Using arules, I have got two itemsets, and I want to do subtraction between the two different itemsets when having same items.
> inspect(fsets_model_test)
items support count
[1] {SURFSKINTEMP=6,MODIS_LST=1} 0.01235235 663
[2] {TOTCO=13,MODIS_LST=1} 0.01373104 737
[3] {TOTCO=6,MODIS_LST=1} 0.01393598 748
[4] {TOTO3=15,MODIS_LST=1} 0.01265045 679
[5] {TOTH2OVAP=6,MODIS_LST=1} 0.01548236 831
[6] {TOTH2OVAP=1,MODIS_LST=1} 0.01565004 840
> inspect(fsets_nonsesmic_test)
items support count
[1] {TOTCO=6,MODIS_LST=1} 0.02192761 10013
[2] {TOTCO=13,MODIS_LST=1} 0.02261524 10327
[3] {TOTO3=15,MODIS_LST=1} 0.02432556 11108
[4] {SURFAIRTEMP=3,TOTH2OVAP=1,MODIS_LST=1} 0.01772735 8095
[5] {TOTH2OVAP=1,MODIS_LST=1} 0.02873605 13122
[6] {SURFAIRTEMP=3,TOTH2OVAP=1} 0.01856828 8479
you can see that itemsets fsets_model_test and itemsets fsets_nonsesmic_test have same items {TOTO3=15,MODIS_LST=1}
What I want to do is subtract support between two itemsets, in above case is
0.02432556 - 0.01265045 = 0.01167511, and then get a new itemsets.
How to implement this in arules, thanks
following are the example itemsets
one itemsets
fsets_model_test <- new("itemsets"
, items = new("itemMatrix"
, data = new("ngCMatrix"
, i = c(5L, 121L, 74L, 121L, 67L, 121L, 59L, 121L, 33L, 121L, 28L,
121L)
, p = c(0L, 2L, 4L, 6L, 8L, 10L, 12L)
, Dim = c(125L, 6L)
, Dimnames = list(NULL, NULL)
, factors = list()
)
, itemInfo = structure(list(labels = c("SURFSKINTEMP=1", "SURFSKINTEMP=2",
"SURFSKINTEMP=3", "SURFSKINTEMP=4", "SURFSKINTEMP=5", "SURFSKINTEMP=6",
"SURFSKINTEMP=7", "SURFSKINTEMP=8", "SURFSKINTEMP=9", "SURFSKINTEMP=10",
"SURFSKINTEMP=11", "SURFSKINTEMP=12", "SURFSKINTEMP=13", "SURFSKINTEMP=14",
"SURFSKINTEMP=15", "SURFSKINTEMP=16", "SURFAIRTEMP=1", "SURFAIRTEMP=2",
"SURFAIRTEMP=3", "SURFAIRTEMP=4", "SURFAIRTEMP=5", "SURFAIRTEMP=6",
"SURFAIRTEMP=7", "SURFAIRTEMP=8", "SURFAIRTEMP=9", "SURFAIRTEMP=10",
"SURFAIRTEMP=11", "SURFAIRTEMP=12", "TOTH2OVAP=1", "TOTH2OVAP=2",
"TOTH2OVAP=3", "TOTH2OVAP=4", "TOTH2OVAP=5", "TOTH2OVAP=6", "TOTH2OVAP=7",
"TOTH2OVAP=8", "TOTH2OVAP=9", "TOTH2OVAP=10", "TOTH2OVAP=11",
"TOTH2OVAP=12", "TOTH2OVAP=13", "TOTH2OVAP=14", "TOTH2OVAP=15",
"TOTH2OVAP=16", "TOTH2OVAP=17", "TOTO3=1", "TOTO3=2", "TOTO3=3",
"TOTO3=4", "TOTO3=5", "TOTO3=6", "TOTO3=7", "TOTO3=8", "TOTO3=9",
"TOTO3=10", "TOTO3=11", "TOTO3=12", "TOTO3=13", "TOTO3=14", "TOTO3=15",
"TOTO3=16", "TOTO3=17", "TOTCO=1", "TOTCO=2", "TOTCO=3", "TOTCO=4",
"TOTCO=5", "TOTCO=6", "TOTCO=7", "TOTCO=8", "TOTCO=9", "TOTCO=10",
"TOTCO=11", "TOTCO=12", "TOTCO=13", "TOTCO=14", "TOTCO=15", "TOTCH4=1",
"TOTCH4=2", "TOTCH4=3", "TOTCH4=4", "TOTCH4=5", "TOTCH4=6", "TOTCH4=7",
"TOTCH4=8", "TOTCH4=9", "TOTCH4=10", "TOTCH4=11", "TOTCH4=12",
"TOTCH4=13", "TOTCH4=14", "OLR_ARIS=1", "OLR_ARIS=2", "OLR_ARIS=3",
"OLR_ARIS=4", "OLR_ARIS=5", "OLR_ARIS=6", "OLR_ARIS=7", "OLR_ARIS=8",
"OLR_ARIS=9", "OLR_ARIS=10", "CLROLR_ARIS=1", "CLROLR_ARIS=2",
"CLROLR_ARIS=3", "CLROLR_ARIS=4", "CLROLR_ARIS=5", "CLROLR_ARIS=6",
"CLROLR_ARIS=7", "CLROLR_ARIS=8", "CLROLR_ARIS=9", "CLROLR_ARIS=10",
"OLR_NOAA=1", "OLR_NOAA=2", "OLR_NOAA=3", "OLR_NOAA=4", "OLR_NOAA=5",
"OLR_NOAA=6", "OLR_NOAA=7", "OLR_NOAA=8", "OLR_NOAA=9", "OLR_NOAA=10",
"MODIS_LST=1", "MODIS_LST=2", "MODIS_LST=3", "MODIS_LST=4"),
variables = structure(c(6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L,
2L), .Label = c("CLROLR_ARIS", "MODIS_LST", "OLR_ARIS", "OLR_NOAA",
"SURFAIRTEMP", "SURFSKINTEMP", "TOTCH4", "TOTCO", "TOTH2OVAP",
"TOTO3"), class = "factor"), levels = structure(c(1L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 1L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 2L, 3L, 4L,
1L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 1L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 1L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 2L, 3L, 4L, 5L, 6L, 1L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 2L, 1L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 2L, 1L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 2L, 1L, 10L, 11L, 12L), .Label = c("1", "10", "11",
"12", "13", "14", "15", "16", "17", "2", "3", "4", "5", "6",
"7", "8", "9"), class = "factor")), .Names = c("labels",
"variables", "levels"), row.names = c(NA, -125L), class = "data.frame")
, itemsetInfo = structure(list(), .Names = character(0), row.names = integer(0), class = "data.frame")
)
, tidLists = NULL
, quality = structure(list(support = c(0.0123523493684093, 0.0137310429630734,
0.0139359839028207, 0.0126504452807691, 0.0154823564481872, 0.0156500353988896
), count = c(663, 737, 748, 679, 831, 840)), .Names = c("support",
"count"), row.names = c(NA, 6L), class = "data.frame")
, info = structure(list(data = model_data_tr, ntransactions = 53674L,
support = 0.01), .Names = c("data", "ntransactions", "support"
))
)
another itemsets is:
fsets_nonsesmic_test <- new("itemsets"
, items = new("itemMatrix"
, data = new("ngCMatrix"
, i = c(67L, 121L, 74L, 121L, 59L, 121L, 18L, 28L, 121L, 28L, 121L,
18L, 28L)
, p = c(0L, 2L, 4L, 6L, 9L, 11L, 13L)
, Dim = c(125L, 6L)
, Dimnames = list(NULL, NULL)
, factors = list()
)
, itemInfo = structure(list(labels = c("SURFSKINTEMP=1", "SURFSKINTEMP=2",
"SURFSKINTEMP=3", "SURFSKINTEMP=4", "SURFSKINTEMP=5", "SURFSKINTEMP=6",
"SURFSKINTEMP=7", "SURFSKINTEMP=8", "SURFSKINTEMP=9", "SURFSKINTEMP=10",
"SURFSKINTEMP=11", "SURFSKINTEMP=12", "SURFSKINTEMP=13", "SURFSKINTEMP=14",
"SURFSKINTEMP=15", "SURFSKINTEMP=16", "SURFAIRTEMP=1", "SURFAIRTEMP=2",
"SURFAIRTEMP=3", "SURFAIRTEMP=4", "SURFAIRTEMP=5", "SURFAIRTEMP=6",
"SURFAIRTEMP=7", "SURFAIRTEMP=8", "SURFAIRTEMP=9", "SURFAIRTEMP=10",
"SURFAIRTEMP=11", "SURFAIRTEMP=12", "TOTH2OVAP=1", "TOTH2OVAP=2",
"TOTH2OVAP=3", "TOTH2OVAP=4", "TOTH2OVAP=5", "TOTH2OVAP=6", "TOTH2OVAP=7",
"TOTH2OVAP=8", "TOTH2OVAP=9", "TOTH2OVAP=10", "TOTH2OVAP=11",
"TOTH2OVAP=12", "TOTH2OVAP=13", "TOTH2OVAP=14", "TOTH2OVAP=15",
"TOTH2OVAP=16", "TOTH2OVAP=17", "TOTO3=1", "TOTO3=2", "TOTO3=3",
"TOTO3=4", "TOTO3=5", "TOTO3=6", "TOTO3=7", "TOTO3=8", "TOTO3=9",
"TOTO3=10", "TOTO3=11", "TOTO3=12", "TOTO3=13", "TOTO3=14", "TOTO3=15",
"TOTO3=16", "TOTO3=17", "TOTCO=1", "TOTCO=2", "TOTCO=3", "TOTCO=4",
"TOTCO=5", "TOTCO=6", "TOTCO=7", "TOTCO=8", "TOTCO=9", "TOTCO=10",
"TOTCO=11", "TOTCO=12", "TOTCO=13", "TOTCO=14", "TOTCO=15", "TOTCH4=1",
"TOTCH4=2", "TOTCH4=3", "TOTCH4=4", "TOTCH4=5", "TOTCH4=6", "TOTCH4=7",
"TOTCH4=8", "TOTCH4=9", "TOTCH4=10", "TOTCH4=11", "TOTCH4=12",
"TOTCH4=13", "TOTCH4=14", "OLR_ARIS=1", "OLR_ARIS=2", "OLR_ARIS=3",
"OLR_ARIS=4", "OLR_ARIS=5", "OLR_ARIS=6", "OLR_ARIS=7", "OLR_ARIS=8",
"OLR_ARIS=9", "OLR_ARIS=10", "CLROLR_ARIS=1", "CLROLR_ARIS=2",
"CLROLR_ARIS=3", "CLROLR_ARIS=4", "CLROLR_ARIS=5", "CLROLR_ARIS=6",
"CLROLR_ARIS=7", "CLROLR_ARIS=8", "CLROLR_ARIS=9", "CLROLR_ARIS=10",
"OLR_NOAA=1", "OLR_NOAA=2", "OLR_NOAA=3", "OLR_NOAA=4", "OLR_NOAA=5",
"OLR_NOAA=6", "OLR_NOAA=7", "OLR_NOAA=8", "OLR_NOAA=9", "OLR_NOAA=10",
"MODIS_LST=1", "MODIS_LST=2", "MODIS_LST=3", "MODIS_LST=4"),
variables = structure(c(6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 2L, 2L, 2L,
2L), .Label = c("CLROLR_ARIS", "MODIS_LST", "OLR_ARIS", "OLR_NOAA",
"SURFAIRTEMP", "SURFSKINTEMP", "TOTCH4", "TOTCO", "TOTH2OVAP",
"TOTO3"), class = "factor"), levels = structure(c(1L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 1L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 2L, 3L, 4L,
1L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 1L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 1L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 2L, 3L, 4L, 5L, 6L, 1L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 2L, 1L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 2L, 1L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 2L, 1L, 10L, 11L, 12L), .Label = c("1", "10", "11",
"12", "13", "14", "15", "16", "17", "2", "3", "4", "5", "6",
"7", "8", "9"), class = "factor")), .Names = c("labels",
"variables", "levels"), row.names = c(NA, -125L), class = "data.frame")
, itemsetInfo = structure(list(), .Names = character(0), row.names = integer(0), class = "data.frame")
)
, tidLists = NULL
, quality = structure(list(support = c(0.0219276058330541, 0.0226152387334415,
0.024325561329628, 0.0177273513650827, 0.0287360475123675, 0.0185682782241552
), count = c(10013, 10327, 11108, 8095, 13122, 8479)), .Names = c("support",
"count"), row.names = c(NA, 6L), class = "data.frame")
, info = structure(list(data = nonsesmic_data_tr, ntransactions = 456639L,
support = 0.01), .Names = c("data", "ntransactions", "support"
))
)
If the two sets come from transaction data that are compatible (see ? itemCoding) then you can use match to find matching itemsets in the two sets. After that, it should be easy to subtract the support.
Related
I am estimating a panel regression model, and I need to add the cross sectional average of the dependent variable and regressors to the model.
I am struggling to implement the cross sectional averages in R. Can anyone help me out.
So I have a panel regression code below - using plm package.
I need to add cross sectional average of variable A, B, C and D to the right hand side of the regression
library(plm)
panel_fe <- plm(A ~ B+ C + D, model = "fd", effect="individual", data = PanelS)
So my final regression model would be like this A = B+ C+D + A_bar + B_bar + C_bar + D_bar, where A_bar, B_bar , C_bar and D_bar are the cross sectional averages of A, B,C and D respectively.
My panel datasets is below, PanelS.
structure(list(Country = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L), .Label = c("CountryA", "CountryB",
"CountryC", "CountryD", "CountryE", "CountryF", "CountryG", "CountryH",
"CountryI", "CountryJ"), class = "factor"), Year = structure(c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L), .Label = c("2000", "2001",
"2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009",
"2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017",
"2018", "2019"), class = "factor"), A = c(0.051539, 0.064525,
0.014292, 0.018774, 0.035449, 0.021988, 0.02396, 0.011415, 0.010358,
-0.029607, -0.020427, -0.012734, 0.006683, 0.007373, -0.039712,
-0.005499, 0.008682, 0.015326, 0.020524, 0.015101, 0.035355,
0.031157, 0.023387, 0.024198, 0.035353, 0.053873, 0.038743, 0.042338,
0.034935, 0.015377, 0.010599, 0.015154, 0.002919, 0.024291, 0.043819,
0.015901, 0.01897, 0.027767, 0.015992, 0.041976, 0.011223, 0.006144,
0.000778, 0.005873, 0.007194, -0.022017, -0.023338, -0.037765,
-0.049356, 0.026135, 0.035633, 0.015691, -0.006196, -0.00025,
0.001181, -0.001472, -0.009324, -0.022664, -0.022623, -0.019586,
-0.012207, -0.004603, -0.013073, -0.010771, -0.009882, -0.014417,
-0.031812, -0.043885, -0.050883, -0.039834, -0.020299, -0.000684,
0.011216, 0.005419, 0.000939, -0.005508, 0.006266, -0.008077,
-0.016137, -0.012681, 0.031612, 0.043729, 0.009314, 0.002734,
-0.012284, 0.002403, 0.016807, 0.019995, 0.033096, 0.024383,
0.010588, 0.019833, 0.031837, 0.03127, 0.029059, 0.020708, 0.019296,
0.017787, 0.032074, 0.027125, 0.005673, 0.003698, -5.3e-05, 0.001794,
-0.011977, -0.008686, -0.031588, -0.039411, -0.073931, -0.076715,
-0.039171, -0.025797, -0.007637, 0.00345, 0.009101, 0.01674,
-0.006968, -0.019178, -0.02438, -0.039663, 0.078313, 0.06707,
0.062822, 0.050771, 0.041274, 0.043921, 0.046429, 0.039418, 0.034671,
0.017356, 0.001054, 0.00414, 0.00226, 0.00275, 0.00085, 0.00495,
0.001276, -0.001446, -0.005771, -0.007513, 0.053734, 0.038679,
0.017375, 0.01438, 0.018403, 0.032943, 0.025539, 0.032463, 0.032267,
0.034009, 0.018229, 0.008958, 0.010079, 0.00749, 0.000604, 0.001948,
0.011782, 0.013253, 0.007898, 0.007546, 0.018052, -0.001123,
-0.012597, -0.042292, -0.058516, -0.022736, -0.03841, -0.050843,
-0.073979, -0.097242, -0.024712, 0.038037, 0.048685, -0.00624,
0.075575, 0.044947, 0.097171, 0.086809, 0.079856, 0.068521, 0.008062,
-0.00911, -0.010527, -4.3e-05, 0.002428, 0.004422, 0.008752,
0.019602, 0.01724, 0.01965, -0.008816, 0.011466, 0.020956, 0.021873,
0.021772, 0.024495, 0.021354, 0.015267, 0.018769, 0.016904),
C = c(0.75345, 0.70657, 0.645051, 0.510055, 0.433786, 0.35728,
0.265817, 0.208721, 0.163261, 0.130248, 0.136607, 0.153873,
0.152275, 0.166592, 0.170559, 0.27089, 0.259813, 0.292847,
0.253142, 0.222618, 0.56764082, 0.523543, 0.485083, 0.49081,
0.461501, 0.44156, 0.374122, 0.315494, 0.27346, 0.333132,
0.401818, 0.425879, 0.460709, 0.448942, 0.440456, 0.442703,
0.397737, 0.372338, 0.359446, 0.340254, 0.064305, 0.05107,
0.047682, 0.056584, 0.055981, 0.051134, 0.047025, 0.046318,
0.037655, 0.045041, 0.071989, 0.066074, 0.061057, 0.097641,
0.101621, 0.105545, 0.09996, 0.099131, 0.091119, 0.082012,
0.120817, 0.120871, 0.138383, 0.13023, 0.141247, 0.146088,
0.119133, 0.100396, 0.084592, 0.185873, 0.368416, 0.479167,
0.4367, 0.421837, 0.400428, 0.416259, 0.37072, 0.40398, 0.390126,
0.371126, 0.079576, 0.074647, 0.076712, 0.074295, 0.074504,
0.079053, 0.080224, 0.082991, 0.082006, 0.15357, 0.161465,
0.201522, 0.190049, 0.219974, 0.236873, 0.227428, 0.219862,
0.200938, 0.223426, 0.209529, 0.217219, 0.224867, 0.258694,
0.248207, 0.221093, 0.189452, 0.159052, 0.124236, 0.119492,
0.123362, 0.217807, 0.296186, 0.339882, 0.371345, 0.376212,
0.391509, 0.378059, 0.373931, 0.351043, 0.347354, 0.440547,
0.424547, 0.409236, 0.401795, 0.427482, 0.426416, 0.399297,
0.381117, 0.339041, 0.325607, 0.415314, 0.469047, 0.482712,
0.536225, 0.562292, 0.598259, 0.636417, 0.631764, 0.612668,
0.596271, 0.605061, 0.503479, 0.518971, 0.498057, 0.492731,
0.484527, 0.486885, 0.43596, 0.388967, 0.374978, 0.407324,
0.381025, 0.371731, 0.375149, 0.402248, 0.449982, 0.437387,
0.422554, 0.407331, 0.389125, 0.989067, 1.049344, 1.070812,
1.048631, 1.014561, 1.028734, 1.073949, 1.036117, 1.03103,
1.094155, 1.267447, 1.474942, 1.752192, 1.619444, 1.784347,
1.802256, 1.770079, 1.807951, 1.792139, 1.862386, 0.601394,
0.590658, 0.579365, 0.597035, 0.633089, 0.649877, 0.673465,
0.667047, 0.639942, 0.655222, 0.729901, 0.823816, 0.79801,
0.811354, 0.787169, 0.756694, 0.72207, 0.692768, 0.651024,
0.617801), B = c(0.147502302, 0.043680673, -0.212478849,
-0.266834333, -0.228099071, -0.199890362, -0.968175801, 1.047500546,
1.273127656, 1.227657506, -0.286068921, -1.356896168, -1.442625298,
-0.291748363, 2.029875219, 1.099611751, -1.112127832, -0.894025857,
0.103213651, 0.286801553, 0.756833023, 0.591945192, 0.525259532,
0.466656359, 0.706692697, -2.361722697, -2.777257989, -4.097114222,
-4.564987155, 2.317853991, 3.44030537, 3.034469093, 5.845290721,
0.403542521, 0.128582254, 0.817094156, -0.886707561, -2.998573025,
-0.491794488, -0.856367773, 0.023343476, -0.209503364, -0.084839186,
-0.146285026, -0.256672799, -0.093852713, 0.145824486, 0.434606031,
0.966980327, 0.67904687, -0.292659443, -0.487763914, -0.084930583,
-0.32722087, -0.442172133, -0.168366978, -0.186469629, 0.046322287,
0.181126569, 0.303486593, 0.171541123, -0.348150815, -0.407466419,
-0.624622679, -0.354132366, -0.15050691, 0.700892294, 0.67692383,
1.014111655, 0.862019536, 0.395600738, -0.256706715, -0.542246369,
-0.539422399, -0.405088653, -0.247954994, -0.497333992, -0.010723655,
0.393516751, 0.169750037, -0.581903347, -0.730163914, 0.351894514,
0.629568917, 0.882078894, 0.760041333, -0.564317727, -0.57799292,
-0.433736512, 0.513350369, 0.55464973, -0.224497194, -0.074326596,
-0.123301819, -0.432013928, -0.25316664, -0.374406673, 0.116449941,
0.308969388, 0.252824183, 2.398228162, -0.033362631, -1.681378615,
-3.655293426, -2.793256764, -3.636310622, 0.149490332, 3.951131246,
7.177449077, 4.831325877, 2.050070679, 1.314471427, -1.687424783,
-3.796189127, -3.329685346, -1.695252718, -3.010416797, -2.414597902,
1.199960369, 4.661041564, 0.531518012, -1.384184059, -0.64216453,
-0.13206166, 0.249287935, -0.153010531, -0.987952985, -1.71711917,
-0.678751076, 0.890062065, 1.663691535, 1.883735194, 2.171029985,
2.383501603, 1.490313839, -0.732542129, -0.291797363, -1.655272704,
-1.613245217, -1.275038743, -0.789256935, -3.589249982, 0.502475039,
1.840081099, 1.141218417, 3.130100399, 3.94751837, 0.97811035,
0.013586974, -3.245960526, -2.068241886, -1.82476664, -1.481654499,
0.37039449, -1.516414277, -1.722381744, 0.683458083, 0.153189319,
3.410781995, 0.067011953, -3.09418792, -4.09753755, -4.682167411,
-1.333607727, 2.505605899, -4.332639317, -2.190945016, 4.048457741,
11.60535564, 13.61047901, 5.145259686, -0.712611552, -3.385649938,
7.214394614, -10.34401695, -1.841542179, -6.437949187, -4.545422837,
-0.012548047, 2.881273043, 3.227611639, 10.96399365, 16.38843255,
14.72001327, -13.84595255, -10.51570643, -13.59695535, -36.70577424,
-12.07070647, 12.51742535, 52.88207865, 9.143152612, -7.818895359,
-15.57456939, -21.31957866, -23.55720863, -5.574415019, 5.783084584,
12.02189272, 22.93207708), D = c(0.77780751, 0.793229898,
0.80623893, 0.821155065, 0.836880111, 0.854312944, 0.873660631,
0.890537317, 0.907536298, 0.912375095, 0.929637942, 0.946439284,
0.965000087, 0.97726773, 0.986870808, 1, 1.019208507, 1.037842597,
1.054711181, 1.072171599, 0.534008473, 0.566583199, 0.58762954,
0.601043497, 0.63362178, 0.673913677, 0.719447102, 0.799187909,
0.864173776, 0.899162389, 0.909465125, 0.96350569, 0.978220642,
0.971679886, 0.976158221, 1, 1.025374896, 1.065804414, 1.108567186,
1.166769344, 0.588726028, 0.64526073, 0.733094431, 0.718268082,
0.746291144, 0.799900392, 0.846050389, 0.894179583, 1.015232882,
0.982856394, 1.012948099, 1.041332642, 1.032947106, 1.013566583,
0.980944689, 1, 1.020576612, 1.061740647, 1.117831183, 1.159906251,
0.750587042, 0.769670674, 0.790024355, 0.801712216, 0.817505148,
0.83991247, 0.856517319, 0.878345181, 0.914006005, 0.920044857,
0.949573071, 0.955207703, 0.978810398, 0.985618398, 0.996205139,
1, 1.004364708, 1.017159213, 1.021013703, 1.02682649, 0.825278825,
0.836048671, 0.847570474, 0.858769029, 0.86834942, 0.871868036,
0.875331803, 0.890827568, 0.898928134, 0.915485416, 0.921392822,
0.931246968, 0.945182975, 0.963702812, 0.981800571, 1, 1.013277522,
1.026999204, 1.044176589, 1.067069774, 0.490666665, 0.523850087,
0.54906662, 0.570457925, 0.597126217, 0.632406036, 0.689467717,
0.775073059, 0.828560075, 0.827109078, 0.842215091, 0.887572897,
0.923280339, 0.960610381, 0.988936452, 1, 1.022699304, 1.054533263,
1.098615084, 1.134067127, 0.757140805, 0.809228408, 0.851488047,
0.884918505, 0.889385715, 0.916751643, 0.948479832, 0.960072842,
0.956196673, 0.911566837, 0.884542463, 0.89644222, 0.917048164,
0.929279352, 0.929337342, 1, 1.010128912, 1.026719845, 1.029923385,
1.062349178, 0.786853444, 0.804351028, 0.831286834, 0.859995963,
0.886334727, 0.906191485, 0.937863282, 0.969963165, 1.012104032,
1.038112793, 1.036283847, 1.046222, 1.043339336, 1.02279939,
1.002888566, 1, 0.994233243, 0.998082845, 0.997049083, 0.998951287,
0.740171055, 0.770579402, 0.802054487, 0.833603662, 0.865965514,
0.90147914, 0.937354271, 0.969378485, 0.99123068, 0.992657113,
0.994179737, 0.993983379, 0.992844694, 0.99680058, 0.994574042,
1, 1.003228988, 1.016266499, 1.028341184, 1.04261954, 0.801617134,
0.817716283, 0.834621959, 0.850140657, 0.863935678, 0.880664424,
0.899645623, 0.9226463, 0.944486016, 0.945115307, 0.95522518,
0.964280334, 0.975483583, 0.983073825, 0.988745617, 1, 1.005225593,
1.010468623, 1.020086873, 1.032605559)), row.names = c("CountryA-2000",
"CountryA-2001", "CountryA-2002", "CountryA-2003", "CountryA-2004",
"CountryA-2005", "CountryA-2006", "CountryA-2007", "CountryA-2008",
"CountryA-2009", "CountryA-2010", "CountryA-2011", "CountryA-2012",
"CountryA-2013", "CountryA-2014", "CountryA-2015", "CountryA-2016",
"CountryA-2017", "CountryA-2018", "CountryA-2019", "CountryB-2000",
"CountryB-2001", "CountryB-2002", "CountryB-2003", "CountryB-2004",
"CountryB-2005", "CountryB-2006", "CountryB-2007", "CountryB-2008",
"CountryB-2009", "CountryB-2010", "CountryB-2011", "CountryB-2012",
"CountryB-2013", "CountryB-2014", "CountryB-2015", "CountryB-2016",
"CountryB-2017", "CountryB-2018", "CountryB-2019", "CountryC-2000",
"CountryC-2001", "CountryC-2002", "CountryC-2003", "CountryC-2004",
"CountryC-2005", "CountryC-2006", "CountryC-2007", "CountryC-2008",
"CountryC-2009", "CountryC-2010", "CountryC-2011", "CountryC-2012",
"CountryC-2013", "CountryC-2014", "CountryC-2015", "CountryC-2016",
"CountryC-2017", "CountryC-2018", "CountryC-2019", "CountryD-2000",
"CountryD-2001", "CountryD-2002", "CountryD-2003", "CountryD-2004",
"CountryD-2005", "CountryD-2006", "CountryD-2007", "CountryD-2008",
"CountryD-2009", "CountryD-2010", "CountryD-2011", "CountryD-2012",
"CountryD-2013", "CountryD-2014", "CountryD-2015", "CountryD-2016",
"CountryD-2017", "CountryD-2018", "CountryD-2019", "CountryE-2000",
"CountryE-2001", "CountryE-2002", "CountryE-2003", "CountryE-2004",
"CountryE-2005", "CountryE-2006", "CountryE-2007", "CountryE-2008",
"CountryE-2009", "CountryE-2010", "CountryE-2011", "CountryE-2012",
"CountryE-2013", "CountryE-2014", "CountryE-2015", "CountryE-2016",
"CountryE-2017", "CountryE-2018", "CountryE-2019", "CountryF-2000",
"CountryF-2001", "CountryF-2002", "CountryF-2003", "CountryF-2004",
"CountryF-2005", "CountryF-2006", "CountryF-2007", "CountryF-2008",
"CountryF-2009", "CountryF-2010", "CountryF-2011", "CountryF-2012",
"CountryF-2013", "CountryF-2014", "CountryF-2015", "CountryF-2016",
"CountryF-2017", "CountryF-2018", "CountryF-2019", "CountryG-2000",
"CountryG-2001", "CountryG-2002", "CountryG-2003", "CountryG-2004",
"CountryG-2005", "CountryG-2006", "CountryG-2007", "CountryG-2008",
"CountryG-2009", "CountryG-2010", "CountryG-2011", "CountryG-2012",
"CountryG-2013", "CountryG-2014", "CountryG-2015", "CountryG-2016",
"CountryG-2017", "CountryG-2018", "CountryG-2019", "CountryH-2000",
"CountryH-2001", "CountryH-2002", "CountryH-2003", "CountryH-2004",
"CountryH-2005", "CountryH-2006", "CountryH-2007", "CountryH-2008",
"CountryH-2009", "CountryH-2010", "CountryH-2011", "CountryH-2012",
"CountryH-2013", "CountryH-2014", "CountryH-2015", "CountryH-2016",
"CountryH-2017", "CountryH-2018", "CountryH-2019", "CountryI-2000",
"CountryI-2001", "CountryI-2002", "CountryI-2003", "CountryI-2004",
"CountryI-2005", "CountryI-2006", "CountryI-2007", "CountryI-2008",
"CountryI-2009", "CountryI-2010", "CountryI-2011", "CountryI-2012",
"CountryI-2013", "CountryI-2014", "CountryI-2015", "CountryI-2016",
"CountryI-2017", "CountryI-2018", "CountryI-2019", "CountryJ-2000",
"CountryJ-2001", "CountryJ-2002", "CountryJ-2003", "CountryJ-2004",
"CountryJ-2005", "CountryJ-2006", "CountryJ-2007", "CountryJ-2008",
"CountryJ-2009", "CountryJ-2010", "CountryJ-2011", "CountryJ-2012",
"CountryJ-2013", "CountryJ-2014", "CountryJ-2015", "CountryJ-2016",
"CountryJ-2017", "CountryJ-2018", "CountryJ-2019"), class = c("pdata.frame",
"data.frame"), index = structure(list(Country = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L), .Label = c("CountryA",
"CountryB", "CountryC", "CountryD", "CountryE", "CountryF", "CountryG",
"CountryH", "CountryI", "CountryJ"), class = "factor"), Year = structure(c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L,
18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L,
20L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L), .Label = c("2000", "2001",
"2002", "2003", "2004", "2005", "2006", "2007", "2008", "2009",
"2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017",
"2018", "2019"), class = "factor")), class = c("pindex", "data.frame"
), row.names = c(NA, 200L)))
You can use function Between from package plm to calculate the cross sectional averages and add them to your data:
library(plm)
# PanelS is a pdata.frame (otherwise use pdata.frame(your_data, index))
PanelS$A_bar <- Between(PanelS$A)
PanelS$B_bar <- Between(PanelS$B)
PanelS$C_bar <- Between(PanelS$C)
PanelS$D_bar <- Between(PanelS$D)
mod <- plm(A ~ B + C + D + A_bar + B_bar + C_bar + D_bar, model = "pooling", effect="individual", data = PanelS)
summary(mod)
# Pooling Model
#
# Call:
# plm(formula = A ~ B + C + D + A_bar + B_bar + C_bar + D_bar,
# data = PanelS, effect = "individual", model = "pooling")
#
# Balanced Panel: n = 10, T = 20, N = 200
#
# Residuals:
# Min. 1st Qu. Median 3rd Qu. Max.
# -0.06143690 -0.01311792 0.00070253 0.01186605 0.05107105
#
# Coefficients:
# Estimate Std. Error t-value Pr(>|t|)
# (Intercept) -0.00000000000001042 0.03313743211380626 0.0000 1.000000
# B -0.00076930351859426 0.00020566635571130 -3.7405 0.000242 ***
# C 0.10827039012266901 0.00949296134830719 11.4053 < 0.00000000000000022 ***
# D -0.04222788490989914 0.01136058813979121 -3.7171 0.000264 ***
# A_bar 0.99999999999911215 0.09632471140222754 10.3816 < 0.00000000000000022 ***
# C_bar -0.10827039012256123 0.01033406661607372 -10.4770 < 0.00000000000000022 ***
# D_bar 0.04222788490990802 0.03874710199411169 1.0898 0.277145
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Total Sum of Squares: 0.17549
# Residual Sum of Squares: 0.07128
# R-Squared: 0.59382
# Adj. R-Squared: 0.58119
# F-statistic: 47.0268 on 6 and 193 DF, p-value: < 0.000000000000000222
Note that it seems like you want to estimate a fixed effects model but your estimation has model = "fd" to estimate a first-differenced model. Also note that the cross sectional averages will drop out of the estimation of a fixed effects model.
I have a simple dataframe reproducible by running:
structure(list(cluster = c(1L, 2L, 3L, 4L, 4L, 5L, 6L, 4L, 4L,
7L, 3L, 3L, 4L, 8L, 4L, 5L, 2L, 4L, 9L, 1L, 9L, 10L, 7L, 6L,
4L, 11L, 7L, 10L, 7L, 11L, 12L, 8L, 9L, 1L, 6L, 8L, 4L, 2L, 6L,
1L, 9L, 13L, 10L, 12L, 1L, 7L, 10L, 12L, 12L, 4L, 9L, 13L, 5L,
7L, 5L, 8L, 11L, 14L, 1L, 12L, 10L, 14L, 11L, 4L, 12L, 11L, 4L,
4L, 12L, 5L, 4L, 2L, 13L, 12L, 1L, 4L, 12L, 6L, 4L, 7L, 8L, 15L,
3L, 8L, 7L, 12L, 8L, 2L, 7L, 7L, 2L, 13L, 6L, 6L, 8L, 8L, 11L,
2L, 7L, 13L, 3L, 13L, 11L, 2L, 8L, 15L, 7L, 4L, 6L, 6L, 10L,
3L, 8L, 11L, 4L, 9L, 1L, 12L, 6L, 11L, 6L, 6L, 14L, 7L, 8L, 2L,
5L, 4L, 6L), clusterSize = c(8L, 9L, 6L, 19L, 19L, 6L, 13L, 19L,
19L, 13L, 6L, 6L, 19L, 12L, 19L, 6L, 9L, 19L, 6L, 8L, 6L, 6L,
13L, 13L, 19L, 9L, 13L, 6L, 13L, 9L, 11L, 12L, 6L, 8L, 13L, 12L,
19L, 9L, 13L, 8L, 6L, 6L, 6L, 11L, 8L, 13L, 6L, 11L, 11L, 19L,
6L, 6L, 6L, 13L, 6L, 12L, 9L, 3L, 8L, 11L, 6L, 3L, 9L, 19L, 11L,
9L, 19L, 19L, 11L, 6L, 19L, 9L, 6L, 11L, 8L, 19L, 11L, 13L, 19L,
13L, 12L, 2L, 6L, 12L, 13L, 11L, 12L, 9L, 13L, 13L, 9L, 6L, 13L,
13L, 12L, 12L, 9L, 9L, 13L, 6L, 6L, 6L, 9L, 9L, 12L, 2L, 13L,
19L, 13L, 13L, 6L, 6L, 12L, 9L, 19L, 6L, 8L, 11L, 13L, 9L, 13L,
13L, 3L, 13L, 12L, 9L, 6L, 19L, 13L)), .Names = c("cluster",
"clusterSize"), row.names = c(NA, -129L), class = "data.frame")
Here's what it looks like:
head(clusterdata)
cluster clusterSize
1 1 8
2 2 9
3 3 6
4 4 19
5 4 19
6 5 6
I have a total of 15 clusters and a total of 129 observations . I need to have each cluster size be 9. It's okay if there are not 15 clusters in the end.
In other words, I would like to combine clusters in a way that produces clusters of size no more than 9 and possibly leave a cluster that is smaller than 9. Clusters that are originally bigger than 9 should be split up but always keep 9 as the size and put the remaining in a "left-over" cluster/s. Cluster that are originally smaller than 9 should combine with other clusters to form clusters of size 9 while putting the remaining in the "left-over" cluster/s.
I have no idea how to go about this in R. Any ideas would be much appreciated...
Here is the data of my regression :
y is the number of passengers at platform of the train station in each 2 minutes period while A1 to A17 are the number of passengers at 17 study areas on concourse. Time lag has already between considered by shifting the Xs.
Since sometimes, there will be no one waiting in the study areas on concourse, so excess zero occurs. I am planing to use zero inflated model. I have tried the code as shown between, but it said "minimum count is not zero" What does that mean and how can i solve it? I have done poisson and it's alright but zero inflated doesn't work.
> setwd('C:/Users/zuzymelody/Desktop')
> try<-read.csv('0inflated_2mins27peak.csv',header=TRUE)
> attach(try)
> names(try)
[1] "y" "A1" "A2" "A3" "A4" "A5" "A6" "A7" "A8" "A9" "A10" "A11"
[13] "A12" "A13" "A14" "A15" "A16" "A17"
> model1<-glm(y~A1+A2+A3+A4+A5+A6+A7+A8+A9+A10+A11+A12+A13+A14+A15+A16+A17,family="poisson")
> summary(model1)
Call:
glm(formula = y ~ A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 +
A10 + A11 + A12 + A13 + A14 + A15 + A16 + A17, family = "poisson")
Deviance Residuals:
Min 1Q Median 3Q Max
-7.8598 -3.4571 -0.3663 2.1867 12.5183
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 6.102009 0.164497 37.095 < 2e-16 ***
A1 -0.017555 0.003665 -4.790 1.66e-06 ***
A2 -0.026101 0.017569 -1.486 0.137371
A3 -0.179988 0.014976 -12.018 < 2e-16 ***
A4 -0.032584 0.007735 -4.213 2.52e-05 ***
A5 -0.019908 0.007014 -2.839 0.004532 **
A6 -0.044144 0.010266 -4.300 1.71e-05 ***
A7 0.049829 0.006518 7.645 2.09e-14 ***
A8 -0.080712 0.009819 -8.220 < 2e-16 ***
A9 0.007390 0.007105 1.040 0.298273
A10 0.041116 0.004085 10.065 < 2e-16 ***
A11 -0.041420 0.008418 -4.921 8.62e-07 ***
A12 -0.008241 0.007304 -1.128 0.259171
A13 -0.033161 0.008966 -3.699 0.000217 ***
A14 0.020818 0.005250 3.965 7.34e-05 ***
A15 -0.002995 0.006125 -0.489 0.624887
A16 -0.061997 0.017122 -3.621 0.000294 ***
A17 -0.025025 0.008391 -2.982 0.002860 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 1137.71 on 29 degrees of freedom
Residual deviance: 599.74 on 12 degrees of freedom
AIC: 840.1
Number of Fisher Scoring iterations: 5
>with(model1, cbind(res.deviance = deviance, df = df.residual,
p = pchisq(deviance, df.residual, lower.tail=FALSE)))
res.deviance df p
[1,] 599.7445 12 1.202013e-120
> require( pscl )
> Zip<-zeroinfl(model1,link="logit",dist="poisson")
**Error in zeroinfl(model1, link = "logit", dist = "poisson") :
invalid dependent variable, minimum count is not zero**
dput(try)
structure(list(y = c(156L, 74L, 221L, 207L, 168L, 36L, 128L,
208L, 99L, 117L, 228L, 211L, 341L, 173L, 196L, 310L, 112L, 203L,
104L, 183L, 325L, 143L, 218L, 166L, 218L, 127L, 136L, 38L, 102L,
34L), A1 = c(24L, 24L, 24L, 19L, 20L, 9L, 14L, 23L, 15L, 23L,
14L, 16L, 15L, 25L, 25L, 19L, 24L, 26L, 25L, 26L, 22L, 14L, 13L,
15L, 9L, 12L, 9L, 12L, 15L, 18L), A2 = c(2L, 4L, 0L, 3L, 0L,
1L, 1L, 2L, 1L, 2L, 0L, 2L, 2L, 0L, 1L, 1L, 3L, 3L, 2L, 2L, 3L,
2L, 3L, 5L, 4L, 3L, 4L, 1L, 2L, 1L), A3 = c(2L, 2L, 0L, 1L, 1L,
9L, 3L, 0L, 0L, 0L, 1L, 1L, 3L, 1L, 0L, 0L, 1L, 2L, 3L, 1L, 0L,
1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 2L), A4 = c(15L, 11L, 6L, 7L,
10L, 10L, 5L, 4L, 5L, 7L, 9L, 9L, 4L, 6L, 6L, 13L, 9L, 13L, 9L,
10L, 6L, 6L, 7L, 6L, 10L, 9L, 10L, 7L, 9L, 2L), A5 = c(13L, 10L,
6L, 6L, 11L, 19L, 13L, 14L, 7L, 7L, 6L, 8L, 10L, 5L, 7L, 9L,
9L, 11L, 3L, 13L, 8L, 8L, 8L, 6L, 8L, 9L, 9L, 14L, 9L, 6L), A6 = c(9L,
10L, 9L, 9L, 4L, 7L, 7L, 12L, 11L, 11L, 12L, 8L, 6L, 7L, 8L,
5L, 9L, 6L, 5L, 6L, 9L, 11L, 6L, 6L, 8L, 9L, 4L, 11L, 10L, 7L
), A7 = c(21L, 16L, 13L, 13L, 4L, 9L, 12L, 13L, 12L, 12L, 12L,
6L, 7L, 6L, 6L, 4L, 5L, 9L, 8L, 7L, 9L, 12L, 10L, 7L, 8L, 12L,
14L, 2L, 6L, 6L), A8 = c(1L, 5L, 10L, 10L, 1L, 9L, 6L, 6L, 7L,
7L, 5L, 6L, 3L, 2L, 4L, 0L, 4L, 2L, 5L, 5L, 5L, 3L, 2L, 4L, 3L,
8L, 10L, 8L, 2L, 5L), A9 = c(8L, 9L, 10L, 10L, 12L, 19L, 10L,
6L, 6L, 6L, 0L, 6L, 8L, 10L, 2L, 3L, 6L, 2L, 2L, 6L, 5L, 2L,
4L, 1L, 3L, 7L, 7L, 4L, 4L, 2L), A10 = c(7L, 10L, 12L, 20L, 24L,
21L, 24L, 18L, 20L, 18L, 26L, 21L, 12L, 11L, 18L, 18L, 19L, 16L,
25L, 21L, 22L, 14L, 12L, 17L, 21L, 14L, 14L, 10L, 8L, 7L), A11 = c(0L,
2L, 1L, 4L, 2L, 1L, 1L, 1L, 13L, 10L, 12L, 5L, 2L, 0L, 5L, 1L,
4L, 4L, 3L, 3L, 1L, 1L, 3L, 3L, 5L, 5L, 2L, 10L, 3L, 4L), A12 = c(12L,
14L, 14L, 17L, 10L, 14L, 13L, 19L, 7L, 5L, 6L, 6L, 8L, 7L, 13L,
11L, 10L, 8L, 6L, 6L, 9L, 14L, 9L, 10L, 8L, 9L, 8L, 9L, 5L, 7L
), A13 = c(6L, 2L, 1L, 5L, 9L, 6L, 7L, 4L, 12L, 5L, 9L, 10L,
3L, 7L, 4L, 2L, 2L, 6L, 4L, 6L, 7L, 4L, 9L, 6L, 11L, 4L, 5L,
4L, 6L, 6L), A14 = c(14L, 13L, 16L, 11L, 8L, 6L, 9L, 13L, 14L,
14L, 9L, 8L, 12L, 11L, 13L, 11L, 18L, 15L, 20L, 21L, 17L, 18L,
18L, 18L, 25L, 20L, 12L, 9L, 8L, 8L), A15 = c(7L, 6L, 7L, 5L,
4L, 9L, 12L, 12L, 11L, 12L, 9L, 8L, 7L, 8L, 10L, 16L, 8L, 8L,
13L, 10L, 5L, 5L, 8L, 10L, 10L, 4L, 6L, 6L, 6L, 7L), A16 = c(2L,
1L, 3L, 3L, 1L, 2L, 3L, 2L, 3L, 2L, 2L, 1L, 2L, 2L, 3L, 3L, 2L,
1L, 3L, 4L, 2L, 5L, 4L, 8L, 5L, 2L, 1L, 2L, 2L, 2L), A17 = c(10L,
13L, 13L, 2L, 5L, 1L, 3L, 3L, 5L, 4L, 4L, 6L, 4L, 6L, 3L, 2L,
2L, 2L, 7L, 8L, 3L, 7L, 5L, 6L, 7L, 6L, 6L, 3L, 4L, 3L)), .Names = c("y",
"A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10",
"A11", "A12", "A13", "A14", "A15", "A16", "A17"), class = "data.frame", row.names = c(NA,
-30L))
above is the reproducible example. Sorry its my first time to post here, dont know the rule well
Your data frame does not contain a zero value in your dependent variable $y$:
min(mydata$y)
[1] 34
You'll need to have at least one $y = 0$.
I am trying to manually change the color of only the first item of a legend in a ggplot2 line plot.
I have several observations of a variable that I am displaying in a line plot, just like this:
ggplot(tmp1, aes(x=factor(month), y=value, group=variable, colour=variable ) ) +
geom_line(size=1) + geom_point(size=2.5) + theme_grey(base_size = 18) +
xlab(NULL) + ylab('%') + theme(legend.title = element_blank()) + theme(axis.text.x=element_blank()) +
ggtitle("a) Cloud fraction") + theme(plot.title = element_text(hjust = 0))
However, the first variable (CRU) is my reference and I would like to show its line in black. I managed to do this by adding one extra geom_line with the condition variable=='CRU':
ggplot(tmp1, aes(x=factor(month), y=value, group=variable, colour=variable ) ) +
geom_line(size=1) + geom_point(size=2.5) + theme_grey(base_size = 18) +
geom_line(data=subset(tmp1, variable == "CRU"), colour="black", linetype="solid", size=1) +
geom_point(data=subset(tmp1, variable == "CRU"), colour="black", size=2.5) +
xlab(NULL) + ylab('%') + theme(legend.title = element_blank()) + theme(axis.text.x=element_blank()) +
ggtitle("a) Cloud fraction") + theme(plot.title = element_text(hjust = 0))
which works for the line, but the legend keeps the old colour.
How can I change the color of just the first element of the legend, in order to match the new black line?
This is an example of my data:
library(ggplot2)
tmp1 <- structure(list(month = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 10L, 11L, 12L), .Label = c("Jan", "Feb", "Mar",
"Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
), class = "factor"), variable = structure(c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L
), .Label = c("CRU", "CanESM2", "GFDL-ESM2M", "GISS-E2-H", "GISS-E2-R-CC",
"GISS-E2-R", "HadGEM2-AO", "HadGEM2-CC", "IPSL-CM5A-MR", "IPSL-CM5B-LR",
"MIROC4h", "MRI-CGCM3", "NorESM1-M", "bcc-csm1-1-m", "bcc-csm1-1",
"inmcm4"), class = "factor"), value = c(68.9226631460789, 68.2418796877392,
68.3045372212868, 66.5727907036073, 64.278360290491, 60.6452267972856,
56.4079999829923, 57.4384828307567, 60.874295882443, 63.70427487797,
65.9934520468731, 68.9723871966257, 69.0959015590216, 68.6126351492122,
65.9106136896166, 65.790169283913, 64.6320994816801, 63.894111784301,
62.0459530253135, 60.0455773681386, 59.4195693791228, 59.8531302282566,
62.8877658601921, 66.4625078340445, 63.4659654507164, 64.5466810117518,
63.6412932878715, 61.5786848043378, 60.6491980933614, 63.5160886052168,
62.739218138279, 60.8826348052995, 60.1196738813257, 59.0451443027396,
58.9044684656519, 61.5033887899156, 62.442928703121, 61.9933297554931,
61.686560285787, 62.1675956585161, 63.0625380934021, 63.3192922622326,
62.6727899590586, 60.9706714311941, 59.4656895840826, 59.8689092461429,
60.7585523645951, 62.2374164636759, 62.2586495696979, 62.3005886556949,
62.0719314334763, 61.7786313583016, 62.1037020616999, 62.5919637033876,
60.7746642298107, 58.7307471416832, 57.6602849809809, 57.3379551651851,
59.8210398283061, 61.5997238276034, 62.1190176575675, 62.2214930174241,
61.607539296931, 61.836536870373, 61.8298589429815, 62.0478835210295,
60.8165122782774, 59.224498365607, 57.5387307267022, 56.8641846144649,
59.6779581588162, 61.5822371331742, 56.9625864272884, 55.0519081266715,
53.9161532646461, 52.0847886852487, 54.1855963059705, 54.1565901942167,
53.8164314129289, 53.3013959169719, 52.1283494730607, 49.9814907883562,
51.0053330490513, 54.1758812796363, 54.1947459143536, 53.2985061657513,
51.5351727215781, 51.2131541342776, 53.040182168441, 53.4657505459587,
52.8257974728027, 52.8523832284788, 51.2527233914323, 48.0999294191007,
48.3915726340961, 50.9305288780026, 65.3647375158419, 64.6894843930494,
62.2700707798592, 60.2848148985731, 59.0797813854392, 58.6641353922813,
60.36671822738, 61.0883458866571, 60.3963355506111, 60.989444946264,
62.1570976843054, 64.0549504714623, 63.043822206253, 61.5388900651697,
61.0125502971802, 60.4999006674972, 60.9554692113674, 61.2665703834057,
61.1470225339614, 61.4827838311531, 60.0397138517742, 61.6503963603034,
62.7421837830534, 63.9911949044232, 55.7117557057576, 55.0687784028633,
51.7447044604762, 50.5160095376821, 51.7744811245234, 52.6710116909617,
52.9126480516047, 51.6347065362984, 50.6773480024225, 48.8928054774924,
50.3505731163001, 53.7488684714513, 61.558109087334, 61.6673093977654,
61.008465555097, 58.5478578294864, 57.4119260976748, 57.9275733769477,
56.9129774651439, 55.6494927089111, 52.0222406797903, 51.9215916366208,
53.4679949695072, 58.2128251869788, 64.7955701998493, 62.8319013929061,
60.8391061131818, 56.1759467734789, 55.4331550199683, 55.8437923896573,
54.998540828777, 54.7840203124691, 54.3853750266133, 52.7590435522892,
56.1409799671355, 62.0047140533332, 57.5185465474672, 57.2532289998115,
55.9911913829976, 54.6479285609432, 53.1659722964534, 53.3609799276622,
51.321452599498, 49.6933914680193, 48.6718229103421, 49.5393207890844,
52.8096091918065, 56.1667672797739, 60.7380412023987, 60.1791897430251,
58.7798069796932, 58.061108119255, 59.7770862278418, 60.2070273632675,
59.074898814382, 55.5571990297011, 53.8564792650491, 54.0753885029223,
56.2369958393563, 58.9062125901571, 70.7538119957697, 69.4271857400385,
67.3954189057409, 66.9262104442679, 67.1558044757422, 65.8848885390536,
65.3092556552615, 64.3799468889004, 64.9999333535186, 65.6493831700943,
69.2646980549075, 70.6342115226731)), row.names = c(NA, -192L
), .Names = c("month", "variable", "value"), class = "data.frame")
Instead of splitting up the data and plotting two geom_lines, you can simply supply a custom colour palette in which CRU is mapped to black.
If you want to keep the default colours for the other variables, you first need to define a little helper function to retrieve them the way ggplot2 does it.
gg_color_hue <- function(n) {
hues = seq(15, 375, length=n+1)
hcl(h=hues, l=65, c=100)[1:n]
}
Then create a custom colour palette vector, combining the standard palette and black. Since CRU is the first level of your factor variable (with 16 levels in total), this is simply
custom_palette <- c("#000000", gg_color_hue(15))
The following then produces your desired plot:
ggplot(tmp1, aes(x=factor(month), y=value, group=variable, colour=variable)) +
geom_line(size=1) +
geom_point(size=2.5) +
scale_colour_manual(values=custom_palette) +
theme_grey(base_size = 18) +
xlab(NULL) + ylab('%') +
theme(legend.title = element_blank()) +
theme(axis.text.x=element_blank()) +
ggtitle("a) Cloud fraction") +
theme(plot.title = element_text(hjust = 0))
I have a daaset which consists of data points over a time series for the proportion of people living in urban/rural areas for a number of countries. Sadly, not all countries have data for the same years. I have been trying to produce a simple line plot to show the different proportions of people living in different locations by year, but as each country has a different number of data points I am running into trouble.
I think this is because some of the countries only have data for a single year and using geom_line from ggplot2 throws the following error:
geom_path: Each group consist of only one observation. Do you need to
adjust the group aesthetic?
I was hoping that there would be some way to override this, or perhaps just plot a single point where a COUNTRY only has data for a single year. Does anyone know if this is possible, or indeed, if this is actually what this error means?!!?
Any help greatly appreciated!!!
Thanks
Here is my data:
structure(list(COUNTRY = structure(c(1L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 1L,
2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L,
14L, 14L, 14L, 1L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L,
9L, 9L, 10L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L,
13L, 13L, 13L, 14L, 14L, 14L, 14L, 1L, 2L, 2L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 1L, 2L,
2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L,
14L, 14L, 1L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 6L,
6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 9L,
9L, 10L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L,
13L, 13L, 14L, 14L, 14L, 14L, 1L, 2L, 2L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 5L, 5L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L,
8L, 9L, 9L, 9L, 9L, 9L, 10L, 11L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L), class = "factor", .Label = c("Comoros",
"Eritrea", "Ethiopia", "Kenya", "Lesotho", "Madagascar", "Malawi",
"Namibia", "Rwanda", "South Africa", "Swaziland", "Tanzania",
"Zambia", "Zimbabwe")), Year = structure(c(5L, 12L, 4L, 25L,
16L, 9L, 22L, 13L, 7L, 2L, 23L, 15L, 22L, 14L, 6L, 1L, 24L, 15L,
9L, 1L, 13L, 6L, 19L, 9L, 1L, 24L, 21L, 16L, 9L, 1L, 7L, 19L,
24L, 13L, 8L, 5L, 1L, 18L, 10L, 4L, 20L, 11L, 5L, 1L, 24L, 17L,
8L, 3L, 5L, 12L, 4L, 25L, 16L, 9L, 22L, 13L, 7L, 2L, 23L, 15L,
22L, 14L, 6L, 1L, 24L, 15L, 9L, 1L, 13L, 6L, 19L, 9L, 1L, 24L,
21L, 16L, 9L, 1L, 7L, 19L, 24L, 13L, 8L, 5L, 1L, 18L, 10L, 4L,
20L, 11L, 5L, 1L, 24L, 17L, 8L, 3L, 5L, 12L, 4L, 25L, 16L, 9L,
22L, 13L, 7L, 2L, 23L, 15L, 22L, 14L, 6L, 1L, 24L, 15L, 9L, 1L,
13L, 6L, 19L, 9L, 1L, 24L, 21L, 16L, 9L, 1L, 7L, 19L, 24L, 13L,
8L, 5L, 1L, 18L, 10L, 4L, 20L, 11L, 5L, 1L, 24L, 17L, 8L, 3L,
5L, 12L, 4L, 25L, 16L, 9L, 22L, 13L, 7L, 2L, 23L, 15L, 22L, 14L,
6L, 1L, 24L, 15L, 9L, 1L, 13L, 6L, 19L, 9L, 1L, 24L, 21L, 16L,
9L, 1L, 7L, 19L, 24L, 13L, 8L, 5L, 1L, 18L, 10L, 4L, 20L, 11L,
5L, 1L, 24L, 17L, 8L, 3L, 5L, 12L, 4L, 25L, 16L, 9L, 22L, 13L,
7L, 2L, 23L, 15L, 22L, 14L, 6L, 1L, 24L, 15L, 9L, 1L, 13L, 6L,
19L, 9L, 1L, 24L, 21L, 16L, 9L, 1L, 7L, 19L, 24L, 13L, 8L, 5L,
1L, 18L, 10L, 4L, 20L, 11L, 5L, 1L, 24L, 17L, 8L, 3L, 5L, 12L,
4L, 25L, 16L, 9L, 22L, 13L, 7L, 2L, 23L, 15L, 22L, 14L, 6L, 1L,
24L, 15L, 9L, 1L, 13L, 6L, 19L, 9L, 1L, 24L, 21L, 16L, 9L, 1L,
7L, 19L, 24L, 13L, 8L, 5L, 1L, 18L, 10L, 4L, 20L, 11L, 5L, 1L,
24L, 17L, 8L, 3L, 5L, 12L, 4L, 25L, 16L, 9L, 22L, 13L, 7L, 2L,
23L, 15L, 22L, 14L, 6L, 1L, 24L, 15L, 9L, 1L, 13L, 6L, 19L, 9L,
1L, 24L, 21L, 16L, 9L, 1L, 7L, 19L, 24L, 13L, 8L, 5L, 1L, 18L,
10L, 4L, 20L, 11L, 5L, 1L, 24L, 17L, 8L, 3L), class = "factor", .Label = c("1992",
"1993", "1994", "1995", "1996", "1997", "1998", "1999", "2000",
"2000/1", "2001/2", "2002", "2003", "2003/4", "2004", "2005",
"2005/6", "2006", "2006/7", "2007", "2007/8", "2008/9", "2009",
"2010", "2011")), location = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L), .Label = c("Urban",
"Rural", "Total", "Capital.City", "Other.Cities.towns", "Urban.Non.slum",
"Urban.Slum"), class = "factor"), percent = c(63.0434782608696,
93.8, 87, 79.5642604795185, 65.4240807416892, 63.0791092522326,
90.448386469558, 85.9419999774024, 92.7603614781794, 84.0437368780105,
89.9792286718626, 91.0916571421351, 87.1132950026762, 73.8624315865239,
60.8311005575454, 66.7, 96, 86.8, 90.6243926153181, 90.6911141749493,
90.7602286016099, 93.0377175475414, 86.073106379954, 84.253722056373,
77.8178199148702, 97.3, 91.8332260789258, 89.612164524266, 89.9070989918367,
94.9, 85.1351949905457, 94.8358752154967, 92.9, 89.656599879838,
90.2634019334124, 94.4, 91.6241263241579, 76.7337303943862, 68.4233513070184,
74.15601627144, 88.4802888646634, 85.4643913454376, 89.7457528950664,
81.3025210084024, 83.0579155525397, 71.5857386620092, 86.2324062094295,
87.687478493975, 63.5379061371841, 78.5, 40.7, 51.7763728811622,
32.2441768813334, 22.3138981723172, 83.3699691175754, 69.6742912391579,
76.0526239692028, 83.7290062290807, 77.4758329101792, 83.8081963934296,
67.5805226154664, 55.8951299980461, 41.9921451192584, 52.2, 92.5,
77.6, 82.0322170392223, 85.2850090044269, 70.8031150919282, 47.108593681531,
82.2215412952297, 78.3643348536815, 74.4253468485616, 94.8, 90.1711142192198,
85.0338348718722, 86.3134329333052, 90.4, 79.2813256726705, 90.7077549957666,
82.5, 77.7236217339155, 75.3278238729086, 77.7, 78.4592126267142,
67.1145693585691, 55.3459024734839, 57.8463881286199, 83.5604620304044,
83.9259722574938, 84.4589780509803, 73.3992444632325, 77.544833952707,
63.0503715222555, 75.6808008503601, 85.6943513045284, 63.4, 84.2,
51, 55.7151220012609, 34.9, 26.6, 85, 72.5, 79.2, 83.8, 80.3,
84.9, 69.6, 59, 46, 54, 93, 78.7, 83.2, 85.9, 76.7, 57.5, 83.8,
80.4, 75.6, 95, 90.4, 85.6, 86.9, 90.6, 82.2, 91.5, 84.5, 79.9,
78.1, 80.9, 81.2, 68.1, 56.8, 59.6, 84.9, 84.4, 86.5, 77, 79.1337842548663,
65.6, 79.1, 86.3, 68.421052631579, 96.1, 93.3, 93.461209969107,
82.2712525836501, 88.2708936990495, 87.6298001816506, 87.6386027991385,
93.1818181818183, 86.6666666666668, 88.1030398041979, 90.4761904761904,
83.4297434324662, 86.3744073211853, 83.6107223166148, 78.3, NA,
72.8, 80.952380952381, 87.5, 96.9073193030442, 99.1348508752745,
85.5297651573129, 86.4793919321843, 79.4520547945208, 98.2, 92.4613307718678,
85.4590408924955, 83.9378238341966, 92.1, 81.1594202898552, 96.0232554251852,
NA, 88.0377726639494, 83.690767555447, 93.4, 90.0349966633017,
71.2508707571865, 72, 79.4082828804656, 91.8032786885246, 84.5238095238095,
87.8787878787881, 75.6097560975609, 81.0643061692494, 68.4708412135189,
84.9056603773584, 89.5522388059702, 61.6438356164384, 91.7, 79.5,
77.0004220956012, 61.061381883032, 58.756042602018, 91.2594694272412,
85.20149612163, 92.4956062313464, 82.622382662868, 91.4036416540165,
91.6169313256523, 89.2957214499669, 67.6757501795213, 48.1479760952102,
NA, NA, 94.2, 94.3553068539161, 91.8799748693178, 89.3739230258784,
92.1418739343887, 86.4757947454868, 81.0102236379536, 77.0100025126874,
NA, 91.3720851411616, 92.2, 92.5003150086683, 97.8260869565219,
87.1461797069698, 93.5168077834096, NA, 90.1780793791367, 92.9758067301415,
94.9, 91.8829499602467, 81.749280834314, 65.1853441661798, 69.0503609949116,
87.2562445664681, 85.8298270239758, 90.6673511683335, 83.2861189801694,
84.9006282245266, 73.65452177457, 87.3075692692965, 85.5310215524833,
83.3333333333333, NA, NA, 98.5990187756088, 84.4640706359058,
NA, 93.9158337759274, 91.5744358611439, 100, NA, NA, NA, 88.7824144772468,
85.1972665683085, 89.54493171236, NA, NA, 89.8, NA, 100, 97.6261376125643,
96.3196943955923, 92.0952338262334, 87.9266080431752, 80.9429968520701,
NA, NA, 92.8, 95.2886158200472, 100, 86.4199793410402, NA, NA,
89.9001648604344, NA, NA, 91.5033109800214, 83.8918470610424,
73.9339911532972, 88.6921281548131, 94.309068022859, 85.3299585067346,
93.7362934447331, 86.5384615384618, 83.7424288707868, NA, 86.3836615391687,
88.1866796344726, 58.1081081081081, NA, NA, 75.7976468146464,
62.1289432084197, NA, 88.1488735873722, 84.2108238885019, 89.8335978405451,
NA, NA, NA, 86.9222656846515, 70.3584041024493, 70.9023609260137,
NA, NA, 85.9, NA, 89.8689917369566, 90.3864925686512, 92.628169473785,
80.9468895007753, 78.7885741638367, 75.4005791241575, NA, NA,
88.4, 87.7139456942162, 92.3809523809525, 83.7645232075473, NA,
NA, 89.567507133125, NA, NA, 91.6433898994358, 73.6225283043976,
65.9223049858496, 72.3148320483822, 86.2596215693035, 85.6224026570651,
87.4940330171337, 78.7499999999997, 81.9949404453665, NA, 84.5563115043796,
87.0190820047277)), .Names = c("COUNTRY", "Year", "location",
"percent"), row.names = c(NA, -336L), class = "data.frame")
I want to produce a simple plot with ggplot2 that is facetted by COUNTRY. I can do this fine using geom_point:
ggplot(meas_melt, aes(Year, percent, colour=location))+ geom_point() + facet_wrap(~COUNTRY)
However, if I try and produce a line plot with geom_line (ggplot(meas_melt, aes(Year, percent, colour=location))+ geom_line() + facet_wrap(~COUNTRY))
I get the following error:
geom_path: Each group consist of only one observation. Do you need to
adjust the group aesthetic?
I had thought that this could be because a couple of the countries have only one year's worth of data so I subsetted the date to remove these three countries like so:
ggplot(meas_melt, aes(Year, percent, colour=location))+ geom_line(data=meas_melt[!meas_melt$COUNTRY %in% c('Comoros','South Africa','Swaziland'),]) + facet_wrap(~COUNTRY)
However, I get the same error!
#Sven's answer is correct but fixes only part of the problem. Note how there's no plot for Comoros, South Africe, or Swaziland. This is because in your data, sometimes year is, e.g., 2006 or 2007, and sometimes it is "2006/7".
data[meas_melt$COUNTRY=="Swaziland",]
COUNTRY Year location percent
32 Swaziland 2006/7 Urban 94.83588
80 Swaziland 2006/7 Rural 90.70775
128 Swaziland 2006/7 Total 91.50000
176 Swaziland 2006/7 Capital.City 96.02326
224 Swaziland 2006/7 Other.Cities.towns 93.51681
272 Swaziland 2006/7 Urban.Non.slum NA
320 Swaziland 2006/7 Urban.Slum NA
Those countries really have only one "year" (hence, no line). More importantly, these odd year designations distort your x-axis. You can see that using the scales="free" argument to facet_wrap(...):
ggplot(meas_melt, aes(x=Year,y=percent, color=location)) +
geom_line(aes(group=location)) +facet_wrap(~COUNTRY, scales="free") +
theme(axis.text.x=element_text(angle=90, vjust=0.5, size=8),
legend.position="bottom")
Which produces this:
You have to specify aes(group = location) inside geom_line:
library(ggplot2)
ggplot(meas_melt, aes(Year, percent, colour=location)) +
geom_line(aes(group = location)) +
facet_wrap(~COUNTRY)