Converting matlab code to R code - r

I was wondering how I can convert this code from Matlab to R code. It seems this is the code for midpoint method. Any help would be highly appreciated.
% Usage: [y t] = midpoint(f,a,b,ya,n) or y = midpoint(f,a,b,ya,n)
% Midpoint method for initial value problems
%
% Input:
% f - Matlab inline function f(t,y)
% a,b - interval
% ya - initial condition
% n - number of subintervals (panels)
%
% Output:
% y - computed solution
% t - time steps
%
% Examples:
% [y t]=midpoint(#myfunc,0,1,1,10); here 'myfunc' is a user-defined function in M-file
% y=midpoint(inline('sin(y*t)','t','y'),0,1,1,10);
% f=inline('sin(y(1))-cos(y(2))','t','y');
% y=midpoint(f,0,1,1,10);
function [y t] = midpoint(f,a,b,ya,n)
h = (b - a) / n;
halfh = h / 2;
y(1,:) = ya;
t(1) = a;
for i = 1 : n
t(i+1) = t(i) + h;
z = y(i,:) + halfh * f(t(i),y(i,:));
y(i+1,:) = y(i,:) + h * f(t(i)+halfh,z);
end;
I have the R code for Euler method which is
euler <- function(f, h = 1e-7, x0, y0, xfinal) {
N = (xfinal - x0) / h
x = y = numeric(N + 1)
x[1] = x0; y[1] = y0
i = 1
while (i <= N) {
x[i + 1] = x[i] + h
y[i + 1] = y[i] + h * f(x[i], y[i])
i = i + 1
}
return (data.frame(X = x, Y = y))
}
so based on the matlab code, do I need to change h in euler method (R code) to (b - a) / n to modify Euler code to midpoint method?

Note
Broadly speaking, I agree with the expressed comments; however, I decided to vote up this question. (now deleted) This is due to the existence of matconv that facilitates this process.
Answer
Given your code, we could use matconv in the following manner:
pacman::p_load(matconv)
out <- mat2r(inMat = "input.m")
The created out object will attempt to translate Matlab code into R, however, the job is far from finished. If you inspect the out object you will see that it requires further work. Simple statements are usually translated correctly with Matlab comments % replaced with # and so forth but more complex statements may require a more detailed investigation. You could then inspect respective line and attempt to evaluate them to see where further work may be required, example:
eval(parse(text=out$rCode[1]))
NULL
(first line is a comment so the output is NULL)

Related

Renewal Function for Weibull Distribution

The renewal function for Weibull distribution m(t) with t = 10 is given as below.
I want to find the value of m(t). I wrote the following r code to compute m(t)
last_term = NULL
gamma_k = NULL
n = 50
for(k in 1:n){
gamma_k[k] = gamma(2*k + 1)/factorial(k)
}
for(j in 1: (n-1)){
prev = gamma_k[n-j]
last_term[j] = gamma(2*j + 1)/factorial(j)*prev
}
final_term = NULL
find_value = function(n){
for(i in 2:n){
final_term[i] = gamma_k[i] - sum(last_term[1:(i-1)])
}
return(final_term)
}
all_k = find_value(n)
af_sum = NULL
m_t = function(t){
for(k in 1:n){
af_sum[k] = (-1)^(k-1) * all_k[k] * t^(2*k)/gamma(2*k + 1)
}
return(sum(na.omit(af_sum)))
}
m_t(20)
The output is m(t) = 2.670408e+93. Does my iteratvie procedure correct? Thanks.
I don't think it will work. First, lets move Γ(2k+1) from denominator of m(t) into Ak. Thus, Ak will behave roughly as 1/k!.
In the nominator of the m(t) terms there is t2k, so roughly speaking you're computing sum with terms
100k/k!
From Stirling formula
k! ~ kk, making terms
(100/k)k
so yes, they will start to decrease and converge to something but after 100th term
Anyway, here is the code, you could try to improve it, but it breaks at k~70
N <- 20
A <- rep(0, N)
# compute A_k/gamma(2k+1) terms
ps <- 0.0 # previous sum
A[1] = 1.0
for(k in 2:N) {
ps <- ps + A[k-1]*gamma(2*(k-1) + 1)/factorial(k-1)
A[k] <- 1.0/factorial(k) - ps/gamma(2*k+1)
}
print(A)
t <- 10.0
t2 <- t*t
r <- 0.0
for(k in 1:N){
r <- r + (-t2)^k*A[k]
}
print(-r)
UPDATE
Ok, I calculated Ak as in your question, got the same answer. I want to estimate terms Ak/Γ(2k+1) from m(t), I believe it will be pretty much dominated by 1/k! term. To do that I made another array k!*Ak/Γ(2k+1), and it should be close to one.
Code
N <- 20
A <- rep(0.0, N)
psum <- function( pA, k ) {
ps <- 0.0
if (k >= 2) {
jmax <- k - 1
for(j in 1:jmax) {
ps <- ps + (gamma(2*j+1)/factorial(j))*pA[k-j]
}
}
ps
}
# compute A_k/gamma(2k+1) terms
A[1] = gamma(3)
for(k in 2:N) {
A[k] <- gamma(2*k+1)/factorial(k) - psum(A, k)
}
print(A)
B <- rep(0.0, N)
for(k in 1:N) {
B[k] <- (A[k]/gamma(2*k+1))*factorial(k)
}
print(B)
shows that
I got the same Ak values as you did.
Bk is indeed very close to 1
It means that term Ak/Γ(2k+1) could be replaced by 1/k! to get quick estimate of what we might get (with replacement)
m(t) ~= - Sum(k=1, k=Infinity) (-1)k (t2)k / k! = 1 - Sum(k=0, k=Infinity) (-t2)k / k!
This is actually well-known sum and it is equal to exp() with negative argument (well, you have to add term for k=0)
m(t) ~= 1 - exp(-t2)
Conclusions
Approximate value is positive. Probably will stay positive after all, Ak/Γ(2k+1) is a bit different from 1/k!.
We're talking about 1 - exp(-100), which is 1-3.72*10-44! And we're trying to compute it precisely summing and subtracting values on the order of 10100 or even higher. Even with MPFR I don't think this is possible.
Another approach is needed
OK, so I ended up going down a pretty different road on this. I have implemented a simple discretization of the integral equation which defines the renewal function:
m(t) = F(t) + integrate (m(t - s)*f(s), s, 0, t)
The integral is approximated with the rectangle rule. Approximating the integral for different values of t gives a system of linear equations. I wrote a function to generate the equations and extract a matrix of coefficients from it. After looking at some examples, I guessed a rule to define the coefficients directly and used that to generate solutions for some examples. In particular I tried shape = 2, t = 10, as in OP's example, with step = 0.1 (so 101 equations).
I found that the result agrees pretty well with an approximate result which I found in a paper (Baxter et al., cited in the code). Since the renewal function is the expected number of events, for large t it is approximately equal to t/mu where mu is the mean time between events; this is a handy way to know if we're anywhere in the neighborhood.
I was working with Maxima (http://maxima.sourceforge.net), which is not efficient for numerical stuff, but which makes it very easy to experiment with different aspects. At this point it would be straightforward to port the final, numerical stuff to another language such as Python.
Thanks to OP for suggesting the problem, and S. Pappadeux for insightful discussions. Here is the plot I got comparing the discretized approximation (red) with the approximation for large t (blue). Trying some examples with different step sizes, I saw that the values tend to increase a little as step size gets smaller, so I think the red line is probably a little low, and the blue line might be more nearly correct.
Here is my Maxima code:
/* discretize weibull renewal function and formulate system of linear equations
* copyright 2020 by Robert Dodier
* I release this work under terms of the GNU General Public License
*
* This is a program for Maxima, a computer algebra system.
* http://maxima.sourceforge.net/
*/
"Definition of the renewal function m(t):" $
renewal_eq: m(t) = F(t) + 'integrate (m(t - s)*f(s), s, 0, t);
"Approximate integral equation with rectangle rule:" $
discretize_renewal (delta_t, k) :=
if equal(k, 0)
then m(0) = F(0)
else m(k*delta_t) = F(k*delta_t)
+ m(k*delta_t)*f(0)*(delta_t / 2)
+ sum (m((k - j)*delta_t)*f(j*delta_t)*delta_t, j, 1, k - 1)
+ m(0)*f(k*delta_t)*(delta_t / 2);
make_eqs (n, delta_t) :=
makelist (discretize_renewal (delta_t, k), k, 0, n);
make_vars (n, delta_t) :=
makelist (m(k*delta_t), k, 0, n);
"Discretized integral equation and variables for n = 4, delta_t = 1/2:" $
make_eqs (4, 1/2);
make_vars (4, 1/2);
make_eqs_vars (n, delta_t) :=
[make_eqs (n, delta_t), make_vars (n, delta_t)];
load (distrib);
subst_pdf_cdf (shape, scale, e) :=
subst ([f = lambda ([x], pdf_weibull (x, shape, scale)), F = lambda ([x], cdf_weibull (x, shape, scale))], e);
matrix_from (eqs, vars) :=
(augcoefmatrix (eqs, vars),
[submatrix (%%, length(%%) + 1), - col (%%, length(%%) + 1)]);
"Subsitute Weibull pdf and cdf for shape = 2 into discretized equation:" $
apply (matrix_from, make_eqs_vars (4, 1/2));
subst_pdf_cdf (2, 1, %);
"Just the right-hand side matrix:" $
rhs_matrix_from (eqs, vars) :=
(map (rhs, eqs),
augcoefmatrix (%%, vars),
[submatrix (%%, length(%%) + 1), col (%%, length(%%) + 1)]);
"Generate the right-hand side matrix, instead of extracting it from equations:" $
generate_rhs_matrix (n, delta_t) :=
[delta_t * genmatrix (lambda ([i, j], if i = 1 and j = 1 then 0
elseif j > i then 0
elseif j = i then f(0)/2
elseif j = 1 then f(delta_t*(i - 1))/2
else f(delta_t*(i - j))), n + 1, n + 1),
transpose (makelist (F(k*delta_t), k, 0, n))];
"Generate numerical right-hand side matrix, skipping over formulas:" $
generate_rhs_matrix_numerical (shape, scale, n, delta_t) :=
block ([f, F, numer: true], local (f, F),
f: lambda ([x], pdf_weibull (x, shape, scale)),
F: lambda ([x], cdf_weibull (x, shape, scale)),
[genmatrix (lambda ([i, j], delta_t * if i = 1 and j = 1 then 0
elseif j > i then 0
elseif j = i then f(0)/2
elseif j = 1 then f(delta_t*(i - 1))/2
else f(delta_t*(i - j))), n + 1, n + 1),
transpose (makelist (F(k*delta_t), k, 0, n))]);
"Solve approximate integral equation (shape = 3, t = 1) via LU decomposition:" $
fpprintprec: 4 $
n: 20 $
t: 1;
[AA, bb]: generate_rhs_matrix_numerical (3, 1, n, t/n);
xx_by_lu: linsolve_by_lu (ident(n + 1) - AA, bb, floatfield);
"Iterative solution of approximate integral equation (shape = 3, t = 1):" $
xx: bb;
for i thru 10 do xx: AA . xx + bb;
xx - (AA.xx + bb);
xx_iterative: xx;
"Should find iterative and LU give same result:" $
xx_diff: xx_iterative - xx_by_lu[1];
sqrt (transpose(xx_diff) . xx_diff);
"Try shape = 2, t = 10:" $
n: 100 $
t: 10 $
[AA, bb]: generate_rhs_matrix_numerical (2, 1, n, t/n);
xx_by_lu: linsolve_by_lu (ident(n + 1) - AA, bb, floatfield);
"Baxter, et al., Eq. 3 (for large values of t) compared to discretization:" $
/* L.A. Baxter, E.M. Scheuer, D.J. McConalogue, W.R. Blischke.
* "On the Tabulation of the Renewal Function,"
* Econometrics, vol. 24, no. 2 (May 1982).
* H(t) is their notation for the renewal function.
*/
H(t) := t/mu + sigma^2/(2*mu^2) - 1/2;
tx_points: makelist ([float (k/n*t), xx_by_lu[1][k, 1]], k, 1, n);
plot2d ([H(u), [discrete, tx_points]], [u, 0, t]), mu = mean_weibull(2, 1), sigma = std_weibull(2, 1);

finding intersection point using scilab

How can I find intersection points in the graph shown below using fsolve function (from scilab)?
Here is what I've tried so far:
function y=f(x)
y = 30 + 0 * x;
endfunction
function y= g(x)
y=zeros(x)
k1 = find(x >= 5 & x <= 11);
if k1<>[] then
y(k1)= -59.535905 +24.763399*x(k1) -3.135727*x(k1)^2+0.1288967*x(k1)^3;
end;
k2=find(x >= 11 & x <= 12);
if k2 <> [] then
y(k2)=1023.4465 - 270.59543 * x(k2) + 23.715076 * x(k2)^2 - 0.684764 * x(k2)^3;
end;
k3 = find(x >= 12 & x <= 17);
if k3 <> [] then
y(k3) =-307.31448 + 62.094807 *x(k3) - 4.0091108 * x(k3)^2 + 0.0853523 * x(k3)^3;
end;
k4 = find(x >= 17 & x <= 50);
if k4 <> [] then
y(k4) = 161.42601 - 20.624104 *x(k4) + 0.8567075 * x(k4)^2 - 0.0100559 * x(k4)^3;
end;
endfunction
t=[5:50];
plot(t, g(t));
plot2d(t, f(t));
deff('res = fct', ['res(1) = f(x)'; 'res(2) = g(x)']);
k1=[5, 45];
xsol1 = fsolve(k1, f, g)
Your original post was utterly unreadable and chaotic. It took me while to edit it and understand what you are trying to achieve. However I will try to help you. Lets go step by step:
I am not sure why you have used find function this way. probably you were trying to vectorize the g function? Please consider that Scilab does not broadcast functions over arrays by default. You need to either vectorize them or use feval to do so. Please read this other answer I have written before. find is a vectorized operation applying on an array, a Boolean operation and a scalar, finding the elements of the array which satisfy the operation. For example from the find page:
beers = ["Desperados", "Leffe", "Kronenbourg", "Heineken"];
find(beers == "Leffe")
returns 2 and
A = rand(1, 20);
w = find(A < 0.4)
returns those elements of array A which are smaller than 0.4.
Please learn about conditionals and specifically if, then, elsif, else, end statements. If you learn this you will not use the find function in that way. Sometimes you have so many ifs in a row, then try to use select, case, else, end instead. Your second function could be written as:
function y = g(x)
if x < 5 | 50 < x then
error("Out of range");
elseif x <= 11 then
y = -59.535905 + 24.763399 * x - 3.135727 * x^2 + 0.1288967 * x^3;
return;
elseif x <= 12 then
y = 1023.4465 - 270.59543 * x + 23.715076 * x^2 - 0.684764 * x^3;
return;
elseif x <= 17 then
y = -307.31448 + 62.094807 * x - 4.0091108 * x^2 + 0.0853523 * x^3;
return;
else
y = 161.42601 - 20.624104 * x + 0.8567075 * x^2 - 0.0100559 * x^3;
end
endfunction
Now apparently you want to find the points on this curve which have a value of 30. Although there are methods to find these points automatically plotting can be very helpful to find the proper range:
t = [5:50];
plot(t, feval(t, g) - 30)
showing that the the two solutions are in the range of 20 < x1 < 30 and 40 < x < 50.
Now if we use fsolve with the proper initial values it gives us good results:
--> deff('[y] = g2(x)', 'y = g(x) - 30');
--> fsolve([25; 45], g2)
ans =
26.67373
48.396547
The third parameter of the fsolve function is the Jacobin / derivative of the g(x) function. You either should calculate the derivatives of the above polynomials manually (or use a proper symbolic software like Maxima), or define them as polynomials using poly function. See this tutorial for example. Then differentiate them, defining a new function like dgdx.

Keeping exact wave form in memory

Let's say I have a program that calculates the value of the sine wave at time t. The sine wave is of the form sin(f*t + phi). Amplitude is 1.
If I only have one sin term all is fine. I can easily calculate the value at any time t.
But, at runtime, the wave form becomes modified when it combines with other waves. sin(f1 * t + phi1) + sin(f2 * t + phi2) + sin(f3 * t + phi3) + ...
The simplest solution is to have a table with columns for phi and f, iterate over all rows, and sum the results. But to me it feels that once I reach thousands of rows, the computation will become slow.
Is there a different way of doing this? Like combining all the sines into one statement/formula?
If you have a Fourier series (i.e. f_i = i f for some f) you can use the Clenshaw recurrence relation which is significantly faster than computing all the sines (but it might be slightly less accurate).
In your case you can consider the sequence:
f_k = exp( i ( k f t + phi_k) ) , where i is the imaginary unit.
Notice that Im(f_k) = sin( k f t + phi_k ), that is your sequence.
Also
f_k = exp( i ( k f t + phi_k) ) = exp( i k f t ) exp( i phi_k )
Hence you have a_k = exp(i phi_k). You can precompute these values and store them in an array. For simplicity from now on assume a_0 = 0.
Now, exp( i (k + 1) f t) = exp(i k f t) * exp(i f t), so alpha_k = exp(i f t) and beta_k = 0.
You can now apply the recurrence formula, in C++ you can do something like this:
complex<double> clenshaw_fourier(double f, double t, const vector< complex<double> > & a )
{
const complex<double> alpha = exp(f * t * i);
complex<double> b = 0;
for (int k = a.size() - 1; k >0; -- k )
b = a[k] + alpha * b;
return a[0] + alpha * b;
}
Assuming that a[k] == exp( i phi_k ).
The real part of the answer is the sum of cos(k f t + phi_k), while the imaginary part is the sum of sin(k f t + phi_k).
As you can see this only uses addition and multiplications, except for exp(f * t * i) that is only computed once.
There are different bases (plural of basis) that can be advantageous (i.e. compact) for representing different waveforms. The most common and well-known one is that which you mention, called the Fourier basis usually. Daubechies wavelets for example are a relatively recent addition that cope with more discontinuous waveforms much better than a Fourier basis does. But this is really a math topic and probably if you post on Math Overflow you will get better answers.

Calculate bessel function in MATLAB using Jm+1=2mj(m) -j(m-1) formula

I tried to implement bessel function using that formula, this is the code:
function result=Bessel(num);
if num==0
result=bessel(0,1);
elseif num==1
result=bessel(1,1);
else
result=2*(num-1)*Bessel(num-1)-Bessel(num-2);
end;
But if I use MATLAB's bessel function to compare it with this one, I get too high different values.
For example if I type Bessel(20) it gives me 3.1689e+005 as result, if instead I type bessel(20,1) it gives me 3.8735e-025 , a totally different result.
such recurrence relations are nice in mathematics but numerically unstable when implementing algorithms using limited precision representations of floating-point numbers.
Consider the following comparison:
x = 0:20;
y1 = arrayfun(#(n)besselj(n,1), x); %# builtin function
y2 = arrayfun(#Bessel, x); %# your function
semilogy(x,y1, x,y2), grid on
legend('besselj','Bessel')
title('J_\nu(z)'), xlabel('\nu'), ylabel('log scale')
So you can see how the computed values start to differ significantly after 9.
According to MATLAB:
BESSELJ uses a MEX interface to a Fortran library by D. E. Amos.
and gives the following as references for their implementation:
D. E. Amos, "A subroutine package for Bessel functions of a complex
argument and nonnegative order", Sandia National Laboratory Report,
SAND85-1018, May, 1985.
D. E. Amos, "A portable package for Bessel functions of a complex
argument and nonnegative order", Trans. Math. Software, 1986.
The forward recurrence relation you are using is not stable. To see why, consider that the values of BesselJ(n,x) become smaller and smaller by about a factor 1/2n. You can see this by looking at the first term of the Taylor series for J.
So, what you're doing is subtracting a large number from a multiple of a somewhat smaller number to get an even smaller number. Numerically, that's not going to work well.
Look at it this way. We know the result is of the order of 10^-25. You start out with numbers that are of the order of 1. So in order to get even one accurate digit out of this, we have to know the first two numbers with at least 25 digits precision. We clearly don't, and the recurrence actually diverges.
Using the same recurrence relation to go backwards, from high orders to low orders, is stable. When you start with correct values for J(20,1) and J(19,1), you can calculate all orders down to 0 with full accuracy as well. Why does this work? Because now the numbers are getting larger in each step. You're subtracting a very small number from an exact multiple of a larger number to get an even larger number.
You can just modify the code below which is for the Spherical bessel function. It is well tested and works for all arguments and order range. I am sorry it is in C#
public static Complex bessel(int n, Complex z)
{
if (n == 0) return sin(z) / z;
if (n == 1) return sin(z) / (z * z) - cos(z) / z;
if (n <= System.Math.Abs(z.real))
{
Complex h0 = bessel(0, z);
Complex h1 = bessel(1, z);
Complex ret = 0;
for (int i = 2; i <= n; i++)
{
ret = (2 * i - 1) / z * h1 - h0;
h0 = h1;
h1 = ret;
if (double.IsInfinity(ret.real) || double.IsInfinity(ret.imag)) return double.PositiveInfinity;
}
return ret;
}
else
{
double u = 2.0 * abs(z.real) / (2 * n + 1);
double a = 0.1;
double b = 0.175;
int v = n - (int)System.Math.Ceiling((System.Math.Log(0.5e-16 * (a + b * u * (2 - System.Math.Pow(u, 2)) / (1 - System.Math.Pow(u, 2))), 2)));
Complex ret = 0;
while (v > n - 1)
{
ret = z / (2 * v + 1.0 - z * ret);
v = v - 1;
}
Complex jnM1 = ret;
while (v > 0)
{
ret = z / (2 * v + 1.0 - z * ret);
jnM1 = jnM1 * ret;
v = v - 1;
}
return jnM1 * sin(z) / z;
}
}

Trilateration with limits?

I'm in need of help solving an issue, the problem came up doing one of my small robot experiments, the basic idea, is that each little robot has the ability to approximate the distance, from themselves to an object, however the approximate I'm getting is way too rough, and I'm hoping to calculate something more accurate.
So:
Input: A list of vertex (v_1, v_2, ... v_n), a vertex v_* (robots)
Output: The coordinates for the unknown vertex v_* (object)
Each vertex v_1 to v_n's coordinates are well known (supplied by calling getX() and getY() on the vertex), and its possible to get the approximate range to v_* by calling; getApproximateDistance(v_*), function getApproximateDistance() returns two variables variables, that is; minDistance and maxDistance. - The actual distance lies in between these.
So what I've been trying to do to obtain the coordinates for v_*, is to use trilateration, however I can't seem to find a formula for doing trilateration with limits (lower and upperbound), so that's really what I'm looking for (not really good enough at math, to figure it out myself).
Note: is triangulation the way to go instead?
Note: I would possibly love to know a way to do, performance/accuracy trade-offs.
An example of data:
[Vertex . `getX()` . `getY()` . `minDistance` . `maxDistance`]
[`v_1` . 2 . 2 . 0.5 . 1 ]
[`v_2` . 1 . 2 . 0.3 . 1 ]
[`v_3` . 1.5 . 1 . 0.3 . 0.5]
Picture to show data: http://img52.imageshack.us/img52/6414/unavngivetcb.png
It's obvious that the approximate for v_1 can be better, than [0.5; 1], as the figure that the above data creates is small cut of a annulus (limited by v_3), however how would I calculate that, and possibly find the approximate within that figure (this figure is possibly concave)?
Would this be better suited for MathOverflow?
I would go for a simple discrete approach. The implicit formula for an annulus is trivial and the intersection of multiple annulus if the number of them is high can be computed somewhat efficently with a scanline based approach.
For getting high accuracy with a fast computation an option could be using a multiresolution approach (i.e. first starting in low-res and then recomputing in high-res only samples that are close to a valid point.
A small python toy I wrote can generate a 400x400 pixel image of the intersection area in about 0.5 secs (this is the kind of computation that would get a 100x speedup if done with C).
# x, y, r0, r1
data = [(2.0, 2.0, 0.5, 1.0),
(1.0, 2.0, 0.3, 1.0),
(1.5, 1.0, 0.3, 0.5)]
x0 = max(x - r1 for x, y, r0, r1 in data)
y0 = max(y - r1 for x, y, r0, r1 in data)
x1 = min(x + r1 for x, y, r0, r1 in data)
y1 = min(y + r1 for x, y, r0, r1 in data)
def hit(x, y):
for cx, cy, r0, r1 in data:
if not (r0**2 <= ((x - cx)**2 + (y - cy)**2) <= r1**2):
return False
return True
res = 400
step = 16
white = chr(255)
grey = chr(192)
black = chr(0)
img = [black] * (res * res)
# Low-res pass
cells = {}
for i in xrange(0, res, step):
y = y0 + i * (y1 - y0) / res
for j in xrange(0, res, step):
x = x0 + j * (x1 - x0) / res
if hit(x, y):
for h in xrange(-step*2, step*3, step):
for v in xrange(-step*2, step*3, step):
cells[(i+v, j+h)] = True
# High-res pass
for i in xrange(0, res, step):
for j in xrange(0, res, step):
if cells.get((i, j), False):
img[i * res + j] = grey
img[(i + step - 1) * res + j] = grey
img[(i + step - 1) * res + (j + step - 1)] = grey
img[i * res + (j + step - 1)] = grey
for v in xrange(step):
y = y0 + (i + v) * (y1 - y0) / res
for h in xrange(step):
x = x0 + (j + h) * (x1 - x0) / res
if hit(x, y):
img[(i + v)*res + (j + h)] = white
open("result.pgm", "wb").write(("P5\n%i %i 255\n" % (res, res)) +
"".join(img))
Another interesting option could be using a GPU if available. Starting from a white picture and drawing in black the exterior of each annulus will leave at the end the intersection area in white.
For example with Python/Qt the code for doing this computation is simply:
img = QImage(res, res, QImage.Format_RGB32)
dc = QPainter(img)
dc.fillRect(0, 0, res, res, QBrush(QColor(255, 255, 255)))
dc.setPen(Qt.NoPen)
dc.setBrush(QBrush(QColor(0, 0, 0)))
for x, y, r0, r1 in data:
xa1 = (x - r1 - x0) * res / (x1 - x0)
xb1 = (x + r1 - x0) * res / (x1 - x0)
ya1 = (y - r1 - y0) * res / (y1 - y0)
yb1 = (y + r1 - y0) * res / (y1 - y0)
xa0 = (x - r0 - x0) * res / (x1 - x0)
xb0 = (x + r0 - x0) * res / (x1 - x0)
ya0 = (y - r0 - y0) * res / (y1 - y0)
yb0 = (y + r0 - y0) * res / (y1 - y0)
p = QPainterPath()
p.addEllipse(QRectF(xa0, ya0, xb0-xa0, yb0-ya0))
p.addEllipse(QRectF(xa1, ya1, xb1-xa1, yb1-ya1))
p.addRect(QRectF(0, 0, res, res))
dc.drawPath(p)
and the computation part for an 800x800 resolution image takes about 8ms (and I'm not sure it's hardware accelerated).
If only the barycenter of the intersection is to be computed then there is no memory allocation at all. For example a "brute-force" approach is just a few lines of C
typedef struct TReading {
double x, y, r0, r1;
} Reading;
int hit(double xx, double yy,
Reading *readings, int num_readings)
{
while (num_readings--)
{
double dx = xx - readings->x;
double dy = yy - readings->y;
double d2 = dx*dx + dy*dy;
if (d2 < readings->r0 * readings->r0) return 0;
if (d2 > readings->r1 * readings->r1) return 0;
readings++;
}
return 1;
}
int computeLocation(Reading *readings, int num_readings,
int resolution,
double *result_x, double *result_y)
{
// Compute bounding box of interesting zone
double x0 = -1E20, y0 = -1E20, x1 = 1E20, y1 = 1E20;
for (int i=0; i<num_readings; i++)
{
if (readings[i].x - readings[i].r1 > x0)
x0 = readings[i].x - readings[i].r1;
if (readings[i].y - readings[i].r1 > y0)
y0 = readings[i].y - readings[i].r1;
if (readings[i].x + readings[i].r1 < x1)
x1 = readings[i].x + readings[i].r1;
if (readings[i].y + readings[i].r1 < y1)
y1 = readings[i].y + readings[i].r1;
}
// Scan processing
double ax = 0, ay = 0;
int total = 0;
for (int i=0; i<=resolution; i++)
{
double yy = y0 + i * (y1 - y0) / resolution;
for (int j=0; j<=resolution; j++)
{
double xx = x0 + j * (x1 - x0) / resolution;
if (hit(xx, yy, readings, num_readings))
{
ax += xx; ay += yy; total += 1;
}
}
}
if (total)
{
*result_x = ax / total;
*result_y = ay / total;
}
return total;
}
And on my PC can compute the barycenter with resolution = 100 in 0.08 ms (x=1.50000, y=1.383250) or with resolution = 400 in 1.3ms (x=1.500000, y=1.383308). Of course a double-step speedup could be implemented even for the barycenter-only version.
I would switch from "max/min" to trying to minimize an error function. That gets you to the problem discussed at Finding a point that best fits the intersection of n spheres which is more tractable than intersecting a series of complicated shapes. (And what if one robot's sensor is messed up and it gives an impossible value? That variation will still usually give a reasonable answer.)
Not sure about your case, but in a typical robotics application you're going to be reading sensors periodically and crunching the data. If that's the case, you're trying to estimate the location based on noisy data and that's a common problem. As a simple (less rigorous) method, you could take the existing position and adjust it toward or away from each known point. Take the measured distance to target minus the present distance to target, multiply that delta (error) by some value between 0 and 1, and move your estimated position that much toward the target. Repeat for each target. Then repeat each time you get a new set of measurements. The multiplier will have an effect like a low-pass filter, smaller values will give you a more stable position estimate with slower response to movement. For the distance, use the average of the min and max. If you can put tighter bounds on the range to one target, you can increase the multiplier closer to 1 for just that target.
This is of course a crude position estimator. The math guys can probably be more rigorous, but also more complicated. The solution is definitely not anything to do with intersecting areas and working with geometric shapes.

Resources