I've got a situation in which I have 2 circles (C1 and C2)
and i need to find the line equation for the line that is tangent to both of these circles.
So as far as i'm aware, given a single point (P1) and C2's point and radius it is possible to quite easily get 2 possible points of tangency for C2 and P1 to make 2 line equations. But as i don't have P1, only the knowledge that the point will be one of a possible 2 points on C1, i'm not sure how to calculate this.
I assume it will be something along the lines of getting the 2 tangent line equations of C1 that are equal to the same of C2.
Both circles can have any radius, they could be the same or they could be hugely different. They will also never overlap (they can still touch though). And I'm looking for the 2 possible internal tangents.
Oh, and also, visuals would be very helpful haha :)
Let O be the intersection point between the line through the centers and the tangent.
Let d be the distance between the centers and h1, h2 be the distances between O and the centers. By similarity, these are proportional to the radii.
Hence,
h1 / h2 = r1 / r2 = m,
h1 + h2 = d,
giving
h1 = m d / (1 + m),
h2 = d / (1 + m).
Then the coordinates of O are found by interpolating between the centers
xo = (h2.x1 + h1.x2) / d
yo = (h2.y1 + h1.y2) / d
and the angle of the tangent is that of the line through the centers plus or minus the angle between this line and the tangent,
a = arctan((y2 - y1)/(x2 - x1)) +/- arcsin(r1 / h1).
You can write the implicit equation of the tangent as
cos(a).y - sin(a).x = cos(a).yo - sin(a).xo.
(source: imag.fr)
So we are going to use a homothetic transformation. If the circles C and C' have respectively centres O and O', and radius r and r', then we know there exists a unique homothetic transformation with centre J and ratio a, such that :
a = |JO|/|JO'| = r/r'
Noting AB is the vector from A to B, and |z| the norm of a vector z.
Hence you get J, knowing that it is between O and O' which we both already know.
Then with u the projection of JR on JO', and v the decomposition on its orthogonal, and considering the sine s and cosine c of the angle formed by O'JR, we have
|u| = |JR| * c
|v| = |JR| * s
c^2 + s^2 = 1
And finally because the triangle JRO' is right-angled in R :
s = r' / |JO|'
Putting all of this together, we get :
J = O + OO' / |OO'| * a / (a+1)
if |OJ| == r and |O'J| == r' then
return the orthogonal line to (OO') passing through J
|JR| = √( |JO'|^ - r'^2 )
s = r' / |JO'|
c = √( 1 - s^2 )
u = c * |JR| * OO' / |OO'|
w = (-u.y, u.x) % any orthogonal vector to u
v = s * |JR| * w / |w|
return lines corresponding to parametric equations J+t*(u+v) and J+t*(u-v)
Related
I'm trying to align multiple line objects along a human body circumference depending on the orientation of the triangles from the mesh. I would like to put the lines parallel to the mesh. I correctly assign the position for the lines along the circumference, but I also need to add the rotation of the lines such that to be parallel with the body.
The body is a mesh formed by multiple triangles and every line is "linked" with a triangle.
All I have is:
3 points for the closest triangle from the mesh for every line
The normal of the triangle
The positions for the instantiated lines (2 points, start and end)
I need to calculate the angle for every X, Y, Z axes for the line such that the normal of the triangle is perpendicular with the line mesh. I don't know how to get the desired angle. I really appreciate if someone would like to help me.
input:
FVector TrianglePoints[3];
FVector Triangle_Normal; //Calculated as (B-A)^(C-A), where A,B,C are the points of the triangle
FVector linePosition; //I also have the start line and the endLine position if that helps
ouput:
//FRotator rotation(x,y,z), such that the triangle normal and the line object to be perpendicular.
An overview of the circumference line construction. Now the rotation is calculated using the Start position and End position for each line. When we cross some irregular parts of the mesh we want to rotate the lines correctly. Now the rotation is fixed, depending just on the line start and end position.
If I have understood correctly your goal, here is some related vector geometry:
A,B,C are the vertices of the triangle:
A = [xA, yA, zA],
B = [xB, yB, zB]
C = [xC, yC, zC]
K,L are the endpoints of the line-segment:
K = [xK, yK, zK]
L = [xL, yL, zL]
vectors are interpreted as row-vectors
by . I denote matrix multiplication
by x I denote cross product of 3D vectors
by t() I denote the transpose of a matrix
by | | I denote the norm (magnitude) of a vector
Goal: find the rotation matrix and rotation transformation of segment KL
around its midpoint, so that after rotation KL is parallel to the plane ABC
also, the rotation is the "minimal" angle rotation by witch we need to
rotate KL in order to make it parallel to ABC
AB = B - A
AC = C - A
KL = L - K
n = AB x AC
n = n / |n|
u = KL x n
u = u / |u|
v = n x u
cos = ( KL . t(v) ) / |KL|
sin = ( KL . t(n) ) / |KL|
U = [[ u[0], u[1], u[2] ],
[ v[0], v[1], v[2] ],
[ n[0], n[1], n[2] ],
R = [[1, 0, 0],
[0, cos, sin],
[0, -sin, cos]]
ROT = t(U).R.U
then, one can rotate the segment KL around its midpoint
M = (K + L)/2
Y = M + ROT (X - M)
Here is a python script version
A = np.array([0,0,0])
B = np.array([3,0,0])
C = np.array([2,3,0])
K = np.array([ -1,0,1])
L = np.array([ 2,2,2])
KL = L-K
U = np.empty((3,3), dtype=float)
U[2,:] = np.cross(B-A, C-A)
U[2,:] = U[2,:] / np.linalg.norm(U[2,:])
U[0,:] = np.cross(KL, U[2,:])
U[0,:] = U[0,:] / np.linalg.norm(U[0,:])
U[1,:] = np.cross(U[2,:], U[0,:])
norm_KL = np.linalg.norm(KL)
cos_ = KL.dot(U[1,:]) / norm_KL
sin_ = KL.dot(U[2,:]) / norm_KL
R = np.array([[1, 0, 0],
[0, cos_, sin_],
[0,-sin_, cos_]])
ROT = (U.T).dot(R.dot(U))
M = (K+L) / 2
K_rot = M + ROT.dot( K - M )
L_rot = M + ROT.dot( L - M )
print(L_rot)
print(K_rot)
print(L_rot-K_rot)
print((L_rot-K_rot).dot(U[2,:]))
A more inspired solution was to use a procedural mesh, generated at runtime, that have all the requirements that I need:
Continuously along multiple vertices
Easy to apply a UV map for texture tiling
Can be updated at runtime
Isn't hard to compute/work with it
I am trying to solve the following problem (I am using Matlab, though pseudo-code / solutions in other languages are welcome):
I have two circles on a Cartesian plane defined by their centroids (p1, p2) and their radii (r1, r2). circle 1 (c1 = [p1 r1]) is considered 'dynamic': it is being translated along the vector V = [0 -1]. circle 2 (c2 = [p2 r2]) is considered 'static': it lies in the path of c1 but the x component of its centroid is offset from the x component of c2 (otherwise the solution would be trivial: the distance between the circle centroids minus the sum of their radii).
I am trying to locate the distance (d) along V at which circle 1 will 'collide' with circle 2 (see the linked image). I am sure that I can solve this iteratively (i.e. translate c1 to the bounding box of c2 then converge / test for intersection). However, I would like to know if there is a closed form solution to this problem.
Shift coordinates to simplify expressions
px = p1.x - p2.x
py = p1.y - p2.y
And solve quadratic equation for d (zero, one, or two solutions)
px^2 + (py - d)^2 = (r1 + r2)^2
(py - d)^2 = (r1 + r2)^2 - px^2
d = py +/- Sqrt((r1 + r2)^2 - px^2)
That's all.
As the question title does not match the question and accepted answer which is dependent on a fixed vector {0, -1}, or {0, 1} rather than an arbitrary vector I have added another solution that works for any unit vector.
Where (See diagram 1)
dx, dy is the unit vector of travel for circle c1
p1, p2 the centers of the moving circle c1 and static circle c2
r1, r2 the radius of each circle
The following will set d to the distance c1 must travel along dx, dy to collide with c2 if no collision the d will be set to Infinity
There are three cases when there is no solution
The moving circle is moving away from the static circle. u < 0
The moving circle never gets close enough to collide. dSq > rSq
The two circles are already overlapping. u < 0 luckily the math makes
this the same condition as moving away.
Note that if you ignore the sign of u (1 and 3) then d will be the distance to first (causal) contact going backward in time
Thus the pseudo code to find d
d = Infinity
rSq = (r1 + r2) ^ 2
u = (p1.x - p2.x) * dx + (p1.x - p2.x) * dy
if u >= 0
dSq = ((p2.x + dx * u) - p1.x) ^ 2 + ((p2.y + dy * u) - p1.y) ^ 2
if dSq <= rSq
d = u - (rSq - dSq) ^ 0.5
The point of contact can be found with
cpx = p1.x + dx * d;
cpy = p1.x + dy * d;
Diagram 1
I am trying to create a binary tree from a lot of segments in 3d space sharing the same origin.
When merging two segments I want to have a specific angle between the lines to the child nodes.
The following image illustrates my problem. C shows the position of the parent node and A and B the child positions. N is the average vector of the vectors from C to A and C to B.
With a given angle, how can I determine point P?
Thanks for any help
P = C + t * ((A + B)/2 - C) t is unknown parameter
PA = A - P PA vector
PB = B - P PB vector
Tan(Fi) = (PA x PB) / (PA * PB) (cross product in the nominator, scalar product in the denominator)
Tan(Fi) * (PA.x*PB.x + PA.y*PB.y) = (PA.x*PB.y - PA.y*PB.x)
this is quadratic equation for t, after solving we will get two (for non-degenerate cases) possible positions of P point (the second one lies at other side of AB line)
Addition:
Let's ax = A.x - A point X-coordinate and so on,
abcx = (ax+bx)/2-cx, abcy = (ay+by)/2-cy
pax = ax-cx - t*abcx, pay = ay-cy - t*abcy
pbx = bx-cx - t*abcx, pby = by-cy - t*abcy
ff = Tan(Fi) , then
ff*(pax*pbx+pay*pby)-pax*pby+pay*pbx=0
ff*((ax-cx - t*abcx)*(bx-cx - t*abcx)+(ay-cy - t*abcy)*(by-cy - t*abcy)) -
- (ax-cx - t*abcx)*(by-cy - t*abcy) + (ay-cy - t*abcy)*(bx-cx - t*abcx) =
t^2 *(ff*(abcx^2+abcy^2)) +
t * (-2*ff*(abcx^2+abcy^2) + abcx*(by-ay) + abcy*(ax-bx) ) +
(ff*((ax-cx)*(bx-cx)+(ay-cy)*(by-cy)) - (ax-cx)*(by-cy)+(bx-cx)*(ay-cy)) =0
This is quadratic equation AA*t^2 + BB*t + CC = 0 with coefficients
AA = ff*(abcx^2+abcy^2)
BB = -2*ff*(abcx^2+abcy^2) + abcx*(by-ay) + abcy*(ax-bx)
CC = ff*((ax-cx)*(bx-cx)+(ay-cy)*(by-cy)) - (ax-cx)*(by-cy)+(bx-cx)*(ay-cy)
P.S. My answer is for 2d-case!
For 3d: It is probably simpler to use scalar product only (with vector lengths)
Cos(Fi) = (PA * PB) / (|PA| * |PB|)
Another solution could be using binary search on the vector N, whether P is close to C then the angle will be smaller and whether P is far from C then the angle will be bigger, being it suitable for a binary search.
I have a square bitmap of a circle and I want to compute the normals of all the pixels in that circle as if it were a sphere of radius 1:
The sphere/circle is centered in the bitmap.
What is the equation for this?
Don't know much about how people program 3D stuff, so I'll just give the pure math and hope it's useful.
Sphere of radius 1, centered on origin, is the set of points satisfying:
x2 + y2 + z2 = 1
We want the 3D coordinates of a point on the sphere where x and y are known. So, just solve for z:
z = ±sqrt(1 - x2 - y2).
Now, let us consider a unit vector pointing outward from the sphere. It's a unit sphere, so we can just use the vector from the origin to (x, y, z), which is, of course, <x, y, z>.
Now we want the equation of a plane tangent to the sphere at (x, y, z), but this will be using its own x, y, and z variables, so instead I'll make it tangent to the sphere at (x0, y0, z0). This is simply:
x0x + y0y + z0z = 1
Hope this helps.
(OP):
you mean something like:
const int R = 31, SZ = power_of_two(R*2);
std::vector<vec4_t> p;
for(int y=0; y<SZ; y++) {
for(int x=0; x<SZ; x++) {
const float rx = (float)(x-R)/R, ry = (float)(y-R)/R;
if(rx*rx+ry*ry > 1) { // outside sphere
p.push_back(vec4_t(0,0,0,0));
} else {
vec3_t normal(rx,sqrt(1.-rx*rx-ry*ry),ry);
p.push_back(vec4_t(normal,1));
}
}
}
It does make a nice spherical shading-like shading if I treat the normals as colours and blit it; is it right?
(TZ)
Sorry, I'm not familiar with those aspects of C++. Haven't used the language very much, nor recently.
This formula is often used for "fake-envmapping" effect.
double x = 2.0 * pixel_x / bitmap_size - 1.0;
double y = 2.0 * pixel_y / bitmap_size - 1.0;
double r2 = x*x + y*y;
if (r2 < 1)
{
// Inside the circle
double z = sqrt(1 - r2);
.. here the normal is (x, y, z) ...
}
Obviously you're limited to assuming all the points are on one half of the sphere or similar, because of the missing dimension. Past that, it's pretty simple.
The middle of the circle has a normal facing precisely in or out, perpendicular to the plane the circle is drawn on.
Each point on the edge of the circle is facing away from the middle, and thus you can calculate the normal for that.
For any point between the middle and the edge, you use the distance from the middle, and some simple trig (which eludes me at the moment). A lerp is roughly accurate at some points, but not quite what you need, since it's a curve. Simple curve though, and you know the beginning and end values, so figuring them out should only take a simple equation.
I think I get what you're trying to do: generate a grid of depth data for an image. Sort of like ray-tracing a sphere.
In that case, you want a Ray-Sphere Intersection test:
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm
Your rays will be simple perpendicular rays, based off your U/V coordinates (times two, since your sphere has a diameter of 2). This will give you the front-facing points on the sphere.
From there, calculate normals as below (point - origin, the radius is already 1 unit).
Ripped off from the link above:
You have to combine two equations:
Ray: R(t) = R0 + t * Rd , t > 0 with R0 = [X0, Y0, Z0] and Rd = [Xd, Yd, Zd]
Sphere: S = the set of points[xs, ys, zs], where (xs - xc)2 + (ys - yc)2 + (zs - zc)2 = Sr2
To do this, calculate your ray (x * pixel / width, y * pixel / width, z: 1), then:
A = Xd^2 + Yd^2 + Zd^2
B = 2 * (Xd * (X0 - Xc) + Yd * (Y0 - Yc) + Zd * (Z0 - Zc))
C = (X0 - Xc)^2 + (Y0 - Yc)^2 + (Z0 - Zc)^2 - Sr^2
Plug into quadratic equation:
t0, t1 = (- B + (B^2 - 4*C)^1/2) / 2
Check discriminant (B^2 - 4*C), and if real root, the intersection is:
Ri = [xi, yi, zi] = [x0 + xd * ti , y0 + yd * ti, z0 + zd * ti]
And the surface normal is:
SN = [(xi - xc)/Sr, (yi - yc)/Sr, (zi - zc)/Sr]
Boiling it all down:
So, since we're talking unit values, and rays that point straight at Z (no x or y component), we can boil down these equations greatly:
Ray:
X0 = 2 * pixelX / width
Y0 = 2 * pixelY / height
Z0 = 0
Xd = 0
Yd = 0
Zd = 1
Sphere:
Xc = 1
Yc = 1
Zc = 1
Factors:
A = 1 (unit ray)
B
= 2 * (0 + 0 + (0 - 1))
= -2 (no x/y component)
C
= (X0 - 1) ^ 2 + (Y0 - 1) ^ 2 + (0 - 1) ^ 2 - 1
= (X0 - 1) ^ 2 + (Y0 - 1) ^ 2
Discriminant
= (-2) ^ 2 - 4 * 1 * C
= 4 - 4 * C
From here:
If discriminant < 0:
Z = ?, Normal = ?
Else:
t = (2 + (discriminant) ^ 1 / 2) / 2
If t < 0 (hopefully never or always the case)
t = -t
Then:
Z: t
Nx: Xi - 1
Ny: Yi - 1
Nz: t - 1
Boiled farther still:
Intuitively it looks like C (X^2 + Y^2) and the square-root are the most prominent figures here. If I had a better recollection of my math (in particular, transformations on exponents of sums), then I'd bet I could derive this down to what Tom Zych gave you. Since I can't, I'll just leave it as above.
How can I find the line of intersection between two planes?
I know the mathematics idea, and I did the cross product between the the planes normal vectors
but how to get the line from the resulted vector programmatically
The equation of the plane is ax + by + cz + d = 0, where (a,b,c) is the plane's normal, and d is the distance to the origin. This means that every point (x,y,z) that satisfies that equation is a member of the plane.
Given two planes:
P1: a1x + b1y + c1z + d1 = 0
P2: a2x + b2y + c2z + d2 = 0
The intersection between the two is the set of points that verifies both equations. To find points along this line, you can simply pick a value for x, any value, and then solve the equations for y and z.
y = (-c1z -a1x -d1) / b1
z = ((b2/b1)*(a1x+d1) -a2x -d2)/(c2 - c1*b2/b1)
If you make x=0, this gets simpler:
y = (-c1z -d1) / b1
z = ((b2/b1)*d1 -d2)/(c2 - c1*b2/b1)
Finding the line between two planes can be calculated using a simplified version of the 3-plane intersection algorithm.
The 2'nd, "more robust method" from bobobobo's answer references the 3-plane intersection.
While this works well for 2 planes (where the 3rd plane can be calculated using the cross product of the first two), the problem can be further reduced for the 2-plane version.
No need to use a 3x3 matrix determinant,instead we can use the squared length of the cross product between the first and second plane (which is the direction of the 3'rd plane).
No need to include the 3rd planes distance,(calculating the final location).
No need to negate the distances.Save some cpu-cycles by swapping the cross product order instead.
Including this code-example, since it may not be immediately obvious.
// Intersection of 2-planes: a variation based on the 3-plane version.
// see: Graphics Gems 1 pg 305
//
// Note that the 'normal' components of the planes need not be unit length
bool isect_plane_plane_to_normal_ray(
const Plane& p1, const Plane& p2,
// output args
Vector3f& r_point, Vector3f& r_normal)
{
// logically the 3rd plane, but we only use the normal component.
const Vector3f p3_normal = p1.normal.cross(p2.normal);
const float det = p3_normal.length_squared();
// If the determinant is 0, that means parallel planes, no intersection.
// note: you may want to check against an epsilon value here.
if (det != 0.0) {
// calculate the final (point, normal)
r_point = ((p3_normal.cross(p2.normal) * p1.d) +
(p1.normal.cross(p3_normal) * p2.d)) / det;
r_normal = p3_normal;
return true;
}
else {
return false;
}
}
Adding this answer for completeness, since at time of writing, none of the answers here contain a working code-example which directly addresses the question.
Though other answers here already covered the principles.
Finding a point on the line
To get the intersection of 2 planes, you need a point on the line and the direction of that line.
Finding the direction of that line is really easy, just cross the 2 normals of the 2 planes that are intersecting.
lineDir = n1 × n2
But that line passes through the origin, and the line that runs along your plane intersections might not. So, Martinho's answer provides a great start to finding a point on the line of intersection (basically any point that is on both planes).
In case you wanted to see the derivation for how to solve this, here's the math behind it:
First let x=0. Now we have 2 unknowns in 2 equations instead of 3 unknowns in 2 equations (we arbitrarily chose one of the unknowns).
Then the plane equations are (A terms were eliminated since we chose x=0):
B1y + C1z + D1 = 0
B2y + C2z + D2 = 0
We want y and z such that those equations are both solved correctly (=0) for the B1, C1 given.
So, just multiply the top eq by (-B2/B1) to get
-B2y + (-B2/B1)*C1z + (-B2/B1)*D1 = 0
B2y + C2z + D2 = 0
Add the eqs to get
z = ( (-B2/B1)*D1 - D2 ) / (C2 * B2/B1)*C1)
Throw the z you find into the 1st equation now to find y as
y = (-D1 - C1z) / B1
Note the best variable to make 0 is the one with the lowest coefficients, because it carries no information anyway. So if C1 and C2 were both 0, choosing z=0 (instead of x=0) would be a better choice.
The above solution can still screw up if B1=0 (which isn't that unlikely). You could add in some if statements that check if B1=0, and if it is, be sure to solve for one of the other variables instead.
Solution using intersection of 3 planes
From user's answer, a closed form solution for the intersection of 3 planes was actually in Graphics Gems 1. The formula is:
P_intersection = (( point_on1 • n1 )( n2 × n3 ) + ( point_on2 • n2 )( n3 × n1 ) + ( point_on3 • n3 )( n1 × n2 )) / det(n1,n2,n3)
Actually point_on1 • n1 = -d1 (assuming you write your planes Ax + By + Cz + D=0, and not =-D). So, you could rewrite it as:
P_intersection = (( -d1 )( n2 × n3 ) + ( -d2 )( n3 × n1 ) + ( -d3 )( n1 × n2 )) / det(n1,n2,n3)
A function that intersects 3 planes:
// Intersection of 3 planes, Graphics Gems 1 pg 305
static Vector3f getIntersection( const Plane& plane1, const Plane& plane2, const Plane& plane3 )
{
float det = Matrix3f::det( plane1.normal, plane2.normal, plane3.normal ) ;
// If the determinant is 0, that means parallel planes, no intn.
if( det == 0.f ) return 0 ; //could return inf or whatever
return ( plane2.normal.cross( plane3.normal )*-plane1.d +
plane3.normal.cross( plane1.normal )*-plane2.d +
plane1.normal.cross( plane2.normal )*-plane3.d ) / det ;
}
Proof it works (yellow dot is intersection of rgb planes here)
Getting the line
Once you have a point of intersection common to the 2 planes, the line just goes
P + t*d
Where P is the point of intersection, t can go from (-inf, inf), and d is the direction vector that is the cross product of the normals of the two original planes.
The line of intersection between the red and blue planes looks like this
Efficiency and stability
The "robust" (2nd way) takes 48 elementary ops by my count, vs the 36 elementary ops that the 1st way (isolation of x,y) uses. There is a trade off between stability and # computations between these 2 ways.
It'd be pretty catastrophic to get (0,inf,inf) back from a call to the 1st way in the case that B1 was 0 and you didn't check. So adding in if statements and making sure not to divide by 0 to the 1st way may give you the stability at the cost of code bloat, and the added branching (which might be quite expensive). The 3 plane intersection method is almost branchless and won't give you infinities.
This method avoids division by zero as long as the two planes are not parallel.
If these are the planes:
A1*x + B1*y + C1*z + D1 = 0
A2*x + B2*y + C2*z + D2 = 0
1) Find a vector parallel to the line of intersection. This is also the normal of a 3rd plane which is perpendicular to the other two planes:
(A3,B3,C3) = (A1,B1,C1) cross (A2,B2,C2)
2) Form a system of 3 equations. These describe 3 planes which intersect at a point:
A1*x1 + B1*y1 + C1*z1 + D1 = 0
A2*x1 + B2*y1 + C2*z1 + D2 = 0
A3*x1 + B3*y1 + C3*z1 = 0
3) Solve them to find x1,y1,z1. This is a point on the line of intersection.
4) The parametric equations of the line of intersection are:
x = x1 + A3 * t
y = y1 + B3 * t
z = z1 + C3 * t
The determinant-based approach is neat, but it's hard to follow why it works.
Here's another way that's more intuitive.
The idea is to first go from the origin to the closest point on the first plane (p1), and then from there go to the closest point on the line of intersection of the two planes. (Along a vector that I'm calling v below.)
Given
=====
First plane: n1 • r = k1
Second plane: n2 • r = k2
Working
=======
dir = n1 × n2
p1 = (k1 / (n1 • n1)) * n1
v = n1 × dir
pt = LineIntersectPlane(line = (p1, v), plane = (n2, k2))
LineIntersectPlane
==================
#We have n2 • (p1 + lambda * v) = k2
lambda = (k2 - n2 • p1) / (n2 • v)
Return p1 + lambda * v
Output
======
Line where two planes intersect: (pt, dir)
This should give the same point as the determinant-based approach. There's almost certainly a link between the two. At least the denominator, n2 • v, is the same, if we apply the "scalar triple product" rule. So these methods are probably similar as far as condition numbers go.
Don't forget to check for (almost) parallel planes. For example: if (dir • dir < 1e-8) should work well if unit normals are used.
You can find the formula for the intersection line of two planes in this link.
P1: a1x + b1y + c1z = d1
P2: a2x + b2y + c2z = d2
n1=(a1,b1,c1); n2=(a2,b2,c2); n12=Norm[Cross[n1,n2]]^2
If n12 != 0
a1 = (d1*Norm[n2]^2 - d2*n1.n2)/n12;
a2 = (d2*Norm[n1]^2 - d1*n1.n2)/n12;
P = a1 n1 + a2 n2;
(*formula for the intersection line*)
Li[t_] := P + t*Cross[n1, n2];
The cross product of the line is the direction of the intersection line. Now you need a point in the intersection.
You can do this by taking a point on the cross product, then subtracting Normal of plane A * distance to plane A and Normal of plane B * distance to plane b. Cleaner:
p = Point on cross product
intersection point = ([p] - ([Normal of plane A] * [distance from p to plane A]) - ([Normal of plane B] * [distance from p to plane B]))
Edit:
You have two planes with two normals:
N1 and N2
The cross product is the direction of the Intersection Line:
C = N1 x N2
The class above has a function to calculate the distance between a point and a plane. Use it to get the distance of some point p on C to both planes:
p = C //p = 1 times C to get a point on C
d1 = plane1.getDistance(p)
d2 = plane2.getDistance(p)
Intersection line:
resultPoint1 = (p - (d1 * N1) - (d2 * N2))
resultPoint2 = resultPoint1 + C