1, 10, and 100 and I am only using two bootstrap samples.
The estimated mean is 23.5 and the R code below indicates that the six numbers included one '1', four '10' and one '100'. However, there are 30 possible combinations of those numbers that would have resulted in a mean of 23.5.
Is there a way for me to determine which of those 30 possible combinations is the combination that actually appeared in the two bootstrap samples?
library(boot)
set.seed(1234)
dat <- c(1, 10, 100)
av <- function(dat, i) { sum(dat[i])/length(dat[i]) }
av.boot <- boot(dat, av, R = 2)
av.boot
#
# ORDINARY NONPARAMETRIC BOOTSTRAP
#
#
# Call:
# boot(data = dat, statistic = av, R = 2)
#
#
# Bootstrap Statistics :
# original bias std. error
# t1* 37 -13.5 19.09188
#
mean(dat) + -13.5
# [1] 23.5
# The two samples must have contained one '1', four '10' and one '100',
# but there are 30 possibilities.
# Which of these 30 possible sequences actual occurred?
# This code shows there must have been one '1', four '10' and one '100'
# and shows the 30 possible combinations
my.combos <- expand.grid(V1 = c(1, 10, 100),
V2 = c(1, 10, 100),
V3 = c(1, 10, 100),
V4 = c(1, 10, 100),
V5 = c(1, 10, 100),
V6 = c(1, 10, 100))
my.means <- apply(my.combos, 1, function(x) {( (x[1] + x[2] + x[3])/3 + (x[4] + x[5] + x[6])/3 ) / 2 })
possible.samples <- my.combos[my.means == 23.5,]
dim(possible.samples)
n.1 <- rowSums(possible.samples == 1)
n.10 <- rowSums(possible.samples == 10)
n.100 <- rowSums(possible.samples == 100)
n.1[1]
n.10[1]
n.100[1]
length(unique(n.1)) == 1
length(unique(n.10)) == 1
length(unique(n.100)) == 1
I think you can determine the numbers sampled and the order in which they are sampled with the code below. You have to extract the function ordinary.array from the boot package and paste that function into your R code. Then specify the values for n, R and strata, where n is the number of observations in the data set and R is the number of replicate samples you want.
I do not know how general this approach is, but it worked with a couple of simple examples I tried, including the example below.
library(boot)
set.seed(1234)
dat <- c(1, 10, 100, 1000)
av <- function(dat, i) { sum(dat[i])/length(dat[i]) }
av.boot <- boot(dat, av, R = 3)
av.boot
#
# ORDINARY NONPARAMETRIC BOOTSTRAP
#
#
# Call:
# boot(data = dat, statistic = av, R = 3)
#
#
# Bootstrap Statistics :
# original bias std. error
# t1* 277.75 -127.5 132.2405
#
#
mean(dat) + -127.5
# [1] 150.25
# boot:::ordinary.array
ordinary.array <- function (n, R, strata)
{
inds <- as.integer(names(table(strata)))
if (length(inds) == 1L) {
output <- sample.int(n, n * R, replace = TRUE)
dim(output) <- c(R, n)
}
else {
output <- matrix(as.integer(0L), R, n)
for (is in inds) {
gp <- seq_len(n)[strata == is]
output[, gp] <- if (length(gp) == 1)
rep(gp, R)
else bsample(gp, R * length(gp))
}
}
output
}
# I think the function ordinary.array determines which elements
# of the data are sampled in each of the R samples
set.seed(1234)
ordinary.array(n=4,R=3,1)
# [,1] [,2] [,3] [,4]
# [1,] 1 3 1 3
# [2,] 3 4 1 3
# [3,] 3 3 3 3
#
# which equals:
((1+100+1+100) / 4 + (100+1000+1+100) / 4 + (100+100+100+100) / 4) / 3
# [1] 150.25
Related
I have the following function that uses nested loops and honestly I'm not sure how to proceed with making the code run more efficient. It runs fine for 100 sims in my opinion but when I ran for 2000 sims it took almost 12 seconds.
This code will generate any n Brownian Motion simulations and works well, the issue is once the simulation size is increased to say 500+ then it starts to bog down, and when it hits 2k then it's pretty slow ie 12.
Here is the function:
ts_brownian_motion <- function(.time = 100, .num_sims = 10, .delta_time = 1,
.initial_value = 0) {
# TidyEval ----
T <- as.numeric(.time)
N <- as.numeric(.num_sims)
delta_t <- as.numeric(.delta_time)
initial_value <- as.numeric(.initial_value)
# Checks ----
if (!is.numeric(T) | !is.numeric(N) | !is.numeric(delta_t) | !is.numeric(initial_value)){
rlang::abort(
message = "All parameters must be numeric values.",
use_cli_format = TRUE
)
}
# Initialize empty data.frame to store the simulations
sim_data <- data.frame()
# Generate N simulations
for (i in 1:N) {
# Initialize the current simulation with a starting value of 0
sim <- c(initial_value)
# Generate the brownian motion values for each time step
for (t in 1:(T / delta_t)) {
sim <- c(sim, sim[t] + rnorm(1, mean = 0, sd = sqrt(delta_t)))
}
# Bind the time steps, simulation values, and simulation number together in a data.frame and add it to the result
sim_data <- rbind(
sim_data,
data.frame(
t = seq(0, T, delta_t),
y = sim,
sim_number = i
)
)
}
# Clean up
sim_data <- sim_data %>%
dplyr::as_tibble() %>%
dplyr::mutate(sim_number = forcats::as_factor(sim_number)) %>%
dplyr::select(sim_number, t, y)
# Return ----
attr(sim_data, ".time") <- .time
attr(sim_data, ".num_sims") <- .num_sims
attr(sim_data, ".delta_time") <- .delta_time
attr(sim_data, ".initial_value") <- .initial_value
return(sim_data)
}
Here is some output of the function:
> ts_brownian_motion(.time = 10, .num_sims = 25)
# A tibble: 275 × 3
sim_number t y
<fct> <dbl> <dbl>
1 1 0 0
2 1 1 -2.13
3 1 2 -1.08
4 1 3 0.0728
5 1 4 0.562
6 1 5 0.255
7 1 6 -1.28
8 1 7 -1.76
9 1 8 -0.770
10 1 9 -0.536
# … with 265 more rows
# ℹ Use `print(n = ...)` to see more rows
As suggested in the comments, if you want speed, you should use cumsum. You need to be clear what type of Brownian Motion you want (arithmetic, geometric). For geometric Brownian motion, you'll need to correct the approximation error by adjusting the mean. As an example, the NMOF package (which I maintain), contains a function gbm that implements geometric Brownian Motion through cumsum. Here is an example call for 2000 paths with 100 timesteps each.
library("NMOF")
library("zoo") ## for plotting
timesteps <- 100
system.time(b <- NMOF::gbm(2000, tau = 1, timesteps = 100, r = 0, v = 1))
## user system elapsed
## 0.013 0.000 0.013
dim(b) ## each column is one path, starting at time zero
## [1] 101 2000
plot(zoo(b[, 1:5], 0:timesteps), plot.type = "single")
I have a function with five variables that I want to maximize using only an specific set of parameters for each variable.
Are there any methods in R that can do this, other than by brutal force? (e.g. Particle Swarm Optimization, Genetic Algorithm, Greedy, etc.). I have read a few packages but they seem to create their own set of parameters from within a given range. I am only interested in optimizing the set of options provided.
Here is a simplified version of the problem:
#Example of 5 variable function to optimize
Fn<-function(x){
a=x[1]
b=x[2]
c=x[3]
d=x[4]
e=x[5]
SUM=a+b+c+d+e
return(SUM)
}
#Parameters for variables to optimize
Vars=list(
As=c(seq(1.5,3, by = 0.3)), #float
Bs=c(1,2), #Binary
Cs=c(seq(1,60, by=10)), #Integer
Ds=c(seq(60,-60, length.out=5)), #Negtive
Es=c(1,2,3)
)
#Full combination
FullCombn= expand.grid(Vars)
Results=data.frame(I=as.numeric(), Sum=as.numeric())
for (i in 1:nrow(FullCombn)){
ParsI=FullCombn[i,]
ResultI=Fn(ParsI)
Results=rbind(Results,c(I=i,Sum=ResultI))
}
#Best iteration (Largest result)
Best=Results[Results[, 2] == max(Results[, 2]),]
#Best parameters
FullCombn[Best$I,]
Two more possibilities. Both minimize by default, so I flip the sign in your objective function (i.e. return -SUM).
#Example of 5 variable function to optimize
Fn<-function(x, ...){
a=x[1]
b=x[2]
c=x[3]
d=x[4]
e=x[5]
SUM=a+b+c+d+e
return(-SUM)
}
#Parameters for variables to optimize
Vars=list(
As=c(seq(1.5,3, by = 0.3)), #float
Bs=c(1,2), #Binary
Cs=c(seq(1,60, by=10)), #Integer
Ds=c(seq(60,-60, length.out=5)), #Negtive
Es=c(1,2,3)
)
First, a grid search. Exactly what you did, just convenient. And the implementation allows you to distribute the evaluations of the objective function.
library("NMOF")
gridSearch(fun = Fn,
levels = Vars)[c("minfun", "minlevels")]
## 5 variables with 6, 2, 6, 5, ... levels: 1080 function evaluations required.
## $minfun
## [1] -119
##
## $minlevels
## [1] 3 2 51 60 3
An alternative: a simple Local Search. You start with a valid initial guess, and then move randomly through possible feasible solutions. The key ingredient is the neighbourhood function. It picks one element randomly and then, again randomly, sets this element to one allowed value.
nb <- function(x, levels, ...) {
i <- sample(length(levels), 1)
x[i] <- sample(levels[[i]], 1)
x
}
(There would be better algorithms for neighbourhood functions; but this one is simple and so demonstrates the idea well.)
LSopt(Fn, list(x0 = c(1.8, 2, 11, 30, 2), ## a feasible initial solution
neighbour = nb,
nI = 200 ## iterations
),
levels = Vars)$xbest
## Local Search.
## ##...
## Best solution overall: -119
## [1] 3 2 51 60 3
(Disclosure: I am the maintainer of package NMOF, which provides functions gridSearch and LSopt.)
In response to the comment, a few remarks on Local Search and the neighbourhood function above (nb). Local Search, as implemented in
LSopt, will start with an arbitrary solution, and
then change that solution slightly. This new solution,
called a neighbour, will be compared (by its
objective-function value) to the old solution. If the new solution is
better, it becomes the current solution; otherwise it
is rejected and the old solution remains the current one.
Then the algorithm repeats, for a number of iterations.
So, in short, Local Search is not random sampling, but
a guided random-walk through the search space. It's
guided because only better solutions get accepted, worse one's get rejected. In this sense, LSopt will narrow down on good parameter values.
The implementation of the neighbourhood is not ideal
for two reasons. The first is that a solution may not
be changed at all, since I sample from feasible
values. But for a small set of possible values as here,
it might often happen that the same element is selected
again. However, for larger search spaces, this
inefficiency is typically negligible, since the
probability of sampling the same value becomes
smaller. Often so small, that the additional code for
testing if the solution has changed becomes more
expensive that the occasionally-wasted iteration.
A second thing could be improved, albeit through a more
complicated function. And again, for this small problem it does not matter. In the current neighbourhood, an
element is picked and then set to any feasible value.
But that means that changes from one solution to the
next might be large. Instead of picking any feasible values of the As,
in realistic problems it will often be better to pick a
value close to the current value. For example, when you are at 2.1, either move to 1.8 or 2.4, but not to 3.0. (This reasoning is only relevant, of course, if the variable in question is on a numeric or at least ordinal scale.)
Ultimately, what implementation works well can be
tested only empirically. Many more details are in this tutorial.
Here is one alternative implementation. A solution is now a vector of positions for the original values, e.g. if x[1] is 2, it "points" to 1.8, if x[2] is 2, it points to 1, and so on.
## precompute lengths of vectors in Vars
lens <- lengths(Vars)
nb2 <- function(x, lens, ...) {
i <- sample(length(lens), 1)
if (x[i] == 1L) {
x[i] <- 2
} else if (x[i] == lens[i]) {
x[i] <- lens[i] - 1
} else
x[i] <- x[i] + sample(c(1, -1), 1)
x
}
## the objective function now needs to map the
## indices in x back to the levels in Vars
Fn2 <- function(x, levels, ...){
y <- mapply(`[`, levels, x)
## => same as
## y <- numeric(length(x))
## y[1] <- Vars[[1]][x[1]]
## y[2] <- Vars[[2]][x[2]]
## ....
SUM <- sum(y)
return(-SUM)
}
xbest <- LSopt(Fn2,
list(x0 = c(1, 1, 1, 1, 1), ## an initial solution
neighbour = nb2,
nI = 200 ## iterations
),
levels = Vars,
lens = lens)$xbest
## Local Search.
## ....
## Best solution overall: -119
## map the solution back to the values
mapply(`[`, Vars, xbest)
## As Bs Cs Ds Es
## 3 2 51 60 3
Here is a genetic algorithm solution with package GA.
The key is to write a function decode enforcing the constraints, see the package vignette.
library(GA)
#> Loading required package: foreach
#> Loading required package: iterators
#> Package 'GA' version 3.2.2
#> Type 'citation("GA")' for citing this R package in publications.
#>
#> Attaching package: 'GA'
#> The following object is masked from 'package:utils':
#>
#> de
decode <- function(x) {
As <- Vars$As
Bs <- Vars$Bs
Cs <- Vars$Cs
Ds <- rev(Vars$Ds)
# fix real variable As
i <- findInterval(x[1], As)
if(x[1L] - As[i] < As[i + 1L] - x[1L])
x[1L] <- As[i]
else x[1L] <- As[i + 1L]
# fix binary variable Bs
if(x[2L] - Bs[1L] < Bs[2L] - x[2L])
x[2L] <- Bs[1L]
else x[2L] <- Bs[2L]
# fix integer variable Cs
i <- findInterval(x[3L], Cs)
if(x[3L] - Cs[i] < Cs[i + 1L] - x[3L])
x[3L] <- Cs[i]
else x[3L] <- Cs[i + 1L]
# fix integer variable Ds
i <- findInterval(x[4L], Ds)
if(x[4L] - Ds[i] < Ds[i + 1L] - x[4L])
x[4L] <- Ds[i]
else x[4L] <- Ds[i + 1L]
# fix the other, integer variable
x[5L] <- round(x[5L])
setNames(x , c("As", "Bs", "Cs", "Ds", "Es"))
}
Fn <- function(x){
x <- decode(x)
# a <- x[1]
# b <- x[2]
# c <- x[3]
# d <- x[4]
# e <- x[5]
# SUM <- a + b + c + d + e
SUM <- sum(x, na.rm = TRUE)
return(SUM)
}
#Parameters for variables to optimize
Vars <- list(
As = seq(1.5, 3, by = 0.3), # Float
Bs = c(1, 2), # Binary
Cs = seq(1, 60, by = 10), # Integer
Ds = seq(60, -60, length.out = 5), # Negative
Es = c(1, 2, 3)
)
res <- ga(type = "real-valued",
fitness = Fn,
lower = c(1.5, 1, 1, -60, 1),
upper = c(3, 2, 51, 60, 3),
popSize = 1000,
seed = 123)
summary(res)
#> ── Genetic Algorithm ───────────────────
#>
#> GA settings:
#> Type = real-valued
#> Population size = 1000
#> Number of generations = 100
#> Elitism = 50
#> Crossover probability = 0.8
#> Mutation probability = 0.1
#> Search domain =
#> x1 x2 x3 x4 x5
#> lower 1.5 1 1 -60 1
#> upper 3.0 2 51 60 3
#>
#> GA results:
#> Iterations = 100
#> Fitness function value = 119
#> Solutions =
#> x1 x2 x3 x4 x5
#> [1,] 2.854089 1.556080 46.11389 49.31045 2.532682
#> [2,] 2.869408 1.638266 46.12966 48.71106 2.559620
#> [3,] 2.865254 1.665405 46.21684 49.04667 2.528606
#> [4,] 2.866494 1.630416 46.12736 48.78017 2.530454
#> [5,] 2.860940 1.650015 46.31773 48.92642 2.521276
#> [6,] 2.851644 1.660358 46.09504 48.81425 2.525504
#> [7,] 2.855078 1.611837 46.13855 48.62022 2.575492
#> [8,] 2.857066 1.588893 46.15918 48.60505 2.588992
#> [9,] 2.862644 1.637806 46.20663 48.92781 2.579260
#> [10,] 2.861573 1.630762 46.23494 48.90927 2.555612
#> ...
#> [59,] 2.853788 1.640810 46.35649 48.87381 2.536682
#> [60,] 2.859090 1.658127 46.15508 48.85404 2.590679
apply(res#solution, 1, decode) |> t() |> unique()
#> As Bs Cs Ds Es
#> [1,] 3 2 51 60 3
Created on 2022-10-24 with reprex v2.0.2
Let's assume we want to generate n samples from a multinomial distribution from given probabilities p. This works well with sample or rmultinorm. The totals can then be counted with table. Now I wonder if there is a direct way (or another distribution) available to get the result of table directly without generating complete sample vectors.
Here an example:
set.seed(123)
n <- 10000 # sample size
p <- c(0.1, 0.2, 0.7) # probabilities, sum up to 1.0
## 1) approach with sample
x <- sample(1:3, size = n, prob = p, replace = TRUE)
table(x)
# x
# 1 2 3
# 945 2007 7048
## 2) approach with rmultinorm
x <- rmultinom(n, size = 1, prob = p) * 1:3
table(x[x != 0])
# 1 2 3
# 987 1967 7046
I generate a network with npeople(=80), ncomp(=4) components and I want each component to have density equal to dens(=0.2).
I want to optimize 2 lines of the code which take most of the time (especially if I want to have 5k people in the network).
the 2 lines are:
# adjust probability to keep density
nodes[,p:= as.numeric(min(c(1, p * (1/(mean(nodes$p) / c.dens))))), by = c("ID","ALTERID")]
# simulate edges
nodes[, edge := sample(c(0,1),1, prob = c(1-p,p)), by = c("ID","ALTERID")]
I have tried using the lapply() function, but the execution time increased - see below the line of code:
nodes[,lapply(.SD, function(p) min(c(1, p * (1/(mean(nodes$p) / c.dens))))), by = c("ID","ALTERID")]
rm(list=ls())
library(data.table)
library(intergraph)
library(igraph)
library(Matrix)
library(profvis)
library(ggplot2)
draw.var <- function(n, var1, rho, mean){
C <- matrix(rho, nrow = 2, ncol = 2)
diag(C) <- 1
C <- chol(C)
S <- rnorm(n, mean = mean)
S <- cbind(scale(var1)[1:n],S)
ZS <- S %*% C
return(ZS[,2])
}
set.seed(1123)
profvis({
# create empty list to store data
dt.list <- list()
npeople <- 500
dens <- .2
OC.impact <- FALSE
cor_iv_si <- .6
cor_iv_uc <- 0
cor_uc_oc <- 0.6
ncomp <- 4
beta_oc <- 2 # observed characteristics
beta_uc <- 2 # unobserved characteristics
beta_si <- 1
# create data.table
dt.people <- data.table(ego = 1:npeople)
# draw observed characteristics
dt.people[, OC := abs(rt(npeople,2))]
# draw unobserved variable
dt.people[, UC := draw.var(npeople, dt.people$OC, rho = cor_uc_oc,mean = 5)]
# set component idientifier
dt.people$group <- cut_number(dt.people$UC, ncomp,labels = F)
for(q in 1:ncomp){
# subset comp
dt.sub <- dt.people[group == q]
# create undirected graph
nodes <- as.data.table(t(combn(dt.sub$ego, 2)))
setnames(nodes,c("ID","ALTERID"))
# add attributes
nodes <- merge(nodes,dt.people[,list(ID = ego, ID.UC = UC, ID.OC = OC)], by = "ID")
nodes <- merge(nodes,dt.people[,list(ALTERID = ego, ALTERID.UC = UC, ALTERID.OC = OC)], by = "ALTERID")
# calculate distance
nodes[,d := abs(ID.UC - ALTERID.UC)]
# estimate the appropiate density per component
n.edges <- (dens * (npeople * (npeople - 1)))/ncomp
n.nodes <- npeople/ncomp
c.dens <- n.edges/(n.nodes * (n.nodes - 1))
# estimate initial probability of tie based on distance
coefficient <- log(c.dens / (1 - c.dens))
alpha <- coefficient / mean(nodes$d)
nodes[,p := exp(alpha * d) / (1 + exp(alpha * d))]
# adjust probability to keep density
nodes[,p:= as.numeric(min(c(1, p * (1/(mean(nodes$p) / c.dens))))), by = c("ID","ALTERID")]
# simulate edges
nodes[, edge := sample(c(0,1),1, prob = c(1-p,p)), by = c("ID","ALTERID")]
# keep the edges
nodes <- nodes[edge == 1,list(ID,ALTERID)]
# bind the networks
if(q == 1){
net <- copy(nodes)
} else{
net <- rbind(net,nodes)
}
}
# create opposide direction
net <- rbind(net,net[,list(ID = ALTERID, ALTERID = ID)])
})
This incorporates #BenBolker and # DavidArenburg's suggestions and also incorporates some of data.table's tools.
Non-Equi joins
The OP code loops through each group. One part of the code also uses combn and multiple joins to get the data in the right format. Using non-equi joins, we can combine all of those steps in one data.table call
dt_non_sub <- dt.people[dt.people,
on = .(ego < ego, group = group),
allow.cartesian = T,
nomatch = 0L,
.(group,
ALTERID = i.ego, ID = x.ego,
ID.UC = UC, ID.OC = OC,
ALTERID.OC = i.OC, ALTERID.UC = i.UC,
d = abs(UC - i.UC)) #added to be more efficient
]
# dt_non_sub[, d:= abs(ID.UC - ALTERID.UC)]
Vectorization
The original code was mostly slow because of two calls with by groupings. Since each call split the dataframe in around 8,000 individual groups, there were 8,000 functions calls each time. This eliminates those by using pmin as suggested by #DavidArenburg and then uses runif(N)<p as suggested by #BenBolker. My addition was that since your final result don't seem to care about p, I only assigned the edge by using {} to only return the last thing calculated in the call.
# alpha <- coefficient / mean(nodes$d)
dt_non_sub[,
edge := {
alpha = coefficient / mean(d)
p = exp(alpha * d) / (1 + exp(alpha * d))
p_mean = mean(p)
p = pmin(1, p * (1/(p_mean / c.dens)))
as.numeric(runif(.N)<p)
}
, by = .(group)]
net2 <- rbindlist(dt_non_sub[edge == 1, .(group, ALTERID, ID)],
dt_non_sub[edge == 1, .(group, ID = ALTERID, ALTERID = ID)]
One thing to note is that the vectorization is not 100% identical. Your code was recursive, each split updated the mean(node$p) for the next ID, ALTERID group. If you need that recursive part of the call, there's not much help to make it faster.
In the end, the modified code runs in 20 ms vs. the 810 ms of your original function. The results, while different, are somewhat similar in the total number of results:
Original:
net
ID ALTERID
1: 5 10
2: 10 14
3: 5 25
4: 10 25
5: 14 25
---
48646: 498 458
48647: 498 477
48648: 498 486
48649: 498 487
48650: 498 493
Modified
net2
group ALTERID ID
1: 2 4 3
2: 2 6 4
3: 4 7 1
4: 4 8 7
5: 2 9 4
---
49512: 3 460 500
49513: 3 465 500
49514: 3 478 500
49515: 3 482 500
49516: 3 497 500
I’m trying to simulate the Matlab ewstats function here defined:
https://it.mathworks.com/help/finance/ewstats.html
The results given by Matlab are the following ones:
> ExpReturn = 1×2
0.1995 0.1002
> ExpCovariance = 2×2
0.0032 -0.0017
-0.0017 0.0010
I’m trying to replicate the example with the RiskPortfolios R package:
https://cran.r-project.org/web/packages/RiskPortfolios/RiskPortfolios.pdf
The R code I’m using is this one:
library(RiskPortfolios)
rets <- as.matrix(cbind(c(0.24, 0.15, 0.27, 0.14), c(0.08, 0.13, 0.06, 0.13)))
w <- 0.98
rets
w
meanEstimation(rets, control = list(type = 'ewma', lambda = w))
covEstimation(rets, control = list(type = 'ewma', lambda = w))
The mean estimation is the same of the one in the example, but the covariance matrix is different:
> rets
[,1] [,2]
[1,] 0.24 0.08
[2,] 0.15 0.13
[3,] 0.27 0.06
[4,] 0.14 0.13
> w
[1] 0.98
>
> meanEstimation(rets, control = list(type = 'ewma', lambda = w))
[1] 0.1995434 0.1002031
>
> covEstimation(rets, control = list(type = 'ewma', lambda = w))
[,1] [,2]
[1,] 0.007045044 -0.003857217
[2,] -0.003857217 0.002123827
Am I missing something?
Thanks
They give the same answer if type = "lw" is used:
round(covEstimation(rets, control = list(type = 'lw')), 4)
## 0.0032 -0.0017
## -0.0017 0.0010
They are using different algorithms. From the RiskPortfolio manual:
ewma ... See RiskMetrics (1996)
From the Matlab hlp page:
There is no relationship between ewstats function and the RiskMetrics® approach for determining the expected return and covariance from a return time series.
Unfortunately Matlab does not tell us which algorithm is used.
For those who eventually need an equivalent ewstats function in R, here the code I wrote:
ewstats <- function(RetSeries, DecayFactor=NULL, WindowLength=NULL){
#EWSTATS Expected return and covariance from return time series.
# Optional exponential weighting emphasizes more recent data.
#
# [ExpReturn, ExpCovariance, NumEffObs] = ewstats(RetSeries, ...
# DecayFactor, WindowLength)
#
# Inputs:
# RetSeries : NUMOBS by NASSETS matrix of equally spaced incremental
# return observations. The first row is the oldest observation, and the
# last row is the most recent.
#
# DecayFactor : Controls how much less each observation is weighted than its
# successor. The k'th observation back in time has weight DecayFactor^k.
# DecayFactor must lie in the range: 0 < DecayFactor <= 1.
# The default is DecayFactor = 1, which is the equally weighted linear
# moving average Model (BIS).
#
# WindowLength: The number of recent observations used in
# the computation. The default is all NUMOBS observations.
#
# Outputs:
# ExpReturn : 1 by NASSETS estimated expected returns.
#
# ExpCovariance : NASSETS by NASSETS estimated covariance matrix.
#
# NumEffObs: The number of effective observations is given by the formula:
# NumEffObs = (1-DecayFactor^WindowLength)/(1-DecayFactor). Smaller
# DecayFactors or WindowLengths emphasize recent data more strongly, but
# use less of the available data set.
#
# The standard deviations of the asset return processes are given by:
# STDVec = sqrt(diag(ECov)). The correlation matrix is :
# CorrMat = VarMat./( STDVec*STDVec' )
#
# See also MEAN, COV, COV2CORR.
NumObs <- dim(RetSeries)[1]
NumSeries <- dim(RetSeries)[2]
# size the series and the window
if (is.null(WindowLength)) {
WindowLength <- NumObs
}
if (is.null(DecayFactor)) {
DecayFactor = 1
}
if (DecayFactor <= 0 | DecayFactor > 1) {
stop('Must have 0< decay factor <= 1.')
}
if (WindowLength > NumObs){
stop(sprintf('Window Length #d must be <= number of observations #d',
WindowLength, NumObs))
}
# ------------------------------------------------------------------------
# size the data to the window
RetSeries <- RetSeries[NumObs-WindowLength+1:NumObs, ]
# Calculate decay coefficients
DecayPowers <- seq(WindowLength-1, 0, by = -1)
VarWts <- sqrt(DecayFactor)^DecayPowers
RetWts <- (DecayFactor)^DecayPowers
NEff = sum(RetWts) # number of equivalent values in computation
# Compute the exponentially weighted mean return
WtSeries <- matrix(rep(RetWts, times = NumSeries),
nrow = length(RetWts), ncol = NumSeries) * RetSeries
ERet <- colSums(WtSeries)/NEff;
# Subtract the weighted mean from the original Series
CenteredSeries <- RetSeries - matrix(rep(ERet, each = WindowLength),
nrow = WindowLength, ncol = length(ERet))
# Compute the weighted variance
WtSeries <- matrix(rep(VarWts, times = NumSeries),
nrow = length(VarWts), ncol = NumSeries) * CenteredSeries
ECov <- t(WtSeries) %*% WtSeries / NEff
list(ExpReturn = ERet, ExpCovariance = ECov, NumEffObs = NEff)
}