SQLite prepared statements re-planning - sqlite

Suppose I've prepared some statements with sqlite3_prepare_v3, after that I've inserted large amounts of data into database and run ANALYZE. Do I need to create the statements anew after that so that the query planner uses updated statistics information gathered by ANALYZE?

The ANALYZE statement expires all prepared statements.
When you have used sqlite3_prepare_v2() or _v3(), the sqlite3_step() function will then automatically re-prepare the statement.

Related

Alternative for macros or procedures in teradata

I have Teradata SQL query that will provide values for each day, I need to run this query for months. My organization doesn't allow me to use macros or procedures, is there any alternatives apart from these two things that will automate my SQL query in Teradata. Apologies I cannot display sample code in here

Should ANALYZE be run in a transaction?

In sqlite (specifically version 3), should ANALYZE be run in a transaction?
If so, and I'm at the end of a long transaction that made lots of changes, is it okay to run ANALYZE in that same transaction or should that transaction be committed first and begin another transaction for the ANALYZE?
The documentation doesn't say anything about this one way or another.
ANALYZE reads the data from indexed columns and writes statistical information into some internal table.
This is somewhat similar to the following query:
INSERT OR REPLACE INTO sqlite_statXXX
SELECT 'MyTable', 'MyColumn', COUNT(*), AVG(MyColumn) FROM MyTable
done once for every indexed column.
Like any other SQL statement that writes a small amount of data to the database, the transaction overhead will be much larger than the actual effort to write the data itself.
In your case, it is not necessary for your changed data to be available without the changed statistics, so you could just as well do the ANALYZE in the same transaction.
If the database is so big that ANALYZE runs for a long time, it might make sense to delay its execution until later when it does not conflict with more important transactions.

Is it possible and meaningful to execute an Array DML command containing BLOB data?

Is it possible to execute an Array DML INSERT or UPDATE statement passing a BLOB field data in the parameter array ? And the more important part of my question, if it is possible, will Array DML command containing BLOB data still be more efficient than executing commands one by one ?
I have noticed that TADParam has a AsBlobs indexed property so I assume it might be possible, but I haven't tried this yet because there's no mention of performance nor example showing this and because the indexed property is of type RawByteString which is not much suitable for my needs.
I'm using FireDAC and working with SQLite database (Params.BindMode = pbByNumber, so I'm using native SQLite INSERT with multiple VALUES). My aim is to store about 100k records containing pretty small BLOB data (about 1kB per record) as fast as possible (in cost of the FireDAC's abstraction).
The main point in your case is that you are using a SQLIte3 database.
With SQLite3, Array DML is "emulated" by FireDAC. Since it is a local instance, not a client-server instance, there is no need to prepare a bunch of rows, then send them at once to avoid network latency (as with Oracle or MS SQL).
Using Array DML may speed up your insertion process a little bit with SQLite3, but I doubt it will very high. Good plain INSERT with binding per number will work just fine.
The main tips about performance in your case will be:
Nest your process within a single transaction (or even better, use one transaction per 1000 rows of data);
Prepare an INSERT statement, then re-execute it with a bound parameter each time;
By default, FireDAC initialize SQLite3 with the fastest options (e.g. disabling LOCK), so let it be.
SQlite3 is very good about BLOB process.
From my tests, FireDAC insertion timing is pretty good, very close to direct SQlite3 access. Only reading is slower than a direct SQLite3 link, due to the overhead of the Delphi TDataSet class.

Attaching two memory databases

I am collecting data every second and storing it in a ":memory" database. Inserting data into this database is inside a transaction.
Everytime one request is sending to server and server will read data from the first memory, do some calculation, store it in the second database and send it back to the client. For this, I am creating another ":memory:" database to store the aggregated information of the first db. I cannot use the same db because I need to do some large calculation to get the aggregated result. This cannot be done inside the transaction( because if one collection takes 5 sec I will lose all the 4 seconds data). I cannot create table in the same database because I will not be able to write the aggregate data while it is collecting and inserting the original data(it is inside transaction and it is collecting every one second)
-- Sometimes I want to retrieve data from both the databses. How can I link both these memory databases? Using attach database stmt, I can attach the second db to the first one. But the problem is next time when a request comes how will I check the second db is exist or not?
-- Suppose, I am attaching the second memory db to first one. Will it lock the second database, when we write data to the first db?
-- Is there any other way to store this aggregated data??
As far as I got your idea, I don't think that you need two databases at all. I suppose you are misinterpreting the idea of transactions in sql.
If you are beginning a transaction other processes will be still allowed to read data. If you are reading data, you probably don't need a database lock.
A possible workflow could look as the following.
Insert some data to the database (use a transaction just for the
insertion process)
Perform heavy calculations on the database (but do not use a transaction, otherwise it will prevent other processes of inserting any data to your database). Even if this step includes really heavy computation, you can still insert and read data by using another process as SELECT statements will not lock your database.
Write results to the database (again, by using a transaction)
Just make sure that heavy calculations are not performed within a transaction.
If you want a more detailed description of this solution, look at the documentation about the file locking behaviour of sqlite3: http://www.sqlite.org/lockingv3.html

How can i improve the performance of the SQLite database?

Background: I am using SQLite database in my flex application. Size of the database is 4 MB and have 5 tables which are
table 1 have 2500 records
table 2 have 8700 records
table 3 have 3000 records
table 4 have 5000 records
table 5 have 2000 records.
Problem: Whenever I run a select query on any table, it takes around (approx 50 seconds) to fetch data from database tables. This has made the application quite slow and unresponsive while it fetches the data from the table.
How can i improve the performance of the SQLite database so that the time taken to fetch the data from the tables is reduced?
Thanks
As I tell you in a comment, without knowing what structures your database consists of, and what queries you run against the data, there is nothing we can infer suggesting why your queries take much time.
However here is an interesting reading about indexes : Use the index, Luke!. It tells you what an index is, how you should design your indexes and what benefits you can harvest.
Also, if you can post the queries and the table schemas and cardinalities (not the contents) maybe it could help.
Are you using asynchronous or synchronous execution modes? The difference between them is that asynchronous execution runs in the background while your application continues to run. Your application will then have to listen for a dispatched event and then carry out any subsequent operations. In synchronous mode, however, the user will not be able to interact with the application until the database operation is complete since those operations run in the same execution sequence as the application. Synchronous mode is conceptually simpler to implement, but asynchronous mode will yield better usability.
The first time SQLStatement.execute() on a SQLStatement instance, the statement is prepared automatically before executing. Subsequent calls will execute faster as long as the SQLStatement.text property has not changed. Using the same SQLStatement instances is better than creating new instances again and again. If you need to change your queries, then consider using parameterized statements.
You can also use techniques such as deferring what data you need at runtime. If you only need a subset of data, pull that back first and then retrieve other data as necessary. This may depend on your application scope and what needs you have to fulfill though.
Specifying the database with the table names will prevent the runtime from checking each database to find a matching table if you have multiple databases. It also helps prevent the runtime will choose the wrong database if this isn't specified. Do SELECT email FROM main.users; instead of SELECT email FROM users; even if you only have one single database. (main is automatically assigned as the database name when you call SQLConnection.open.)
If you happen to be writing lots of changes to the database (multiple INSERT or UPDATE statements), then consider wrapping it in a transaction. Changes will made in memory by the runtime and then written to disk. If you don't use a transaction, each statement will result in multiple disk writes to the database file which can be slow and consume lots of time.
Try to avoid any schema changes. The table definition data is kept at the start of the database file. The runtime loads these definitions when the database connection is opened. Data added to tables is kept after the table definition data in the database file. If changes such as adding columns or tables, the new table definitions will be mixed in with table data in the database file. The effect of this is that the runtime will have to read the table definition data from different parts of the file rather than at the beginning. The SQLConnection.compact() method restructures the table definition data so it is at the the beginning of the file, but its downside is that this method can also consume much time and more so if the database file is large.
Lastly, as Benoit pointed out in his comment, consider improving your own SQL queries and table structure that you're using. It would be helpful to know your database structure and queries are the actual cause of the slow performance or not. My guess is that you're using synchronous execution. If you switch to asynchronous mode, you'll see better performance but that doesn't mean it has to stop there.
The Adobe Flex documentation online has more information on improving database performance and best practices working with local SQL databases.
You could try indexing some of the columns used in the WHERE clause of your SELECT statements. You might also try minimizing usage of the LIKE keyword.
If you are joining your tables together, you might try simplifying the table relationships.
Like others have said, it's hard to get specific without knowing more about your schema and the SQL you are using.

Resources