I know how to generate a Voronoï / cell noise such as this one using Delaunay Triangles :
But how do I apply noise to the lines to make them more natural ? I cannot have sharp edges for procedural generation as it would look very out of place and unpleasant.
I am looking for a result that would somehow look like this :
( the picture is from a more advanced project )
Note : I cannot generate the entire map at once ( it is too big ) so the Voronoï diagram is used as metadata but I need a way to know in what cell are the coordinates (x, y) after deformation in order to make it work.
I would randomize 3 - 5 points on each line to generate sub segments, based on a seed computed thanks to the coords of the two original segment points.
This kind of random seed allows to get the same results each time.
You could thus cache the results or decide to compute the same ones again.
Maybe more zoom means more random sub-segments based on the same method.
Related
I need to solve a problem and I'm really stuck with it, so I want to summon the power of the community to see if anyone has an idea on how to handle it.
I need to create a porous material from a given surface . So, I have a point cloud representing the surface of a cylinder, like the one in the figure, and I need to generate a graph inside it from the points on the surface to be filled with volume. It is mandatory that all the points of the surface are used (some more can be added if necessary), the length of the edges must be an input parameter of the function and the angle between two nodes must always be greater than 45º with respect to the horizontal plane.
My initial idea was to make a while loop that in each iteration creates a random point cloud inside the cylinder between the current z (the current z is the maximum z value of the previous iteration) and the current z + the given edge length. Once this point cloud is created, it joins the surface nodes of the last iteration with the points of this point cloud that satisfy the condition of edge length and angularity. And it continues until the current z is greater than the maximum z of the cylinder surface.
The problem with this idea is that it is not consistent and the results are disastrous. So I would like to ask if anyone has a better idea or if anyone knows if any python libraries could help me. I am currently using networkx and numpy-stl but those are not meant to do what I want. ChatGPT is unable to understant me too :(.
Thank you so much for you time!!
I'm working on a PyMEL script that allows the user to duplicate a selected object multiple times, using a CV curve and its points coordinates to transform & rotate each copy to a certain point in space.
In order to achieve this, Im using the adjacent 2 points of each CV (control vertex) to determine the rotation for the object.
I have managed to retrieve the coordinates of the curve's CVs
#Add all points of the curve to the cvDict dictionary
int=0
cvDict={}
while int<selSize:
pointName='point%s' % int
coords= pointPosition ('%s.cv[%s]' % (obj,int), w=1)
#Setup the key for the current point
cvDict[pointName]={}
#add coords to x,y,z subkeys to dict
cvDict[pointName]['x']= coords[0]
cvDict[pointName]['y']= coords[1]
cvDict[pointName]['z']= coords[2]
int += 1
Now the problem I'm having is figuring out how to get the angle for each CV.
I stumbled upon the angleBetween() function:
http://download.autodesk.com/us/maya/2010help/CommandsPython/angleBetween.html
In theory, this should be my solution, since I could find the "middle vector" (not sure if that's the mathematical term) of each of the curve's CVs (using the adjacent CVs' coordinates to find a fourth point) and use the above mentioned function to determine how much I'd have to rotate the object using a reference vector, for example on the z axis.
At least theoretically - the issue is that the function only takes 1 set of coords for each vector and I have absolutely no Idea how to convert my point coords to that format (since I always have at least 2 sets of coordinates, one for each point).
Thanks.
If you wanna go the long way and not grab the world transforms of the curve, definitely make use of pymel's datatypes module. It has everything that python's native math module does and a few others that are Maya specific. Also the math you would require to do this based on CVs can be found here.
Hope that puts you in the right direction.
If you're going to skip the math, maybe you should just create a locator, path-animate it along the curve, and then sample the result. That would allow you to get completely continuous orientations along the curve. The midpoint-constraint method you've outlined above is limited to 1 valid sample per curve segment -- if you wanted 1/4 of the way or 3/4 of the way between two cv's your orientation would be off. Plus you don't have to reinvent all of the manu different options for deciding on the secondary axis of rotation, reading curves with funky parameterization, and so forth.
I'm making a program that selects an area within a canvas by clicking a sequence of points. The points clicked are linked by some lines this way: every new point is linked with the first and the last ones. I'm looking for an algorithm that computes the area of the resulting polygon.
Intersections are allowed, and here is the complexity, so the algorithm must manage this case by finding the polygon according to the ordered sequence of points clicked and calculating its area.
After many searches, the best I've found is this http://sigbjorn.vik.name/projects/Triangulation.pdf, but I would need something easier to implement in Processing.js.
First cut the line segments where they intersect. If the input set is small, you can simply check every pair. Otherwise use an R-Tree. Then compute a constrained (Delaunay) Triangulation. Then determine the inner triangles using rayshooting and sum up their areas.
hth
I am working on a project where I have a set of known measurements (x,y,z,a) and an input (z,a). I need to be able to interpolate the (x,y,z) so that I can get a list of possible (x,y) coordinates from a given z.
I was looking at bicubic interpolation, but I can only find examples pertaining to regular grids, and my (x,y) pairs are most certainly not regular.
Basically I am looking for some guidance on algorithms/models to achieve this goal. I am considering a triangulated irregular network, which is attractive because it breaks down into planes which are easy to determine the (x,y) from a given Z. But I would like a little more finesse.
I know it sounds like homework, its not.
Efficiency is not a concern.
Thanks!
I actually ended up using Delauney Triangulation to break down the fields into 3 dimensional X,Y,Z surfaces with an Identifier. Then given a set of (Identity,Z) pairs I form a field line from each surface, and from these lines compute the polygon formed from the shortest edges between lines. This gives me an area of potential x,y coordinates.
Take a look at Kd-tree.
These first take a set of scattered points in 2d or 3d or 10d,
then answers queries like "find the 3 points nearest P".
Are your queries z a pairs ?
For example, given a bunch of colored pins on a map, a table of x y size color,
one could put all the [x y] in a kd tree, then ask for pins near a given x0 y0.
Or, one could put all the [size color[ in a tree, then ask for pins with a similar size and color.
(Note that most kd-tree implementations use the Euclidean metric,
so sqrt( (size - size2)^2 + (color - color2)^2 ) should make sense.)
In Python, I highly recommend scipy.spatial.cKDTree.
See also SO questions/tagged/kdtree .
I need to place 1 to 100 nodes (actually 25px dots) on a html5 canvas. I need to make them look randomly distributed so using some kind of grid is out. I also need to ensure these dots are not touching or overlapping. I would also like to not have big blank areas. Can someone tell me what this kind of algorithm is called? A reference to an open source project that does this would also be appreciated.
Thanks all
Guido
What you are looking for is called a Poisson-disc distribution. It occurs in nature in the distribution of photoreceptor cells on your retina. There is a great article about this by Mike Bostock (StackOverflow profile) called Visualizing Algorithms. It has JavaScript demos and a lot of code to look at.
In the interest of doing more then dropping a link into the answer, I will try to give a brief summary of the article:
Mitchell's best-candidate algorithm
A simple approximation known as Mitchell’s best-candidate algorithm. It is easy to implement both crowds some spaces and leaves gaps in other. The algorithm adds new points one at a time. For each new sample, the best-candidate algorithm generates a fixed number of candidates, say 10. The point furthest from any other point is added to the set and the process is repeated until the desired density is achieved.
Bridson's Algorithm
Bridson’s algorithm for Poisson-disc sampling (original paper pdf) scales linearly and is easy to implement as well. This algorithm grows from an initial point and (IMHO) is quite fun to watch (again see Mike Bostock's article). All points in the set are either active or inactive. all points are added as active. One point is chosen from the active set and some number of candidate points are generated in the annulus (a.k.a ring) that extends from the sample with the inner circle having a radius r and the outer circle having a radius 2r. Candidate sample less then r distance away from any point in the FinalSet are rejected. Once a sample is found that is not rejected it is added the the FinalSet. If all the candidate sample are rejected the original point is marked as inactive on the assumption that is has so many neighboring points that no more can be added around it. When all samples are inactive the algorithm terminates.
A grid of size r/√2 can be used to greatly increase the speed of checking candidate points. Only one point may ever be in a grid square and only a limited number of adjacent squares need to be checked.
The easiest way would be to just generate random (x, y) coordinates for each one, repeating if they are touching or overlapping.
Pseudocode:
do N times
{
start:
x = rand(0, width)
y = rand(0, height)
for each other point, p
if distance(p.x, p.y, x, y) < radius * 2
goto start
add_point(x, y);
}
This is O(n^2), but if n is only going to be 100 then that's fine.
I don't know if this is a named algorithm, but it sounds like you could assign each node a position on a “grid”, then pick a random offset. That would give the appearance of some chaos while still guaranteeing that there are no big empty spaces.
For example:
node.x = node.number / width + (Math.random() - 0.5) * SOME_SCALE;
node.y = node.number % height + (Math.random() - 0.5) * SOME_SCALE;
Maybe you could use a grid of circles and place one 25px-dot in every circle? Wouldn't really be random, but look good.
Or you could place dots randomly and then make empty areas attract dots and give dots a limited-range-repulsion, but that is maybe too complicated and takes too much CPU time for this simple task.