I have a large dataset over many years which has several variables, but the one I am interested in is wind speed and dateTime. I want to find the time of the max wind speed for every day in the data set. I have hourly data in Posixct format, with WS as a numeric with occasional NAs. Below is a short data set that should hopefully illustrate my point, however my dateTime wasn't working out to be hourly data, but it provides enough for a sample.
dateTime <- seq(as.POSIXct("2011-01-01 00:00:00", tz = "GMT"),
as.POSIXct("2011-01-29 23:00:00", tz = "GMT"),
by = 60*24)
WS <- sample(0:20,1798,rep=TRUE)
WD <- sample(0:390,1798,rep=TRUE)
Temp <- sample(0:40,1798,rep=TRUE)
df <- data.frame(dateTime,WS,WD,Temp)
df$WS[WS>15] <- NA
I have previously tried creating a new column with just a posix date (minus time) to allow for day isolation, however all the things I have tried have only returned a shortened data frame with date and WS (aggregate, splitting, xts). Aggregate was only one that didn't do this, however, it gave me 23:00:00 as a constant time which isn't correct.
I have looked at How to calculate daily means, medians, from weather variables data collected hourly in R?, https://stats.stackexchange.com/questions/7268/how-to-aggregate-by-minute-data-for-a-week-into-hourly-means and others but none have answered this question, or the solutions have not returned an ideal result.
I need to compare the results of this analysis with another data frame, so hence the reason I need the actual time when the max wind speed occurred for each day in the dataset. I have a feeling there is a simple solution, however, this has me frustrated.
A dplyr solution may be:
library(dplyr)
df %>%
mutate(date = as.Date(dateTime)) %>%
left_join(
df %>%
mutate(date = as.Date(dateTime)) %>%
group_by(date) %>%
summarise(max_ws = max(WS, na.rm = TRUE)) %>%
ungroup(),
by = "date"
) %>%
select(-date)
# dateTime WS WD Temp max_ws
# 1 2011-01-01 00:00:00 NA 313 2 15
# 2 2011-01-01 00:24:00 7 376 1 15
# 3 2011-01-01 00:48:00 3 28 28 15
# 4 2011-01-01 01:12:00 15 262 24 15
# 5 2011-01-01 01:36:00 1 149 34 15
# 6 2011-01-01 02:00:00 4 319 33 15
# 7 2011-01-01 02:24:00 15 280 22 15
# 8 2011-01-01 02:48:00 NA 110 23 15
# 9 2011-01-01 03:12:00 12 93 15 15
# 10 2011-01-01 03:36:00 3 5 0 15
Dee asked for: "I want to find the time of the max wind speed for every day in the data set." Other answers have calculated the max(WS) for every day, but not at which hour that occured.
So I propose the following solution with dyplr:
library(dplyr)
set.seed(12345)
dateTime <- seq(as.POSIXct("2011-01-01 00:00:00", tz = "GMT"),
as.POSIXct("2011-01-29 23:00:00", tz = "GMT"),
by = 60*24)
WS <- sample(0:20,1738,rep=TRUE)
WD <- sample(0:390,1738,rep=TRUE)
Temp <- sample(0:40,1738,rep=TRUE)
df <- data.frame(dateTime,WS,WD,Temp)
df$WS[WS>15] <- NA
df %>%
group_by(Date = as.Date(dateTime)) %>%
mutate(Hour = hour(dateTime),
Hour_with_max_ws = Hour[which.max(WS)])
I want to highlight out, that if there are several hours with the same maximal windspeed (in the example below: 15), only the first hour with max(WS) will be shown as result, though the windspeed 15 was reached on that date at the hours 0, 3, 4, 21 and 22! So you might need a more specific logic.
For the sake of completeness (and because I like the concise code) here is a "one-liner" using data.table:
library(data.table)
setDT(df)[, max.ws := max(WS, na.rm = TRUE), by = as.IDate(dateTime)][]
dateTime WS WD Temp max.ws
1: 2011-01-01 00:00:00 NA 293 22 15
2: 2011-01-01 00:24:00 15 55 14 15
3: 2011-01-01 00:48:00 NA 186 24 15
4: 2011-01-01 01:12:00 4 300 22 15
5: 2011-01-01 01:36:00 0 120 36 15
---
1734: 2011-01-29 21:12:00 12 249 5 15
1735: 2011-01-29 21:36:00 9 282 21 15
1736: 2011-01-29 22:00:00 12 238 6 15
1737: 2011-01-29 22:24:00 10 127 21 15
1738: 2011-01-29 22:48:00 13 297 0 15
Related
I have a cross section data as following:
transaction_code <- c('A_111','A_222','A_333')
loan_start_date <- c('2016-01-03','2011-01-08','2013-02-13')
loan_maturity_date <- c('2017-01-03','2013-01-08','2015-02-13')
loan_data <- data.frame(cbind(transaction_code,loan_start_date,loan_maturity_date))
Now the dataframe looks like this
>loan_data
transaction_code loan_start_date loan_maturity_date
1 A_111 2016-01-03 2017-01-03
2 A_222 2011-01-08 2013-01-08
3 A_333 2013-02-13 2015-02-13
Now I want to create a monthly time series observing the time to maturity(in months) for each of the three loans for a period of 48 months. How can I achieve that? The final output should look like following:
>loan data
transaction_code loan_start_date loan_maturity_date feb13 march13 april13........
1 A_111 2016-01-03 2017-01-03 46 45 44
2 A_222 2011-01-08 2013-01-08 NA NA NA
3 A_333 2013-02-13 2015-02-13 23 22 21
Here new columns (for 48 months) represents the time to maturity for each loan from that respective months.
Would really appreciate your help. Thanks
Here's an approach using tidyverse packages.
# Define the months to use in the right-hand columns.
months <- seq.Date(from = as.Date("2013-02-01"), by = "month", length.out = 48)
library(tidyverse); library(lubridate)
loan_data2 <- loan_data %>%
# Make a row for each combination of original data and the `months` list
crossing(months) %>%
# Format dates as MonYr and make into an ordered factor
mutate(month_name = format(months, "%b%y") %>% fct_reorder(months)) %>%
# Calculate months remaining -- this task is harder than it sounds! This
# approach isn't perfect, but it's hard to accomplish more simply, since
# months are different lengths.
mutate(months_remaining =
round(interval(months, loan_maturity_date) / ddays(1) / 30.5 - 1),
months_remaining = if_else(months_remaining < 0,
NA_real_, months_remaining)) %>%
# Drop the Date format of months now that calcs done
select(-months) %>%
# Spread into wide format
spread(month_name, months_remaining)
Output
loan_data2[,1:6]
# transaction_code loan_start_date loan_maturity_date Feb13 Mar13 Apr13
# 1 A_111 2016-01-03 2017-01-03 46 45 44
# 2 A_222 2011-01-08 2013-01-08 NA NA NA
# 3 A_333 2013-02-13 2015-02-13 23 22 21
I have some sampled data from a sensor with no particular time differences between samples looking like this:
> Y_cl[[1]]
index Date time Glucose POS
10 11 2017-06-10 03:01:00 136 2017-06-10 00:01:00
14 15 2017-06-10 03:06:00 132 2017-06-10 00:06:00
18 19 2017-06-10 03:11:00 133 2017-06-10 00:11:00
22 23 2017-06-10 03:16:00 130 2017-06-10 00:16:00
26 27 2017-06-10 03:20:59 119 2017-06-10 00:20:59
30 31 2017-06-10 03:26:00 115 2017-06-10 00:26:00
34 35 2017-06-10 03:30:59 117 2017-06-10 00:30:59
38 39 2017-06-10 03:36:00 114 2017-06-10 00:36:00
42 43 2017-06-10 03:40:59 113 2017-06-10 00:40:59
The data is saved in the format of Dataframes stored in list Y_cl, each list element is for one day. I am trying to select ALL samples between every quarter hour of the clock and get the mean, resulting in 4 points for each hour of each day, mathematically defined (NOT CODE) as:
mean(Glucose(H:00 <Y_cl[[1]]$time< H:15))==> Glucose_av(H:00),
mean(Glucose(H:15 <Y_cl[[1]]$time< H:30))==> Glucose_av(H:15),
mean(Glucose(H:30 <Y_cl[[1]]$time< H:45))==> Glucose_av(H:30),
mean(Glucose(H:45 <Y_cl[[1]]$time< (H+1):00))==>Glucose_av(H:45)
I have tried searching but have found links on how to select or cut every 15 minutes differences, while I need to group every hours data based on which quarter of the hour they are in, average, and assign the result to corresponding quarter. Y_cl[[1]]['POS'] is in standard POSIXct format. Any help would be appreciated.
Here is a solution using lubridate and plyr packages :
data$POS <- NULL
data$POS = as.POSIXct(paste(data$Date, data$time)) # POS correction
library(lubridate)
library(plyr)
data$day <- day(data$POS) # extract day
data$hour <- hour(data$POS) # extract hour
data$minute <- minute(data$POS) # extract minute
Create a new factor according to the quarter :
data$quarter <- NA
data$quarter[data$minute >= 0 & data$minute < 15] <- "q1" # 1st quarter
data$quarter[data$minute >= 15 & data$minute < 30] <- "q2" # 2ndquarter
data$quarter[data$minute >= 30 & data$minute < 45] <- "q3" # 3rd quarter
data$quarter[data$minute >= 45 & data$minute < 60] <- "q4" # 4th quarter
Summarize data for each quarter (compute mean of Glucose for each combination of day, hour and quarter) :
output <- ddply(data, c("day", "hour", "quarter"), summarise, result = mean(Glucose))
Result :
> output
day hour quarter result
1 10 3 q1 133.6667
2 10 3 q2 121.3333
3 10 3 q3 114.6667
I did it by flooring the result of the minutes of each time stamp divided by 15, where YPOS is the list within the time stamps for each day i with the list Y_cl exist:
SeI<- function(i){
*###seperate the hours from the minutes for use later and store in K1*
strftime(YPOS[[i]], format="%H")
K1<- (floor((as.numeric(strftime(YPOS[[i]], format="%M")))/15))*15
*###get the minutes and divide by 15, keeping the floor,multiplying by 15,store in K2*
K2<- strftime(YPOS[[i]], format="%Y-%m-%d %H", tz="GMT")
*###paste K1 and K2 together an save in POSTIXCT format as T_av*
TT<- paste0(K2, ':', K1)
T_av<- as.POSIXct(TT,format="%Y-%m-%d %H:%M", tz="GMT" )}
and then applying it over all days in the list:
lapply(1:length(Y_cl), function(i) SeI(i) )
My solution included taking the time stamps from the list Y_cl and saving it in YPOS.
Let's say I have a dataframe of timestamps with the corresponding number of tickets sold at that time.
Timestamp ticket_count
(time) (int)
1 2016-01-01 05:30:00 1
2 2016-01-01 05:32:00 1
3 2016-01-01 05:38:00 1
4 2016-01-01 05:46:00 1
5 2016-01-01 05:47:00 1
6 2016-01-01 06:07:00 1
7 2016-01-01 06:13:00 2
8 2016-01-01 06:21:00 1
9 2016-01-01 06:22:00 1
10 2016-01-01 06:25:00 1
I want to know how to calculate the number of tickets sold within a certain time frame of all tickets. For example, I want to calculate the number of tickets sold up to 15 minutes after all tickets. In this case, the first row would have three tickets, the second row would have four tickets, etc.
Ideally, I'm looking for a dplyr solution, as I want to do this for multiple stores with a group_by() function. However, I'm having a little trouble figuring out how to hold each Timestamp fixed for a given row while simultaneously searching through all Timestamps via dplyr syntax.
In the current development version of data.table, v1.9.7, non-equi joins are implemented. Assuming your data.frame is called df and the Timestamp column is POSIXct type:
require(data.table) # v1.9.7+
window = 15L # minutes
(counts = setDT(df)[.(t=Timestamp+window*60L), on=.(Timestamp<t),
.(counts=sum(ticket_count)), by=.EACHI]$counts)
# [1] 3 4 5 5 5 9 11 11 11 11
# add that as a column to original data.table by reference
df[, counts := counts]
For each row in t, all rows where df$Timestamp < that_row is fetched. And by=.EACHI instructs the expression sum(ticket_count) to run for each row in t. That gives your desired result.
Hope this helps.
This is a simpler version of the ugly one I wrote earlier..
# install.packages('dplyr')
library(dplyr)
your_data %>%
mutate(timestamp = as.POSIXct(timestamp, format = '%m/%d/%Y %H:%M'),
ticket_count = as.numeric(ticket_count)) %>%
mutate(window = cut(timestamp, '15 min')) %>%
group_by(window) %>%
dplyr::summarise(tickets = sum(ticket_count))
window tickets
(fctr) (dbl)
1 2016-01-01 05:30:00 3
2 2016-01-01 05:45:00 2
3 2016-01-01 06:00:00 3
4 2016-01-01 06:15:00 3
Here is a solution using data.table. Also incorporating different stores.
Example data:
library(data.table)
dt <- data.table(Timestamp = as.POSIXct("2016-01-01 05:30:00")+seq(60,120000,by=60),
ticket_count = sample(1:9, 2000, T),
store = c(rep(c("A","B","C","D"), 500)))
Now apply the following:
ts <- dt$Timestamp
for(x in ts) {
end <- x+900
dt[Timestamp <= end & Timestamp >= x ,CS := sum(ticket_count),by=store]
}
This gives you
Timestamp ticket_count store CS
1: 2016-01-01 05:31:00 3 A 13
2: 2016-01-01 05:32:00 5 B 20
3: 2016-01-01 05:33:00 3 C 19
4: 2016-01-01 05:34:00 7 D 12
5: 2016-01-01 05:35:00 1 A 15
---
1996: 2016-01-02 14:46:00 4 D 10
1997: 2016-01-02 14:47:00 9 A 9
1998: 2016-01-02 14:48:00 2 B 2
1999: 2016-01-02 14:49:00 2 C 2
2000: 2016-01-02 14:50:00 6 D 6
I have the following data as a list of POSIXct times that span one month. Each of them represent a bike delivery. My aim is to find the average amount of bike deliveries per ten-minute interval over a 24-hour period (producing a total of 144 rows). First all of the trips need to be summed and binned into an interval, then divided by the number of days. So far, I've managed to write a code that sums trips per 10-minute interval, but it produces incorrect values. I am not sure where it went wrong.
The data looks like this:
head(start_times)
[1] "2014-10-21 16:58:13 EST" "2014-10-07 10:14:22 EST" "2014-10-20 01:45:11 EST"
[4] "2014-10-17 08:16:17 EST" "2014-10-07 17:46:36 EST" "2014-10-28 17:32:34 EST"
length(start_times)
[1] 1747
The code looks like this:
library(lubridate)
library(dplyr)
tripduration <- floor(runif(1747) * 1000)
time_bucket <- start_times - minutes(minute(start_times) %% 10) - seconds(second(start_times))
df <- data.frame(tripduration, start_times, time_bucket)
summarized <- df %>%
group_by(time_bucket) %>%
summarize(trip_count = n())
summarized <- as.data.frame(summarized)
out_buckets <- data.frame(out_buckets = seq(as.POSIXlt("2014-10-01 00:00:00"), as.POSIXct("2014-10-31 23:0:00"), by = 600))
out <- left_join(out_buckets, summarized, by = c("out_buckets" = "time_bucket"))
out$trip_count[is.na(out$trip_count)] <- 0
head(out)
out_buckets trip_count
1 2014-10-01 00:00:00 0
2 2014-10-01 00:10:00 0
3 2014-10-01 00:20:00 0
4 2014-10-01 00:30:00 0
5 2014-10-01 00:40:00 0
6 2014-10-01 00:50:00 0
dim(out)
[1] 4459 2
test <- format(out$out_buckets,"%H:%M:%S")
test2 <- out$trip_count
test <- cbind(test, test2)
colnames(test)[1] <- "interval"
colnames(test)[2] <- "count"
test <- as.data.frame(test)
test$count <- as.numeric(test$count)
test <- aggregate(count~interval, test, sum)
head(test, n = 20)
interval count
1 00:00:00 32
2 00:10:00 33
3 00:20:00 32
4 00:30:00 31
5 00:40:00 34
6 00:50:00 34
7 01:00:00 31
8 01:10:00 33
9 01:20:00 39
10 01:30:00 41
11 01:40:00 36
12 01:50:00 31
13 02:00:00 33
14 02:10:00 34
15 02:20:00 32
16 02:30:00 32
17 02:40:00 36
18 02:50:00 32
19 03:00:00 34
20 03:10:00 39
but this is impossible because when I sum the counts
sum(test$count)
[1] 7494
I get 7494 whereas the number should be 1747
I'm not sure where I went wrong and how to simplify this code to get the same result.
I've done what I can, but I can't reproduce your issue without your data.
library(dplyr)
I created the full sequence of 10 minute blocks:
blocks.of.10mins <- data.frame(out_buckets=seq(as.POSIXct("2014/10/01 00:00"), by="10 mins", length.out=30*24*6))
Then split the start_times into the same bins. Note: I created a baseline time of midnight to force the blocks to align to 10 minute intervals. Removing this later is an exercise for the reader. I also changed one of your data points so that there was at least one example of multiple records in the same bin.
start_times <- as.POSIXct(c("2014-10-01 00:00:00", ## added
"2014-10-21 16:58:13",
"2014-10-07 10:14:22",
"2014-10-20 01:45:11",
"2014-10-17 08:16:17",
"2014-10-07 10:16:36", ## modified
"2014-10-28 17:32:34"))
trip_times <- data.frame(start_times) %>%
mutate(out_buckets = as.POSIXct(cut(start_times, breaks="10 mins")))
The start_times and all the 10 minute intervals can then be merged
trips_merged <- merge(trip_times, blocks.of.10mins, by="out_buckets", all=TRUE)
These can then be grouped by 10 minute block and counted
trips_merged %>% filter(!is.na(start_times)) %>%
group_by(out_buckets) %>%
summarise(trip_count=n())
Source: local data frame [6 x 2]
out_buckets trip_count
(time) (int)
1 2014-10-01 00:00:00 1
2 2014-10-07 10:10:00 2
3 2014-10-17 08:10:00 1
4 2014-10-20 01:40:00 1
5 2014-10-21 16:50:00 1
6 2014-10-28 17:30:00 1
Instead, if we only consider time, not date
trips_merged2 <- trips_merged
trips_merged2$out_buckets <- format(trips_merged2$out_buckets, "%H:%M:%S")
trips_merged2 %>% filter(!is.na(start_times)) %>%
group_by(out_buckets) %>%
summarise(trip_count=n())
Source: local data frame [6 x 2]
out_buckets trip_count
(chr) (int)
1 00:00:00 1
2 01:40:00 1
3 08:10:00 1
4 10:10:00 2
5 16:50:00 1
6 17:30:00 1
Let's say I have several years worth of data which look like the following
# load date package and set random seed
library(lubridate)
set.seed(42)
# create data.frame of dates and income
date <- seq(dmy("26-12-2010"), dmy("15-01-2011"), by = "days")
df <- data.frame(date = date,
wday = wday(date),
wday.name = wday(date, label = TRUE, abbr = TRUE),
income = round(runif(21, 0, 100)),
week = format(date, format="%Y-%U"),
stringsAsFactors = FALSE)
# date wday wday.name income week
# 1 2010-12-26 1 Sun 91 2010-52
# 2 2010-12-27 2 Mon 94 2010-52
# 3 2010-12-28 3 Tues 29 2010-52
# 4 2010-12-29 4 Wed 83 2010-52
# 5 2010-12-30 5 Thurs 64 2010-52
# 6 2010-12-31 6 Fri 52 2010-52
# 7 2011-01-01 7 Sat 74 2011-00
# 8 2011-01-02 1 Sun 13 2011-01
# 9 2011-01-03 2 Mon 66 2011-01
# 10 2011-01-04 3 Tues 71 2011-01
# 11 2011-01-05 4 Wed 46 2011-01
# 12 2011-01-06 5 Thurs 72 2011-01
# 13 2011-01-07 6 Fri 93 2011-01
# 14 2011-01-08 7 Sat 26 2011-01
# 15 2011-01-09 1 Sun 46 2011-02
# 16 2011-01-10 2 Mon 94 2011-02
# 17 2011-01-11 3 Tues 98 2011-02
# 18 2011-01-12 4 Wed 12 2011-02
# 19 2011-01-13 5 Thurs 47 2011-02
# 20 2011-01-14 6 Fri 56 2011-02
# 21 2011-01-15 7 Sat 90 2011-02
I would like to sum 'income' for each week (Sunday thru Saturday). Currently I do the following:
Weekending 2011-01-01 = sum(df$income[1:7]) = 487
Weekending 2011-01-08 = sum(df$income[8:14]) = 387
Weekending 2011-01-15 = sum(df$income[15:21]) = 443
However I would like a more robust approach which will automatically sum by week. I can't work out how to automatically subset the data into weeks. Any help would be much appreciated.
First use format to convert your dates to week numbers, then plyr::ddply() to calculate the summaries:
library(plyr)
df$week <- format(df$date, format="%Y-%U")
ddply(df, .(week), summarize, income=sum(income))
week income
1 2011-52 413
2 2012-01 435
3 2012-02 379
For more information on format.date, see ?strptime, particular the bit that defines %U as the week number.
EDIT:
Given the modified data and requirement, one way is to divide the date by 7 to get a numeric number indicating the week. (Or more precisely, divide by the number of seconds in a week to get the number of weeks since the epoch, which is 1970-01-01 by default.
In code:
df$week <- as.Date("1970-01-01")+7*trunc(as.numeric(df$date)/(3600*24*7))
library(plyr)
ddply(df, .(week), summarize, income=sum(income))
week income
1 2010-12-23 298
2 2010-12-30 392
3 2011-01-06 294
4 2011-01-13 152
I have not checked that the week boundaries are on Sunday. You will have to check this, and insert an appropriate offset into the formula.
This is now simple using dplyr. Also I would suggest using cut(breaks = "week") rather than format() to cut the dates into weeks.
library(dplyr)
df %>% group_by(week = cut(date, "week")) %>% mutate(weekly_income = sum(income))
I Googled "group week days into weeks R" and came across this SO question. You mention you have multiple years, so I think we need to keep up with both the week number and also the year, so I modified the answers there as so format(date, format = "%U%y")
In use it looks like this:
library(plyr) #for aggregating
df <- transform(df, weeknum = format(date, format = "%y%U"))
ddply(df, "weeknum", summarize, suminc = sum(income))
#----
weeknum suminc
1 1152 413
2 1201 435
3 1202 379
See ?strptime for all the format abbreviations.
Try rollapply from the zoo package:
rollapply(df$income, width=7, FUN = sum, by = 7)
# [1] 487 387 443
Or, use period.sum from the xts package:
period.sum(xts(df$income, order.by=df$date), which(df$wday %in% 7))
# [,1]
# 2011-01-01 487
# 2011-01-08 387
# 2011-01-15 443
Or, to get the output in the format you want:
data.frame(income = period.sum(xts(df$income, order.by=df$date),
which(df$wday %in% 7)),
week = df$week[which(df$wday %in% 7)])
# income week
# 2011-01-01 487 2011-00
# 2011-01-08 387 2011-01
# 2011-01-15 443 2011-02
Note that the first week shows as 2011-00 because that's how it is entered in your data. You could also use week = df$week[which(df$wday %in% 1)] which would match your output.
This solution is influenced by #Andrie and #Chase.
# load plyr
library(plyr)
# format weeks as per requirement (replace "00" with "52" and adjust corresponding year)
tmp <- list()
tmp$y <- format(df$date, format="%Y")
tmp$w <- format(df$date, format="%U")
tmp$y[tmp$w=="00"] <- as.character(as.numeric(tmp$y[tmp$w=="00"]) - 1)
tmp$w[tmp$w=="00"] <- "52"
df$week <- paste(tmp$y, tmp$w, sep = "-")
# get summary
df2 <- ddply(df, .(week), summarize, income=sum(income))
# include week ending date
tmp$week.ending <- lapply(df2$week, function(x) rev(df[df$week==x, "date"])[[1]])
df2$week.ending <- sapply(tmp$week.ending, as.character)
# week income week.ending
# 1 2010-52 487 2011-01-01
# 2 2011-01 387 2011-01-08
# 3 2011-02 443 2011-01-15
df.index = df['week'] #the the dt variable as index
df.resample('W').sum() #sum using resample
With dplyr:
df %>%
arrange(date) %>%
mutate(week = as.numeric(date - date[1])%/%7) %>%
group_by(week) %>%
summarise(weekincome= sum(income))
Instead of date[1] you can have any date from when you want to start your weekly study.