Right now I have a code that can find the number of combinations of a sum of a value using numbers greater than zero and less than the value.
I need to alter the value in order to expand the combinations so that they include more than just the value.
For example:
The number 10 yields the results:
[1, 2, 3, 4], [1, 2, 7],
[1, 3, 6], [1, 4, 5],
[1, 9], [2, 3, 5], [2, 8],
[3, 7], [4, 6]
But I need to expand this to including any number that collapses to 1 as well. Because in essence, I need 100 = n in that the sum of the individual numbers within the digits = n. So in this case 100 = 1 because 100 --> 1+0+0 = 1
Therefore the number 1999 will also be a valid combination to list for value = 100 because 1999 = 1+9+9+9 = 28, and 28 = 2+8 = 10, and 10 = 1+0 = 1
Now I realize that this will yield an infinite series of combinations, so I will need to set limits to the range I want to acquire data for. This is the current code I am using to find my combinations.
def a(lst, target, with_replacement=False):
def _a(idx, l, r, t, w):
if t == sum(l): r.append(l)
elif t < sum(l): return
for u in range(idx, len(lst)):
_a(u if w else (u + 1), l + [lst[u]], r, t, w)
return r
return _a(0, [], [], target, with_replacement)
for val in range(100,101):
s = range(1, val)
solutions = a(s, val)
print(solutions)
print('Value:', val, "Combinations", len(solutions))
You seem to have multiple issues.
To repeatedly add the decimal digits of an integer until you end with a single digit, you could use this code.
d = val
while d > 9:
d = sum(int(c) for c in str(d))
This acts in just the way you describe. However, there is an easier way. Repeatedly adding the decimal digits of a number is called casting out nines and results in the digital root of the number. This almost equals the remainder of the number when divided by nine, except that you want to get a result of 9 rather than 1. So easier and faster code is
d = val % 9
if d == 0:
d == 9
or perhaps the shorter but trickier
d = (val - 1) % 9 + 1
or the even-more-tricky
d = val % 9 or 9
To find all numbers that end up at 7 (for example, or any digit from 1 to 9) you just want all numbers with the remainder 7 when divided by 9. So start at 7 and keep adding 9 and you get all such values.
The approach you are using to find all partitions of 7 then arranging them into numbers is much more complicated and slower than necessary.
To find all numbers that end up at 16 (for example, or any integer greater than 9) your current approach may be best. It is difficult otherwise to avoid the numbers that directly add to 7 or to 25 without going through 16. If this is really what you mean, say so in your question and we can look at this situation further.
Related
I don't even know if something like this is possible, but:
Let us say we have three numbers:
A = 6
B = 7.5
C = 24
I would like to find a few evenly spaced common multiples of these numbers between 0 and 2.
So the requirement is: one_of_these_numbers / common_multiple = an_integer (or almost an integer with a particular tolerance)
For example, a good result would be [0.1 , 0.5 , 1 , 1.5]
I have no idea if this is possible, because one can not iterate through a range of floats, but is there a smart way to do it?
I am using python, but a solution could be represented in any language of your preference.
Thank you for your help!
While I was writing my question, I actually came up with an idea for the solution.
To find common divisors using code, we have to work with integers.
My solution is to multiply all numbers by a factor = 1, 10, 100, ...
so that we can act as if they are integers, find their integer common divisors, and then redivide them by the factor to get a result.
Better explained in code:
a = 6
b = 7.5
c = 24
# Find a few possible divisors between 0 and 2 so that all numbers are divisible
by div.
# We define a function that finds all divisors in a range of numbers, supposing
all numbers are integers.
def find_common_divisors(numbers, range_start, range_end):
results = []
for i in range(range_start + 1, range_end + 1):
if all([e % i == 0 for e in numbers]):
results.append(i)
return results
def main():
nums = [a, b, c]
range_start = 0
range_end = 2
factor = 1
results = [1]
while factor < 11:
nums_i = [e * factor for e in nums]
range_end_i = range_end * factor
results += [e / factor for e in find_common_divisors(nums_i, range_start, range_end_i)]
factor *= 10
print(sorted(set(results)))
if __name__ == '__main__':
main()
For these particular numbers, I get the output:
[0.1, 0.3, 0.5, 1, 1.5]
If we need more results, we can adjust while factor < 11: to a higher number than 11 like 101.
I am curious to see if I made any mistake in my code.
Happy to hear some feedback.
Thank you!
I came across this question in a coding competition. Given a number n, concatenate the binary representation of first n positive integers and return the decimal value of the resultant number formed. Since the answer can be large return answer modulo 10^9+7.
N can be as large as 10^9.
Eg:- n=4. Number formed=11011100(1=1,10=2,11=3,100=4). Decimal value of 11011100=220.
I found a stack overflow answer to this question but the problem is that it only contains a O(n) solution.
Link:- concatenate binary of first N integers and return decimal value
Since n can be up to 10^9 we need to come up with solution that is better than O(n).
Here's some Python code that provides a fast solution; it uses the same ideas as in Abhinav Mathur's post. It requires Python >= 3.8, but it doesn't use anything particularly fancy from Python, and could easily be translated into another language. You'd need to write algorithms for modular exponentiation and modular inverse if they're not already available in the target language.
First, for testing purposes, let's define the slow and obvious version:
# Modulus that results are reduced by,
M = 10 ** 9 + 7
def slow_binary_concat(n):
"""
Concatenate binary representations of 1 through n (inclusive).
Reinterpret the resulting binary string as an integer.
"""
concatenation = "".join(format(k, "b") for k in range(n + 1))
return int(concatenation, 2) % M
Checking that we get the expected result:
>>> slow_binary_concat(4)
220
>>> slow_binary_concat(10)
462911642
Now we'll write a faster version. First, we split the range [1, n) into subintervals such that within each subinterval, all numbers have the same length in binary. For example, the range [1, 10) would be split into four subintervals: [1, 2), [2, 4), [4, 8) and [8, 10). Here's a function to do that splitting:
def split_by_bit_length(n):
"""
Split the numbers in [1, n) by bit-length.
Produces triples (a, b, 2**k). Each triple represents a subinterval
[a, b) of [1, n), with a < b, all of whose elements has bit-length k.
"""
a = 1
while n > a:
b = 2 * a
yield (a, min(n, b), b)
a = b
Example output:
>>> list(split_by_bit_length(10))
[(1, 2, 2), (2, 4, 4), (4, 8, 8), (8, 10, 16)]
Now for each subinterval, the value of the concatenation of all numbers in that subinterval is represented by a fairly simple mathematical sum, which can be computed in exact form. Here's a function to compute that sum modulo M:
def subinterval_concat(a, b, l):
"""
Concatenation of values in [a, b), all of which have the same bit-length k.
l is 2**k.
Equivalently, sum(i * l**(b - 1 - i)) for i in range(a, b)) modulo M.
"""
n = b - a
inv = pow(l - 1, -1, M)
q = (pow(l, n, M) - 1) * inv
return (a * q + (q - n) * inv) % M
I won't go into the evaluation of the sum here: it's a bit off-topic for this site, and it's hard to express without a good way to render formulas. If you want the details, that's a topic for https://math.stackexchange.com, or a page of fairly simple algebra.
Finally, we want to put all the intervals together. Here's a function to do that.
def fast_binary_concat(n):
"""
Fast version of slow_binary_concat.
"""
acc = 0
for a, b, l in split_by_bit_length(n + 1):
acc = (acc * pow(l, b - a, M) + subinterval_concat(a, b, l)) % M
return acc
A comparison with the slow version shows that we get the same results:
>>> fast_binary_concat(4)
220
>>> fast_binary_concat(10)
462911642
But the fast version can easily be evaluated for much larger inputs, where using the slow version would be infeasible:
>>> fast_binary_concat(10**9)
827129560
>>> fast_binary_concat(10**18)
945204784
You just have to note a simple pattern. Taking up your example for n=4, let's gradually build the solution starting from n=1.
1 -> 1 #1
2 -> 2^2(1) + 2 #6
3 -> 2^2[2^2(1)+2] + 3 #27
4 -> 2^3{2^2[2^2(1)+2]+3} + 4 #220
If you expand the coefficients of each term for n=4, you'll get the coefficients as:
1 -> (2^3)*(2^2)*(2^2)
2 -> (2^3)*(2^2)
3 -> (2^3)
4 -> (2^0)
Let the N be total number of bits in the string representation of our required number, and D(x) be the number of bits in x. The coefficients can then be written as
1 -> 2^(N-D(1))
2 -> 2^(N-D(1)-D(2))
3 -> 2^(N-D(1)-D(2)-D(3))
... and so on
Since the value of D(x) will be the same for all x between range (2^t, 2^(t+1)-1) for some given t, you can break the problem into such ranges and solve for each range using mathematics (not iteration). Since the number of such ranges will be log2(Given N), this should work in the given time limit.
As an example, the various ranges become:
1. 1 (D(x) = 1)
2. 2-3 (D(x) = 2)
3. 4-7 (D(x) = 3)
4. 8-15 (D(x) = 4)
Combinations without repetitions look like this, when the number of elements to choose from (n) is 5 and elements chosen (r) is 3:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
As n and r grows the amount of combinations gets large pretty quickly. For (n,r) = (200,4) the number of combinations is 64684950.
It is easy to iterate the list with r nested for-loops, where the initial iterating value of each for loop is greater than the current iterating value of the for loop in which it is nested, as in this jsfiddle example:
https://dotnetfiddle.net/wHWK5o
What I would like is a function that calculates only one combination based on its index. Something like this:
tuple combination(i,n,r) {
return [combination with index i, when the number of elements to choose from is n and elements chosen is r]
Does anyone know if this is doable?
You would first need to impose some sort of ordering on the set of all combinations available for a given n and r, such that a linear index makes sense. I suggest we agree to keep our combinations in increasing order (or, at least, the indices of the individual elements), as in your example. How then can we go from a linear index to a combination?
Let us first build some intuition for the problem. Suppose we have n = 5 (e.g. the set {0, 1, 2, 3, 4}) and r = 3. How many unique combinations are there in this case? The answer is of course 5-choose-3, which evaluates to 10. Since we will sort our combinations in increasing order, consider for a minute how many combinations remain once we have exhausted all those starting with 0. This must be 4-choose-3, or 4 in total. In such a case, if we are looking for the combination at index 7 initially, this implies we must subtract 10 - 4 = 6 and search for the combination at index 1 in the set {1, 2, 3, 4}. This process continues until we find a new index that is smaller than this offset.
Once this process concludes, we know the first digit. Then we only need to determine the remaining r - 1 digits! The algorithm thus takes shape as follows (in Python, but this should not be too difficult to translate),
from math import factorial
def choose(n, k):
return factorial(n) // (factorial(k) * factorial(n - k))
def combination_at_idx(idx, elems, r):
if len(elems) == r:
# We are looking for r elements in a list of size r - thus, we need
# each element.
return elems
if len(elems) == 0 or len(elems) < r:
return []
combinations = choose(len(elems), r) # total number of combinations
remains = choose(len(elems) - 1, r) # combinations after selection
offset = combinations - remains
if idx >= offset: # combination does not start with first element
return combination_at_idx(idx - offset, elems[1:], r)
# We now know the first element of the combination, but *not* yet the next
# r - 1 elements. These need to be computed as well, again recursively.
return [elems[0]] + combination_at_idx(idx, elems[1:], r - 1)
Test-driving this with your initial input,
N = 5
R = 3
for idx in range(choose(N, R)):
print(idx, combination_at_idx(idx, list(range(N)), R))
I find,
0 [0, 1, 2]
1 [0, 1, 3]
2 [0, 1, 4]
3 [0, 2, 3]
4 [0, 2, 4]
5 [0, 3, 4]
6 [1, 2, 3]
7 [1, 2, 4]
8 [1, 3, 4]
9 [2, 3, 4]
Where the linear index is zero-based.
Start with the first element of the result. The value of that element depends on the number of combinations you can get with smaller elements. For each such smaller first element, the number of combinations with first element k is n − k − 1 choose r − 1, with potentially some of-by-one corrections. So you would sum over a bunch of binomial coefficients. Wolfram Alpha can help you compute such a sum, but the result still has a binomial coefficient in it. Solving for the largest k such that the sum doesn't exceed your given index i is a computation you can't do with something as simple as e.g. a square root. You need a loop to test possible values, e.g. like this:
def first_naive(i, n, r):
"""Find first element and index of first combination with that first element.
Returns a tuple of value and index.
Example: first_naive(8, 5, 3) returns (1, 6) because the combination with
index 8 is [1, 3, 4] so it starts with 1, and because the first combination
that starts with 1 is [1, 2, 3] which has index 6.
"""
s1 = 0
for k in range(n):
s2 = s1 + choose(n - k - 1, r - 1)
if i < s2:
return k, s1
s1 = s2
You can reduce the O(n) loop iterations to O(log n) steps using bisection, which is particularly relevant for large n. In that case I find it easier to think about numbering items from the end of your list. In the case of n = 5 and r = 3 you get choose(2, 2)=1 combinations starting with 2, choose(3,2)=3 combinations starting with 1 and choose(4,2)=6 combinations starting with 0. So in the general choose(n,r) binomial coefficient you increase the n with each step, and keep the r. Taking into account that sum(choose(k,r) for k in range(r,n+1)) can be simplified to choose(n+1,r+1), you can eventually come up with bisection conditions like the following:
def first_bisect(i, n, r):
nCr = choose(n, r)
k1 = r - 1
s1 = nCr
k2 = n
s2 = 0
while k2 - k1 > 1:
k3 = (k1 + k2) // 2
s3 = nCr - choose(k3, r)
if s3 <= i:
k2, s2 = k3, s3
else:
k1, s1 = k3, s3
return n - k2, s2
Once you know the first element to be k, you also know the index of the first combination with that same first element (also returned from my function above). You can use the difference between that first index and your actual index as input to a recursive call. The recursive call would be for r − 1 elements chosen from n − k − 1. And you'd add k + 1 to each element from the recursive call, since the top level returns values starting at 0 while the next element has to be greater than k in order to avoid duplication.
def combination(i, n, r):
"""Compute combination with a given index.
Equivalent to list(itertools.combinations(range(n), r))[i].
Each combination is represented as a tuple of ascending elements, and
combinations are ordered lexicograplically.
Args:
i: zero-based index of the combination
n: number of possible values, will be taken from range(n)
r: number of elements in result list
"""
if r == 0:
return []
k, ik = first_bisect(i, n, r)
return tuple([k] + [j + k + 1 for j in combination(i - ik, n - k - 1, r - 1)])
I've got a complete working example, including an implementation of choose, more detailed doc strings and tests for some basic assumptions.
Suppose there is number s=12 , now i want to make sequence with the element a1+a2+.....+an=12.
The criteria is as follows-
n must be minimum.
a1 and an must be 1;
ai can differs a(i-1) by only 1,0 and -1.
for s=12 the result is 6.
So how to find the minimum value of n.
Algorithm for finding n from given s:
1.Find q = FLOOR( SQRT(s-1) )
2.Find r = q^2 + q
3.If s <= r then n = 2q, else n = 2q + 1
Example: s = 12
q = FLOOR( SQRT(12-1) ) = FLOOR(SQRT(11) = 3
r = 3^2 + 3 = 12
12 <= 12, therefore n = 2*3 = 6
Example: s = 160
q = FLOOR( SQRT(160-1) ) = FLOOR(SQRT(159) = 12
r = 12^2 + 12 = 156
159 > 156, therefore n = 2*12 + 1 = 25
and the 25-numbers sequence for
159: 1,2,3,4,5,6,7,8,9,10,10,10,9,10,10,10,9,8,7,6,5,4,3,2,1
Here's a way to visualize the solution.
First, draw the smallest triangle (rows containing successful odd numbers of stars) that has a greater or equal number of stars to n. In this case, we draw a 16-star triangle.
*
***
*****
*******
Then we have to remove 16 - 12 = 4 more stars. We do this diagonally starting from the top.
1
**2
****3
******4
The result is:
**
****
******
Finally, add up the column heights to get the final answer:
1, 2, 3, 3, 2, 1.
There are two cases: s odd and s even. When s is odd, you have the sequence:
1, 2, 3, ..., (s-1)/2, (s-1)/2, (s-1)/2-1, (s-1)/2-2, ..., 1
when n is even you have:
1, 2, 3, ..., s/2, s/2-1, s/2-2, ..., 1
The maximum possible for any given series of length n is:
n is even => (n^2+2n)/4
n is odd => (n+1)^2/4
These two results are arrived at easily enough by looking at the simple arithmetic sum of series where in the case of n even it is twice the sum of the series 1...n/2. In the case of n odd it is twice the sum of the series 1...(n-1)/2 and add on n+1/2 (the middle element).
Clearly you can generate any positive number that is less than this max as long as n>3.
So the problem then becomes finding the smallest n with a max greater than your target.
Algorithmically I'd go for:
Find (sqrt(4*s)-1) and round up to the next odd number. Call this M. This is an easy to work out value and will represent the lowest odd n that will work.
Check M-1 to see if its max sum is greater than s. If so then that your n is M-1. Otherwise your n is M.
Thank all you answer me. I derived a simpler solution. The algorithm looks like-
First find what is the maximum sum that can be made using n element-
if n=1 -> 1 sum=1;
if n=2 -> 1,1 sum=2;
if n=3 -> 1,2,1 sum=4;
if n=4 -> 1,2,2,1 sum=6;
if n=5 -> 1,2,3,2,1 sum=9;
if n=6 -> 1,2,3,3,2,1 sum=12;
So from observation it is clear that form any number,n 9<n<=12 can be
made using 6 element, similarly number
6<n<=9 can be made at using 5 element.
So it require only a binary search to find the number of
element that make a particular number.
I'm struggling with this code right now. I want to determine whether an integer is divsible by 11. From what I have read, an integer is divisible to 11 when the sum (one time +, one time -) of its digits is divisible by 11.
For example: 56518 is divisible by 11, because 8-1+5-6+5 = 11, and 11 is divisible by 11.
How can i write this down in Haskell? Thanks in advance.
A number x is divisible by y if it's remainder when divided by y is 0. So you can just do
divisibleBy11 x = x `rem` 11 == 0
ifan I'm sure you know that in real life you would use mod or rem for this simple example, but the algorithm you are asking about is interesting. Here's a fun way to do it that emphasizes the functional nature of Haskell:
digits = map (`mod` 10) . takeWhile (> 0) . iterate (`div` 10)
divisible11 = (== 0) . head . dropWhile (>= 11) . iterate (reduce11 . digits)
where
reduce11 [] = 0
reduce11 (d:ds) = foldl combine d $ zip (cycle [(-), (+)]) ds
combine d (op, d') = d `op` d'
Surely, div and mod are faster, but why not? I assume the problem is converting a number to a list of digits:
toDigits = map (read . (:[])) . show
56518 is converted to a String "56518", and each symbol in the string (every digit) is converted to a string itself with map (:[]), at this point we have ["5","6","5","1","8"], and we read every single-digit string as an integer value: [5,6,5,1,8]. Done.
Now we can calculate the sum of digits this way:
sumDigits x = sum (zipWith (*) (cycle [1,-1]) (reverse (toDigits x)))
cycle [1,-1] makes an infinite list [1, -1, 1, -1, ...], which we pair with the reversed list of digits (toDigit x), and multiply elements of every pair. So we have [8, -1, 5, -6, 5] and its sum.
Now we can do it recursively:
isDivisible x
| x == 11 || x == 0 = True
| x < 11 = False
| x > 11 = isDivisible (sumDigits x)
How about...
mod11 n | n < 0 = 11 - mod11 (-n)
| n < 11 = n
| otherwise = mod11 $ (n `mod` 10) - (n `div` 10)