Find perpendicular line using points on that line - math

I have a line (P1, P2), and a point on that line (midpoint). What equation can I used to find the perpendicular line of line (P1, P2), that passes through midpoint. The point labelled with a '?' is unknown. I do not wish to use angles, only the 3 points given (P1, P2, midpoint). The line P1, P2 can be of any orientation/angle.
Thanks in advance.

Let define vector
D = P2 - P1 (dx=x2-x1, dy = y2-y1)
and middle point
mx = (x2+x1)/2
my = (y2+y1)/2
Perpendicular to D vector
PD = (-dy, dx)
Unit (normalized) perpendicular vector
U = (-dy / L, dx / L)
where
L = Sqrt (dx * dx + dy * dy)
And coordinates of point lying at distance F from the middle are
x = mx + U.x * F
y = my + U.y * F
or (for point at another side)
x = mx - U.x * F
y = my - U.y * F

Coordinates of P1: (x1,y1)
Coordinates of P2: (x2,y2)
Coordinates of midpoint: ( (x1+x2)/2 , (y1+y2)/2)
Slope of the P1P2 line: (y1-y2)/(x1-x2)
Slope of any perpendicular line to P1P2: (x2-x1)/(y1-y2)
Equation of the red line: y - (y1+y2)/2 = ((x2-x1)/(y1-y2))*(x - (x1+x2)/2)
If you have the actual values of coordinates of P1 y P2, then just make a substitution.

Related

How to calculate the intersection point between an infinite line and a line segment?

Basically, a function that fulfills this signature:
function getLineIntersection(vec2 p0, vec2 direction, vec2 p2, vec2 p3) {
// return a vec2
}
I have looked around at existing solutions, and they all seem to deal with how to find the intersection between two line segments, or between two infinite lines. Is there a solution for this problem where the line has an initial position, an angle, and needs to determine if it intersects with a line segment? Basically, something like this:
There should be one line segment that starts in a location and has a unit direction, and another line segment that is just a line connected by two points. Is this possible, and if so, is there a good way of calculating the intersection point, if it exists?
If you've a endless line which is defined by a point P and a normalized direction R and a second endless line, which is defined by a point Q and a direction S, then the intersection point of the endless lines X is:
alpha ... angle between Q-P and R
beta ... angle between R and S
gamma = 180° - alpha - beta
h = | Q - P | * sin(alpha)
u = h / sin(beta)
t = | Q - P | * sin(gamma) / sin(beta)
t = dot(Q-P, (S.y, -S.x)) / dot(R, (S.y, -S.x)) = determinant(mat2(Q-P, S)) / determinant(mat2(R, S))
u = dot(Q-P, (R.y, -R.x)) / dot(R, (S.y, -S.x)) = determinant(mat2(Q-P, R)) / determinant(mat2(R, S))
X = P + R * t = Q + S * u
If you want to detect if the intersection is on the lien, you need to compare the distance of the intersection point with the length of the line.
The intersection point (X) is on the line segment if t is in [0.0, 1.0] for X = p2 + (p3 - p2) * t
vec2 getLineIntersection(vec2 p0, vec2 direction, vec2 p2, vec2 p3)
{
vec2 P = p2;
vec2 R = p3 - p2;
vec2 Q = p0;
vec2 S = direction;
vec2 N = vec2(S.y, -S.x);
float t = dot(Q-P, N) / dot(R, N);
if (t >= 0.0 && t <= 1.0)
return P + R * t;
return vec2(-1.0);
}
Start with the intersection of two infinite lines, expressed in parametric form (e.g., A + tp, where A is the "start point", p is the direction vector and t is a scalar parameter). Solve a system of two equations to get the two parameters of the intersection point.
Now if one of your lines is really a segment AB, and B = A + p (i.e., the direction vector goes from A to B), then if the parameter t is between 0 and 1, the intersection lies on the segment.

Find line that is tangent to 2 given circles

I've got a situation in which I have 2 circles (C1 and C2)
and i need to find the line equation for the line that is tangent to both of these circles.
So as far as i'm aware, given a single point (P1) and C2's point and radius it is possible to quite easily get 2 possible points of tangency for C2 and P1 to make 2 line equations. But as i don't have P1, only the knowledge that the point will be one of a possible 2 points on C1, i'm not sure how to calculate this.
I assume it will be something along the lines of getting the 2 tangent line equations of C1 that are equal to the same of C2.
Both circles can have any radius, they could be the same or they could be hugely different. They will also never overlap (they can still touch though). And I'm looking for the 2 possible internal tangents.
Oh, and also, visuals would be very helpful haha :)
Let O be the intersection point between the line through the centers and the tangent.
Let d be the distance between the centers and h1, h2 be the distances between O and the centers. By similarity, these are proportional to the radii.
Hence,
h1 / h2 = r1 / r2 = m,
h1 + h2 = d,
giving
h1 = m d / (1 + m),
h2 = d / (1 + m).
Then the coordinates of O are found by interpolating between the centers
xo = (h2.x1 + h1.x2) / d
yo = (h2.y1 + h1.y2) / d
and the angle of the tangent is that of the line through the centers plus or minus the angle between this line and the tangent,
a = arctan((y2 - y1)/(x2 - x1)) +/- arcsin(r1 / h1).
You can write the implicit equation of the tangent as
cos(a).y - sin(a).x = cos(a).yo - sin(a).xo.
(source: imag.fr)
So we are going to use a homothetic transformation. If the circles C and C' have respectively centres O and O', and radius r and r', then we know there exists a unique homothetic transformation with centre J and ratio a, such that :
a = |JO|/|JO'| = r/r'
Noting AB is the vector from A to B, and |z| the norm of a vector z.
Hence you get J, knowing that it is between O and O' which we both already know.
Then with u the projection of JR on JO', and v the decomposition on its orthogonal, and considering the sine s and cosine c of the angle formed by O'JR, we have
|u| = |JR| * c
|v| = |JR| * s
c^2 + s^2 = 1
And finally because the triangle JRO' is right-angled in R :
s = r' / |JO|'
Putting all of this together, we get :
J = O + OO' / |OO'| * a / (a+1)
if |OJ| == r and |O'J| == r' then
return the orthogonal line to (OO') passing through J
|JR| = √( |JO'|^ - r'^2 )
s = r' / |JO'|
c = √( 1 - s^2 )
u = c * |JR| * OO' / |OO'|
w = (-u.y, u.x) % any orthogonal vector to u
v = s * |JR| * w / |w|
return lines corresponding to parametric equations J+t*(u+v) and J+t*(u-v)

Perpendicular on a line segment from a given point

I want to calculate a point on a given line that is perpendicular from a given point.
I have a line segment AB and have a point C outside line segment. I want to calculate a point D on AB such that CD is perpendicular to AB.
I have to find point D.
It quite similar to this, but I want to consider to Z coordinate also as it does not show up correctly in 3D space.
Proof:
Point D is on a line CD perpendicular to AB, and of course D belongs to AB.
Write down the Dot product of the two vectors CD.AB = 0, and express the fact D belongs to AB as D=A+t(B-A).
We end up with 3 equations:
Dx=Ax+t(Bx-Ax)
Dy=Ay+t(By-Ay)
(Dx-Cx)(Bx-Ax)+(Dy-Cy)(By-Ay)=0
Subtitute the first two equations in the third one gives:
(Ax+t(Bx-Ax)-Cx)(Bx-Ax)+(Ay+t(By-Ay)-Cy)(By-Ay)=0
Distributing to solve for t gives:
(Ax-Cx)(Bx-Ax)+t(Bx-Ax)(Bx-Ax)+(Ay-Cy)(By-Ay)+t(By-Ay)(By-Ay)=0
which gives:
t= -[(Ax-Cx)(Bx-Ax)+(Ay-Cy)(By-Ay)]/[(Bx-Ax)^2+(By-Ay)^2]
getting rid of the negative signs:
t=[(Cx-Ax)(Bx-Ax)+(Cy-Ay)(By-Ay)]/[(Bx-Ax)^2+(By-Ay)^2]
Once you have t, you can figure out the coordinates for D from the first two equations.
Dx=Ax+t(Bx-Ax)
Dy=Ay+t(By-Ay)
function getSpPoint(A,B,C){
var x1=A.x, y1=A.y, x2=B.x, y2=B.y, x3=C.x, y3=C.y;
var px = x2-x1, py = y2-y1, dAB = px*px + py*py;
var u = ((x3 - x1) * px + (y3 - y1) * py) / dAB;
var x = x1 + u * px, y = y1 + u * py;
return {x:x, y:y}; //this is D
}
There is a simple closed form solution for this (requiring no loops or approximations) using the vector dot product.
Imagine your points as vectors where point A is at the origin (0,0) and all other points are referenced from it (you can easily transform your points to this reference frame by subtracting point A from every point).
In this reference frame point D is simply the vector projection of point C on the vector B which is expressed as:
// Per wikipedia this is more efficient than the standard (A . Bhat) * Bhat
Vector projection = Vector.DotProduct(A, B) / Vector.DotProduct(B, B) * B
The result vector can be transformed back to the original coordinate system by adding point A to it.
A point on line AB can be parametrized by:
M(x)=A+x*(B-A), for x real.
You want D=M(x) such that DC and AB are orthogonal:
dot(B-A,C-M(x))=0.
That is: dot(B-A,C-A-x*(B-A))=0, or dot(B-A,C-A)=x*dot(B-A,B-A), giving:
x=dot(B-A,C-A)/dot(B-A,B-A) which is defined unless A=B.
What you are trying to do is called vector projection
Here i have converted answered code from "cuixiping" to matlab code.
function Pr=getSpPoint(Line,Point)
% getSpPoint(): find Perpendicular on a line segment from a given point
x1=Line(1,1);
y1=Line(1,2);
x2=Line(2,1);
y2=Line(2,1);
x3=Point(1,1);
y3=Point(1,2);
px = x2-x1;
py = y2-y1;
dAB = px*px + py*py;
u = ((x3 - x1) * px + (y3 - y1) * py) / dAB;
x = x1 + u * px;
y = y1 + u * py;
Pr=[x,y];
end
I didn't see this answer offered, but Ron Warholic had a great suggestion with the Vector Projection. ACD is merely a right triangle.
Create the vector AC i.e (Cx - Ax, Cy - Ay)
Create the Vector AB i.e (Bx - Ax, By - Ay)
Dot product of AC and AB is equal to the cosine of the angle between the vectors. i.e cos(theta) = ACx*ABx + ACy*ABy.
Length of a vector is sqrt(x*x + y*y)
Length of AD = cos(theta)*length(AC)
Normalize AB i.e (ABx/length(AB), ABy/length(AB))
D = A + NAB*length(AD)
For anyone who might need this in C# I'll save you some time:
double Ax = ;
double Ay = ;
double Az = ;
double Bx = ;
double By = ;
double Bz = ;
double Cx = ;
double Cy = ;
double Cz = ;
double t = ((Cx - Ax) * (Bx - Ax) + (Cy - Ay) * (By - Ay)) / (Math.Pow(Bx - Ax, 2) + Math.Pow(By - Ay, 2));
double Dx = Ax + t*(Bx - Ax);
double Dy = Ay + t*(By - Ay);
Here is another python implementation without using a for loop. It works for any number of points and any number of line segments. Given p_array as a set of points, and x_array , y_array as continues line segments or a polyline.
This uses the equation Y = mX + n and considering that the m factor for a perpendicular line segment is -1/m.
import numpy as np
def ortoSegmentPoint(self, p_array, x_array, y_array):
"""
:param p_array: np.array([[ 718898.941 9677612.901 ], [ 718888.8227 9677718.305 ], [ 719033.0528 9677770.692 ]])
:param y_array: np.array([9677656.39934991 9677720.27550726 9677754.79])
:param x_array: np.array([718895.88881594 718938.61392781 718961.46])
:return: [POINT, LINE] indexes where point is orthogonal to line segment
"""
# PENDIENTE "m" de la recta, y = mx + n
m_array = np.divide(y_array[1:] - y_array[:-1], x_array[1:] - x_array[:-1])
# PENDIENTE INVERTIDA, 1/m
inv_m_array = np.divide(1, m_array)
# VALOR "n", y = mx + n
n_array = y_array[:-1] - x_array[:-1] * m_array
# VALOR "n_orto" PARA LA RECTA PERPENDICULAR
n_orto_array = np.array(p_array[:, 1]).reshape(len(p_array), 1) + inv_m_array * np.array(p_array[:, 0]).reshape(len(p_array), 1)
# PUNTOS DONDE SE INTERSECTAN DE FORMA PERPENDICULAR
x_intersec_array = np.divide(n_orto_array - n_array, m_array + inv_m_array)
y_intersec_array = m_array * x_intersec_array + n_array
# LISTAR COORDENADAS EN PARES
x_coord = np.array([x_array[:-1], x_array[1:]]).T
y_coord = np.array([y_array[:-1], y_array[1:]]).T
# FILAS: NUMERO DE PUNTOS, COLUMNAS: NUMERO DE TRAMOS
maskX = np.where(np.logical_and(x_intersec_array < np.max(x_coord, axis=1), x_intersec_array > np.min(x_coord, axis=1)), True, False)
maskY = np.where(np.logical_and(y_intersec_array < np.max(y_coord, axis=1), y_intersec_array > np.min(y_coord, axis=1)), True, False)
mask = maskY * maskX
return np.argwhere(mask == True)
As Ron Warholic and Nicolas Repiquet answered, this can be solved using vector projection. For completeness I'll add a python/numpy implementation of this here in case it saves anyone else some time:
import numpy as np
# Define some test data that you can solve for directly.
first_point = np.array([4, 4])
second_point = np.array([8, 4])
target_point = np.array([6, 6])
# Expected answer
expected_point = np.array([6, 4])
# Create vector for first point on line to perpendicular point.
point_vector = target_point - first_point
# Create vector for first point and second point on line.
line_vector = second_point - first_point
# Create the projection vector that will define the position of the resultant point with respect to the first point.
projection_vector = (np.dot(point_vector, line_vector) / np.dot(line_vector, line_vector)) * line_vector
# Alternative method proposed in another answer if for whatever reason you prefer to use this.
_projection_vector = (np.dot(point_vector, line_vector) / np.linalg.norm(line_vector)**2) * line_vector
# Add the projection vector to the first point
projected_point = first_point + projection_vector
# Test
(projected_point == expected_point).all()
Since you're not stating which language you're using, I'll give you a generic answer:
Just have a loop passing through all the points in your AB segment, "draw a segment" to C from them, get the distance from C to D and from A to D, and apply pithagoras theorem. If AD^2 + CD^2 = AC^2, then you've found your point.
Also, you can optimize your code by starting the loop by the shortest side (considering AD and BD sides), since you'll find that point earlier.
Here is a python implementation based on Corey Ogburn's answer from this thread.
It projects the point q onto the line segment defined by p1 and p2 resulting in the point r.
It will return null if r falls outside of line segment:
def is_point_on_line(p1, p2, q):
if (p1[0] == p2[0]) and (p1[1] == p2[1]):
p1[0] -= 0.00001
U = ((q[0] - p1[0]) * (p2[0] - p1[0])) + ((q[1] - p1[1]) * (p2[1] - p1[1]))
Udenom = math.pow(p2[0] - p1[0], 2) + math.pow(p2[1] - p1[1], 2)
U /= Udenom
r = [0, 0]
r[0] = p1[0] + (U * (p2[0] - p1[0]))
r[1] = p1[1] + (U * (p2[1] - p1[1]))
minx = min(p1[0], p2[0])
maxx = max(p1[0], p2[0])
miny = min(p1[1], p2[1])
maxy = max(p1[1], p2[1])
is_valid = (minx <= r[0] <= maxx) and (miny <= r[1] <= maxy)
if is_valid:
return r
else:
return None

Perpendicular on a line from a given point

How can I draw a perpendicular on a line segment from a given point? My line segment is defined as (x1, y1), (x2, y2), If I draw a perpendicular from a point (x3,y3) and it meets to line on point (x4,y4). I want to find out this (x4,y4).
I solved the equations for you:
k = ((y2-y1) * (x3-x1) - (x2-x1) * (y3-y1)) / ((y2-y1)^2 + (x2-x1)^2)
x4 = x3 - k * (y2-y1)
y4 = y3 + k * (x2-x1)
Where ^2 means squared
From wiki:
In algebra, for any linear equation
y=mx + b, the perpendiculars will all
have a slope of (-1/m), the opposite
reciprocal of the original slope. It
is helpful to memorize the slogan "to
find the slope of the perpendicular
line, flip the fraction and change the
sign." Recall that any whole number a
is itself over one, and can be written
as (a/1)
To find the perpendicular of a given
line which also passes through a
particular point (x, y), solve the
equation y = (-1/m)x + b, substituting
in the known values of m, x, and y to
solve for b.
The slope of the line, m, through (x1, y1) and (x2, y2) is m = (y1 - y2) / (x1 - x2)
I agree with peter.murray.rust, vectors make the solution clearer:
// first convert line to normalized unit vector
double dx = x2 - x1;
double dy = y2 - y1;
double mag = sqrt(dx*dx + dy*dy);
dx /= mag;
dy /= mag;
// translate the point and get the dot product
double lambda = (dx * (x3 - x1)) + (dy * (y3 - y1));
x4 = (dx * lambda) + x1;
y4 = (dy * lambda) + y1;
You know both the point and the slope, so the equation for the new line is:
y-y3=m*(x-x3)
Since the line is perpendicular, the slope is the negative reciprocal. You now have two equations and can solve for their intersection.
y-y3=-(1/m)*(x-x3)
y-y1=m*(x-x1)
You will often find that using vectors makes the solution clearer...
Here is a routine from my own library:
public class Line2 {
Real2 from;
Real2 to;
Vector2 vector;
Vector2 unitVector = null;
public Real2 getNearestPointOnLine(Real2 point) {
unitVector = to.subtract(from).getUnitVector();
Vector2 lp = new Vector2(point.subtract(this.from));
double lambda = unitVector.dotProduct(lp);
Real2 vv = unitVector.multiplyBy(lambda);
return from.plus(vv);
}
}
You will have to implement Real2 (a point) and Vector2 and dotProduct() but these should be simple:
The code then looks something like:
Point2 p1 = new Point2(x1, y1);
Point2 p2 = new Point2(x2, y2);
Point2 p3 = new Point2(x3, y3);
Line2 line = new Line2(p1, p2);
Point2 p4 = getNearestPointOnLine(p3);
The library (org.xmlcml.euclid) is at:
http://sourceforge.net/projects/cml/
and there are unit tests which will exercise this method and show you how to use it.
#Test
public final void testGetNearestPointOnLine() {
Real2 p = l1112.getNearestPointOnLine(new Real2(0., 0.));
Real2Test.assertEquals("point", new Real2(0.4, -0.2), p, 0.0000001);
}
Compute the slope of the line joining points (x1,y1) and (x2,y2) as m=(y2-y1)/(x2-x1)
Equation of the line joining (x1,y1) and (x2,y2) using point-slope form of line equation, would be y-y2 = m(x-x2)
Slope of the line joining (x3,y3) and (x4,y4) would be -(1/m)
Again, equation of the line joining (x3,y3) and (x4,y4) using point-slope form of line equation, would be y-y3 = -(1/m)(x-x3)
Solve these two line equations as you solve a linear equation in two variables and the values of x and y you get would be your (x4,y4)
I hope this helps.
cheers
Find out the slopes for both the
lines, say slopes are m1 and m2 then
m1*m2=-1 is the condition for
perpendicularity.
Matlab function code for the following problem
function Pr=getSpPoint(Line,Point)
% getSpPoint(): find Perpendicular on a line segment from a given point
x1=Line(1,1);
y1=Line(1,2);
x2=Line(2,1);
y2=Line(2,1);
x3=Point(1,1);
y3=Point(1,2);
px = x2-x1;
py = y2-y1;
dAB = px*px + py*py;
u = ((x3 - x1) * px + (y3 - y1) * py) / dAB;
x = x1 + u * px;
y = y1 + u * py;
Pr=[x,y];
end
Mathematica introduced the function RegionNearest[] in version 10, 2014. This function could be used to return an answer to this question:
{x4,y4} = RegionNearest[Line[{{x1,y1},{x2,y2}}],{x3,y3}]
This is mostly a duplicate of Arnkrishn's answer. I just wanted to complete his section with a complete Mathematica code snippet:
m = (y2 - y1)/(x2 - x1)
eqn1 = y - y3 == -(1/m)*(x - x3)
eqn2 = y - y1 == m*(x - x1)
Solve[eqn1 && eqn2, {x, y}]
This is a C# implementation of the accepted answer. It's also using ArcGis to return a MapPoint as that's what we're using for this project.
private MapPoint GenerateLinePoint(double startPointX, double startPointY, double endPointX, double endPointY, double pointX, double pointY)
{
double k = ((endPointY - startPointY) * (pointX - startPointX) - (endPointX - startPointX) * (pointY - startPointY)) / (Math.Pow(endPointY - startPointY, 2)
+ Math.Pow(endPointX - startPointX, 2));
double resultX = pointX - k * (endPointY - startPointY);
double resultY = pointY + k * (endPointX - startPointX);
return new MapPoint(resultX, resultY, 0, SpatialReferences.Wgs84);
}
Thanks to Ray as this worked perfectly for me.
c#arcgis
Just for the sake of completeness, here is a solution using homogeneous coordinates.
The homogeneous points are:
p1 = (x1,y1,1), p2 = (x2,y2,1), p3 = (x3,y3,1)
a line through two points is their cross-product
l_12 := p1 x p2 = (y1-y2, x2-x1, x1*y2 - x2*y1)
The (signed) distance of a point to a line is their dot product.
d := l_12 * p3 = x3*(y1-y2) + y3*(x2-x1) + x1*y2 - x2*y1
The vector from p4 to p3 is d times the normal vector of l_12 divided by the squared length of the normal vector.
n2 := (y1-y2)^2 + (x2-x1)^2
p4 := p3 + d/n2*(y1-y2, x2-x1, 0)
Note: if you divide l_12 by the length of the normal vector
l_12 := l_12 / sqrt((y1-y2)^2 + (x2-x1)^2)
the distance d will be the euclidean distance.
First, calculate the linear function determined by the points
(x1,y2),(x2,y2).
We get:
y1 = mx+b1 where m and b1 are constants.
This step is easy to calculate by the formula of linear function between two points.
Then, calculate the linear function y that goes through (x3,y3).
The function slope is -m, where m is the slope of y1.
Then calculate the const b2 by the coordinates of the point (x3,y3).
We get y2 = -mx+b2 where m and b2 are constants.
The last thing to do is to find the intersection of y1, y2.
You can find x by solving the equation: -mx+b2 = mx+b1, then place x in one of the equations to find y.
This is a vectorized Matlab function for finding pairwise projections of m points onto n line segments. Here xp and yp are m by 1 vectors holding coordinates of m different points, and x1, y1, x2 and y2 are n by 1 vectors holding coordinates of start and end points of n different line segments.
It returns m by n matrices, x and y, where x(i, j) and y(i, j) are coordinates of projection of i-th point onto j-th line.
The actual work is done in first few lines and the rest of the function runs a self-test demo, just in case where it is called with no parameters. It's relatively fast, I managed to find projections of 2k points onto 2k line segments in less than 0.05s.
function [x, y] = projectPointLine(xp, yp, x1, y1, x2, y2)
if nargin > 0
xd = (x2-x1)';
yd = (y2-y1)';
dAB = xd.*xd + yd.*yd;
u = bsxfun(#rdivide, bsxfun(#times, bsxfun(#minus, xp, x1'), xd) + ...
bsxfun(#times, bsxfun(#minus, yp, y1'), yd), dAB);
x = bsxfun(#plus, x1', bsxfun(#times, u, xd));
y = bsxfun(#plus, y1', bsxfun(#times, u, yd));
else
nLine = 3;
nPoint = 2;
xp = rand(nPoint, 1) * 2 -1;
yp = rand(nPoint, 1) * 2 -1;
x1 = rand(nLine, 1) * 2 -1;
y1 = rand(nLine, 1) * 2 -1;
x2 = rand(nLine, 1) * 2 -1;
y2 = rand(nLine, 1) * 2 -1;
tic;
[x, y] = projectPointLine(xp, yp, x1, y1, x2, y2);
toc
close all;
plot([x1'; x2'], [y1'; y2'], '.-', 'linewidth', 2, 'markersize', 20);
axis equal;
hold on
C = lines(nPoint + nLine);
for i=1:nPoint
scatter(x(i, :), y(i, :), 100, C(i+nLine, :), 'x', 'linewidth', 2);
scatter(xp(i), yp(i), 100, C(i+nLine, :), 'x', 'linewidth', 2);
end
for i=1:nLine
scatter(x(:, i)', y(:, i)', 100, C(i, :), 'o', 'linewidth', 2);
end
end
end

Non-axis aligned scaling

Finding a good way to do this has stumped me for a while now: assume I have a selection box with a set of points in it. By dragging the corners you can scale the (distance between) points in the box. Now for an axis aligned box this is easy. Take a corner as an anchor point (subtract this corner from each point, scale it, then add it to the point again) and multiply each points x and y by the factor with which the box has gotten bigger.
But now take a box that is not aligned with the x and y axis. How do you scale the points inside this box when you drag its corners?
Any box is contained inside a circle.
You find the circle which binds the box, find its center and do exactly the same as you do with an axis aligned box.
You pick one corner of the rectangle as the origin. The two edges connected to it will be the basis (u and v, which should be perpendicular to each other). You would need to normalize them first.
Subtract the origin from the coordinates and calculate the dot-product with the scaling vector (u), and with the other vector (v). This would give you how much u and v contributes to the coordinate.
Then you scale the component you want. To get the final coordinate, you just multiply the the (now scaled) components with their respective vector, and add them together.
For example:
Points: p1 = (3,5) and p2 = (6,4)
Selection corners: (0,2),(8,0),(9,4),(1,6)
selected origin = (8,0)
u = ((0,2)-(8,0))/|(0,2)-(8,0)| = <-0.970, 0.242>
v = <-0.242, -0.970>
(v is u, but with flipped coordinates, and one of them negated)
p1´ = p1 - origin = (-5, 5)
p2´ = p2 - origin = (-2, 4)
p1_u = p1´ . u = -0.970 * (-5) + 0.242 * 5 = 6.063
p1_v = p1´ . v = -0.242 * (-5) - 0.970 * 5 = -3.638
Scale p1_u by 0.5: 3.038
p1_u * u + p1_v * v + origin = <5.941, 4.265>
Same for p2: <7.412, 3.647>
As you maybe can see, they have moved towards the line (8,0)-(9,4), since we scaled by 0.5, with (0,8) as the origin.
Edit: This turned out to be a little harder to explain than I anticipated.
In python code, it could look something like this:
def scale(points, origin, u, scale):
# normalize
len_u = (u[0]**2 + u[1]**2) ** 0.5
u = (u[0]/len_u, u[1]/len_u)
# create v
v = (-u[1],u[0])
ret = []
for x,y in points:
# subtract origin
x, y = x - origin[0], y - origin[1]
# calculate dot product
pu = x * u[0] + y * u[1]
pv = x * v[0] + y * v[1]
# scale
pu = pu * scale
# transform back to normal space
x = pu * u[0] + pv * v[0] + origin[0]
y = pu * u[1] + pv * v[1] + origin[1]
ret.append((x,y))
return ret
>>> scale([(3,5),(6,4)],(8,0),(-8,2),0.5)
[(5.9411764705882355, 4.2647058823529411), (7.4117647058823533, 3.6470588235294117)]
Let's say that the box is defined as a set of four points (P1, P2, P3 and P4).
For the sake of simplicity, we'll say you are dragging P1, and that P3 is the opposite corner (the one you are using as an anchor).
Let's label the mouse position as M, and the new points you wish to calculate as N1, N2 and N4. P3 will, of course, remain the same.
Your scaling factor can be simply computed using vector subtraction and the vector dot product:
scale = ((M - P3) dot (P1 - P3)) / ((P1 - P3) dot (P1 - P3))
And the three new points can be found using scalar multiplication and vector addition:
N1 = scale*P1 + (1 - scale)*P3
N2 = scale*P2 + (1 - scale)*P3
N4 = scale*P4 + (1 - scale)*P3
edit: I see that MizardX has answered the question already, so my answer is here to help with that difficult explanation. I hope it helps!
edit: here is the algorithm for non-proportional scaling. In this case, N1 is equal to M (the point being dragged follows the mouse), so the only points of interest are N2 and N4:
N2 = ((M - P3) dot (P2 - P3)) / ((P2 - P3) dot (P2 - P3)) * (P2 - P3) + P3
N4 = ((M - P3) dot (P4 - P3)) / ((P4 - P3) dot (P4 - P3)) * (P4 - P3) + P3
where * represents scalar multiplication
edit: Here is some C++ code which answers the question. I'm sure this question is long-dead by now, but it was an interesting problem, and I had some fun writing the code.
#include <vector>
class Point
{
public:
float x;
float y;
Point() { x = y = 0; }
Point(float nx, float ny) { x = nx; y = ny; }
};
Point& operator-(Point& A, Point& B) { return Point(A.x-B.x, A.y-B.y); }
Point& operator+(Point& A, Point& B) { return Point(A.x+B.x, A.y+B.y); }
Point& operator*(float sc, Point& P) { return Point(sc*P.x, sc*P.y); }
float dot_product(Point A, Point B) { return A.x*B.x + A.y*B.y; }
struct Rect { Point point[4]; };
void scale_points(Rect box, int anchor, Point mouse, vector<Point> points)
{
Point& P3 = box.point[anchor];
Point& P2 = box.point[(anchor + 1)%4];
Point& P1 = box.point[(anchor + 2)%4];
Point& P4 = box.point[(anchor + 3)%4];
Point A = P4 - P3;
Point aFactor = dot_product(mouse - P3, A) / dot_product(A, A) * A;
Point B = P2 - P3;
Point bFactor = dot_product(mouse - P3, B) / dot_product(B, B) * B;
for (int i = 0; i < points.size(); i++)
{
Point P = points[i] - P3;
points[i] = P3 + dot_product(P, aFactor) + dot_product(P, bFactor);
}
}

Resources