I have a question which I assume can be generic, but in my case it is applicable to neural network in R.
For the record I am using both h20 and neuralnet packages.
Since you may know, often, it is advised to scale he input of a neural network, in order to make the NN itself work better with the specific used activation function.
In R to do this there are several ways and I do use scale () / min / max.
Let's pretend that I have a matrix of 700x10 as input so the scaling will produce me two vectors scaled and center of carnality 10.
Now the problem starts when I want to unscale the output.
The formula sayy vOutput * vScaled (full vector) + vCenter (full vector).
Question: Should I use then all the vectors (scaled and Center) in order to the unscaling? or there is a more complex formula or boundaries that I could not find?
#sample data
df <- data.frame(col1 = c(1:5), col2 = c(11:15), target=c(1,0,0,0,1))
#normalize sample data using scale() - except the 'target' column
df_scaled <- scale(df[,-ncol(df)])
df_scaled
#revert back to original data from scaled version
df_original <- as.data.frame(t(apply(df_scaled, 1,
function(x) (x * attr(df_scaled, 'scaled:scale') + attr(df_scaled, 'scaled:center')))))
df_original
Related
Two different methods of the principal component analysis were conducted to analyze the following data (ch082.dat) using the Box1's R-code, below.https://drive.google.com/file/d/1xykl6ln-bUnXIs-jIA3n5S3XgHjQbkWB/view?usp=sharing
The first method uses the rotation matrix (See 'ans_mat' under the '#rotated data' of the Box1's code) and,
the second method uses the 'pcomp' function (See 'rpca' under the '#rotated data' of the Box1's code).
However, there is a subtle discrepancy in the answer between the method using the rotation matrix and the method using the 'pcomp' function.
make it match
My Question
What should I do so that the result of the rotation matrix -based method matches the result of the'pcomp' function?
As far as I've tried with various data, including other data, the actual discrepancies seem to be limited to scale shifts and mirroring transformations.
The results of the rotation matrix -based method is shown in left panel.
The results of the pcomp function -based method is shown in right panel.
Mirror inversion can be seen in "ch082.dat" data.(See Fig.1);
It seems that, in some j, the sign of the "jth eigenvector of the correlation matrix" and the sign of the "jth column of the output value of the prcomp function" may be reversed. If there is a degree of overlap in the eigenvalues, it is possible that the difference may be more complex than mirror inversion.
Fig.1
There is a scale shift for the Box2's data (See See Fig.2), despite the centralization and normalization to the data.
Fig.2
Box.1
#dataload
##Use the 'setwd' function to specify the directory containing 'ch082.dat'.
##For example, if you put this file directly under the C drive of your Windows PC, you can run the following command.
setwd("C:/") #Depending on where you put the file, you may need to change the path.
getwd()
w1<-read.table("ch082.dat",header = TRUE,row.names = 1,fileEncoding = "UTF-8")
w1
#Function for standardizing data
#Thanks to https://qiita.com/ohisama2/items/5922fac0c8a6c21fcbf8
standalize <- function(data)
{ for(i in length(data[1,]))
{
x <- as.matrix(data[,i])
y <- (x-mean(x)/sd(x))
data[,i] <- y
}
return(data)}
#Method using rotation matrix
z_=standalize(w1)
B_mat=cor(z_) #Compute correlation matrix
eigen_m <- eigen(B_mat)
sample_mat <- as.matrix(z_)
ans_mat=sample_mat
for(j in 1:length(sample_mat[1,])){
ans_mat[,j]=sample_mat%*%eigen_m$vectors[,j]
}
#Method using "rpca" function
rpca <- prcomp(w1,center=TRUE, scale=TRUE)
#eigen vectors
eigen_m$vectors
rpca
#rotated data
ans_mat
rpca$x
#Graph Plots
par(mfrow=c(1,2))
plot(
ans_mat[,1],
ans_mat[,2],
main="Rotation using eigenvectors"
)
plot(rpca$x[,1], rpca$x[,2],
main="Principal component score")
par(mfrow=c(1,1))
#summary
summary(rpca)$importance
Box2.
sample_data <- data.frame(
X = c(2,4, 6, 5,7, 8,10),
Y = c(6,8,10,11,9,12,14)
)
X = c(2,4, 6, 5,7, 8,10)
Y = c(6,8,10,11,9,12,14)
plot(Y ~ X)
w1=sample_data
Reference
https://logics-of-blue.com/principal-components-analysis/
(Written in Japanease)
The two sets of results agree. First we can simplify your code a bit. You don't need your function or the for loop:
z_ <- scale(w1)
B_mat <- cor(z_)
eigen_m <- eigen(B_mat)
ans_mat <- z_ %*% eigen_m$vectors
Now the prcomp version
z_pca <- prcomp(z_)
z_pca$sdev^2 # Equals eigen_m$values
z_pca$rotation # Equals eigen_m$vectors
z_pca$x # Equals ans_mat
Your original code mislabeled ans_mat columns. They are actually the principal component scores. You can fix that with
colnames(ans_mat) <- colnames(z_pca$x)
The pc loadings (and therefore the scores) are not uniquely defined with respect to reflection. In other words multiplying all of the loadings or scores in one component by -1 flips them but does not change their relationships to one another. Multiply z_pca$x[, 1] by -1 and the plots will match:
z_pca$x[, 1] <- z_pca$x[, 1] * -1
dev.new(width=10, height=6)
par(mfrow=c(1,2))
plot(ans_mat[,1], ans_mat[,2], main="Rotation using eigenvectors")
plot(z_pca$x[,1], z_pca$x[,2], main="Principal component score")
Good day,
I have tried to figure this out, but I really can't!! I'll supply an example of my data in R:
x <- c(36,71,106,142,175,210,246,288,357)
y <- c(19.6,20.9,19.8,21.2,17.6,23.6,20.4,18.9,17.2)
table <- data.frame(x,y)
library(nlmrt)
curve <- "y~ a + b*exp(-0.01*x) + (c*x)"
ones <- list(a=1, b=1, c=1)
Then I use wrapnls to fit the curve and to find a solution:
solve <- wrapnls(curve, data=table, start=ones, trace=FALSE)
This is all fine and works for me. Then, using the following, I obtain a prediction of y for each of the x values:
predict(solve)
But how do I find the prediction of y for new x values? For instance:
new_x <- c(10, 30, 50, 70)
I have tried:
predict(solve, new_x)
predict(solve, 10)
It just gives the same output as:
predict(solve)
I really hope someone can help! I know if I use the values of 'solve' for parameters a, b, and c and substitute them into the curve formula with the desired x value that I would be able to this, but I'm wondering if there is a simpler option. Also, without plotting the data first.
Predict requires the new data to be a data.frame with column names that match the variable names used in your model (whether your model has one or many variables). All you need to do is use
predict(solve, data.frame(x=new_x))
# [1] 18.30066 19.21600 19.88409 20.34973
And that will give you a prediction for just those 4 values. It's somewhat unfortunate that any mistakes in specifying the new data results in the fitted values for the original model being returned. An error message probably would have been more useful, but oh well.
I'm using R.
My dataset has about 40 different Variables/Vektors and each has about 80 entries. I'm trying to find significant correlations, that means I want to pick one variable and let R calculate all the correlations of that variable to the other 39 variables.
I tried to do this by using a linear modell with one explaining variable that means: Y=a*X+b.
Then the lm() command gives me an estimator for a and p-value of that estimator for a. I would then go on and use one of the other variables I have for X and try again until I find a p-value thats really small.
I'm sure this is a common problem, is there some sort of package or function that can try all these possibilities (Brute force),show them and then maybe even sorts them by p-value?
You can use the function rcorr from the package Hmisc.
Using the same demo data from Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Then:
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
To access the p-values:
correlations$P
To visualize you can use the package corrgram
library(corrgram)
corrgram(the_data)
Which will produce:
In order to print a list of the significant correlations (p < 0.05), you can use the following.
Using the same demo data from #Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Install Hmisc
install.packages("Hmisc")
Import library and find the correlations (#Carlos)
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
Loop over the values printing the significant correlations
for (i in 1:m){
for (j in 1:m){
if ( !is.na(correlations$P[i,j])){
if ( correlations$P[i,j] < 0.05 ) {
print(paste(rownames(correlations$P)[i], "-" , colnames(correlations$P)[j], ": ", correlations$P[i,j]))
}
}
}
}
Warning
You should not use this for drawing any serious conclusion; only useful for some exploratory analysis and formulate hypothesis. If you run enough tests, you increase the probability of finding some significant p-values by random chance: https://www.xkcd.com/882/. There are statistical methods that are more suitable for this and that do do some adjustments to compensate for running multiple tests, e.g. https://en.wikipedia.org/wiki/Bonferroni_correction.
Here's some sample data for reproducibility.
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
You can calculate the correlation between two columns using cor. This code loops over all columns except the first one (which contains our response), and calculates the correlation between that column and the first column.
correlations <- vapply(
the_data[, -1],
function(x)
{
cor(the_data[, 1], x)
},
numeric(1)
)
You can then find the column with the largest magnitude of correlation with y using:
correlations[which.max(abs(correlations))]
So knowing which variables are correlated which which other variables can be interesting, but please don't draw any big conclusions from this knowledge. You need to have a proper think about what you are trying to understand, and which techniques you need to use. The folks over at Cross Validated can help.
If you are trying to predict y using only one variable than you have to take the one that is mainly correlated with y.
To do this just use the command which.max(abs(cor(x,y))). If you want to use more than one variable in your model then you have to consider something like the lasso estimator
One option is to run a correlation matrix:
cor_result=cor(data)
write.csv(cor_result, file="cor_result.csv")
This correlates all the variables in the file against each other and outputs a matrix.
I want to train the neural network using a sliding window.
I tried to check on the Internet, I found that it is possible if I use the rollapply function.
However, even looking at the example sentences, I could not understand how to use the rollapply function well.
For example, I use the window size as 120 and shift width as 10.
I wrote the code such as the following. But, Error returened!
library(AMORE)
#P is the input vector
P <- matrix(sample(seq(-1,1,length=1000), 1000, replace=FALSE), ncol=1)
# The network will try to approximate the target P^2
target <- P^2
data <- data.frame(P,target)
# We create a feedforward network, with two hidden layers.
# The first hidden layer has three neurons and the second has two neurons.
# The hidden layers have got Tansig activation functions and the output layer is Purelin.
net <- newff(n.neurons=c(1,3,2,1), learning.rate.global=1e-2, momentum.global=0.5,
error.criterium="LMS", Stao=NA, hidden.layer="tansig",
output.layer="purelin", method="ADAPTgdwm")
b <- function(mydata){
dd <- as.data.frame(mydata)
result <- train(dd[,1],dd[,2], error.criterium="LMS", report=TRUE, show.step=100, n.shows=5 )
y <- sim(result$net, dd[,1])
return(y)
}
a <- rollapply(data, width=128, by=10, FUN= b)
Please tell me how to train the neural network by using the rollapply function anyone.
Or, please tell me if there are another way to train the neural network using a sliding window.
I'm looking to perform classification on data with mostly categorical features. For that purpose, Euclidean distance (or any other numerical assuming distance) doesn't fit.
I'm looking for a kNN implementation for [R] where it is possible to select different distance methods, like Hamming distance.
Is there a way to use common kNN implementations like the one in {class} with different distance metric functions?
I'm using R 2.15
As long as you can calculate a distance/dissimilarity matrix (in whatever way you like) you can easily perform kNN classification without the need of any special package.
# Generate dummy data
y <- rep(1:2, each=50) # True class memberships
x <- y %*% t(rep(1, 20)) + rnorm(100*20) < 1.5 # Dataset with 20 variables
design.set <- sample(length(y), 50)
test.set <- setdiff(1:100, design.set)
# Calculate distance and nearest neighbors
library(e1071)
d <- hamming.distance(x)
NN <- apply(d[test.set, design.set], 1, order)
# Predict class membership of the test set
k <- 5
pred <- apply(NN[, 1:k, drop=FALSE], 1, function(nn){
tab <- table(y[design.set][nn])
as.integer(names(tab)[which.max(tab)]) # This is a pretty dirty line
}
# Inspect the results
table(pred, y[test.set])
If anybody knows a better way of finding the most common value in a vector than the dirty line above, I'd be happy to know.
The drop=FALSE argument is needed to preserve the subset of NN as matrix in the case k=1. If not it will be converted to a vector and apply will throw an error.