Where does function equal certain value - r

I have fitted a function to my data:
BCF.plot <- function(x) {
vv[2] +((vv[3]/(2*(1-vv[4])))*(cos(x-vv[1])-vv[4]+abs(cos(x-vv[1])-vv[4])))
}
It is a baseline (b) cosine wave, i.e. a baseline with a cosine wave on top of it. Now I have a certain value on the Y-axis (dlmo_val) and I want to know which x value corresponds to it. I have tried something like this:
BCF.dlmo <- function(x, dlmo_val = 0) {
vv[2] +((vv[3]/(2*(1-vv[4])))*(cos(x-vv[1])-vv[4]+abs(cos(x-vv[1])-vv[4])))-b-dlmo_val ## find point where function minus baseline & dlmo_val is 0
}
vv = c(2.3971780, 2.0666526, 11.1775231, 0.7870128)
b = 2.066653
H = 11.17752
dlmo_val = 0.4*H ## dlmo*peak height above baseline, H is result from optimisation
uniroot(BCF.dlmo, c(0.2617994, 6.021386), dlmo_val=dlmo_val) ## lower & upper are min(x) and max(x)
However, uniroot tells me
"...values at end points not of opposite sign"
I am not really sure how to go about this. Any recommendations are more than welcome!

As described in this post, uniroot() is designed for finding only one zero in a function, while you have two zeroes. You could call it on a smaller interval:
uniroot(BCF.dlmo, c(0.2617994, 2.5), dlmo_val = dlmo_val)$root
# [1] 1.886079
As that post describes, you can instead use the unitroot.all function in the rootSolve package to find both zeroes:
library(rootSolve)
uniroot.all(BCF.dlmo, c(0.2617994, 6.021386), dlmo_val = dlmo_val)
# [1] 1.886084 2.908276

Related

Why am I getting NAs in this calculation in R?

While working on an Rcpp program, I used the sample() function, which gave me the following error: "NAs not allowed in probability." I traced this issue to the fact that the probability vector I used had NA values in it. I have no idea how. Below is some R code that captures the errors:
n.0=20
n.1=20
n.reps=1
beta0.vals=rep(seq(-.3,.1,,n.0),n.reps)
beta1.vals=rep(seq(-7,0,,n.1),n.reps)
beta.grd=as.matrix(expand.grid(beta0.vals,beta1.vals))
n.rnd=200
beta.rnd.grd=cbind(runif(n.rnd,min(beta0.vals),max(beta0.vals)),runif(n.rnd,min(beta1.vals),max(beta1.vals)))
beta.grd=rbind(beta.grd,beta.rnd.grd)
N = 22670
count = 0
for(i in 1:dim(beta.grd)[1]){ # iterate through 600 possible beta values in beta grid
beta.ind = 0 # indicator for current pair of beta values
for(j in 1:N){ # iterate through all possible Nsums
logit = beta.grd[i,1]/N*(j - .1*N)^2 + beta.grd[i,2];
phi01 = exp(logit)/(1 + exp(logit))
if(is.na(phi01)){
count = count + 1
}
}
}
cat("Total number of invalid probabilities: ", count)
Here, $\beta_0 \in (-0.3, 0.1), \beta_1 \in (-7, 0), N = 22670, N_\text{sum} \in (1, N)$. Note that $N$ and $N_\text{sum}$ are integers, whereas the beta values may not be.
Since mathematically, $\phi_{01} \in (0,1)$, I'm assuming that NAs are arising because R is not liking extremely small values. I am receiving an overwhelming amount of NA values, too. More so than numbers. Why would I be getting NAs in this code?
Include print(logit) next to count = count + 1 and you will find lots of logit > 1000 values. exp(1000) == Inf so you divide Inf by Inf which will get you a NaN and NaN is NA:
> exp(500)
[1] 1.403592e+217
> Inf/Inf
[1] NaN
> is.na(NaN)
[1] TRUE
So your problems are not too small but to large numbers coming first out of the evaluation of exp(x) with x larger then roughly 700:
> exp(709)
[1] 8.218407e+307
> exp(710)
[1] Inf
Bernhard's answer correctly identifies the problem:
If logit is large, exp(logit) = Inf.
Here is a solution:
for(i in 1:dim(beta.grd)[1]){ # iterate through 600 possible beta values in beta grid
beta.ind = 0 # indicator for current pair of beta values
for(j in 1:N){ # iterate through all possible Nsums
logit = beta.grd[i,1]/N*(j - .1*N)^2 + beta.grd[i,2];
## This one isn't great because exp(logit) can be very large
# phi01 = exp(logit)/(1 + exp(logit))
## So, we say instead
## phi01 = 1 / ( 1 + exp(-logit) )
phi01 = plogis(logit)
if(is.na(phi01)){
count = count + 1
}
}
}
cat("Total number of invalid probabilities: ", count)
# Total number of invalid probabilities: 0
We can use the more stable 1 / (1 + exp(-logit)
(to convince yourself of this, multiply your expression with exp(-logit) / exp(-logit)),
and luckily either way, R has a builtin function plogis() that can calculate these probabilities quickly and accurately.
You can see from the help file (?plogis) that this function evaluates the expression I gave, but you can also double check to assure yourself
x = rnorm(1000)
y = 1 / (1 + exp(-x))
z = plogis(x)
all.equal(y, z)
[1] TRUE

Functions for multivariate numerical integration in R [duplicate]

I am using the following R code, taken from a published paper (citation below). This is the code:
int2=function(x,r,n,p) {
(1+x)^((n-1-p)/2)*(1+(1-r^2)*x)^(-(n-1)/2)*x^(-3/2)*exp(-n/(2*x))}
integrate(f=int2,lower=0,upper=Inf,n=530,r=sqrt(.245),p=3, stop.on.error=FALSE)
When I run it, I get the error "non-finite function value". Yet Maple is able to compute this as 4.046018765*10^27.
I tried using "integral" in package pracma, which gives me a different error:
Error in if (delta < tol) break : missing value where TRUE/FALSE needed
The overall goal is to compute a ratio of two integrals, as described in Wetzels & Wagenmakers (2012) "A default Bayesian hypothesis test for correlations" (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505519/). The entire function is as follows:
jzs.pcorbf = function(r0, r1, p0, p1, n) {
int = function(r,n,p,g) {
(1+g)^((n-1-p)/2)*(1+(1-r^2)*g)^(-(n-1)/2)*g^(-3/2)*exp(-n/(2*g))};
bf10=integrate(int, lower=0,upper=Inf,r=r1,p=p1,n=n)$value/
integrate(int,lower=0,upper=Inf,r=r0,p=p0,n=n)$value;
return(bf10)
}
Thanks!
The issue is that your integral function is generating NaN values when called with x values in its domain. You're integrating from 0 to Infinity, so let's check a valid x value of 1000:
int2(1000, sqrt(0.245), 530, 3)
# [1] NaN
Your objective multiplies four pieces:
x <- 1000
r <- sqrt(0.245)
n <- 530
p <- 3
(1+x)^((n-1-p)/2)
# [1] Inf
(1+(1-r^2)*x)^(-(n-1)/2)
# [1] 0
x^(-3/2)
# [1] 3.162278e-05
exp(-n/(2*x))
# [1] 0.7672059
We can now see that the issue is that you're multiplying infinity by 0 (or rather something numerically equal to infinity times something numerically equal to 0), which is causing the numerical issues. Instead of calculating a*b*c*d, it will be more stable to calculate exp(log(a) + log(b) + log(c) + log(d)) (using the identity that log(a*b*c*d) = log(a)+log(b)+log(c)+log(d)). One other quick note -- the value x=0 needs a special case.
int3 = function(x, r, n, p) {
loga <- ((n-1-p)/2) * log(1+x)
logb <- (-(n-1)/2) * log(1+(1-r^2)*x)
logc <- -3/2 * log(x)
logd <- -n/(2*x)
return(ifelse(x == 0, 0, exp(loga + logb + logc + logd)))
}
integrate(f=int3,lower=0,upper=Inf,n=530,r=sqrt(.245),p=3, stop.on.error=FALSE)
# 1.553185e+27 with absolute error < 2.6e+18

Mode of density function using optimize

I want to find the mode (x-value) of a univariate density function using R
s optimize function
I.e. For a standard normal function f(x) ~ N(3, 1) the mode should be the mean i.e. x=3.
I tried the following:
# Define the function
g <- function(x) dnorm(x = x, mean = 3, sd = 1)
Dvec <- c(-1000, 1000)
# First get the gradient of the function
gradfun <- function(x){grad(g, x)}
# Find the maximum value
x_mode <- optimize(f=g,interval = Dvec, maximum=TRUE)
x_mode
This gives the incorrect value of the mode as:
$maximum
[1] 999.9999
$objective
[1] 0
Which is incorrect i.e. gives the max value of the (-1000, 1000) interval as opposed to x=3.
Could anyone please help edit the optimisation code.
It will be used to pass more generic functions of x if this simple test case works
I would use optim for this, avoiding to mention the interval. You can tailor the seed by taking the maximum of the function on the original guessed interval:
guessedInterval = min(Dvec):max(Dvec)
superStarSeed = guessedInterval[which.max(g(guessedInterval))]
optim(par=superStarSeed, fn=function(y) -g(y))
#$par
#[1] 3
#$value
#[1] -0.3989423
#$counts
#function gradient
# 24 NA
#$convergence
#[1] 0
#$message
#NULL

R rounding off numbers like 8.829847e-07

How can I round off a number like 0.0000234889 (or in the form 8.829847e-07) to a power of ten, either below or above (whichever is my choice), ie here 0.00001 or 0.0001 ?
I tried round(...., digits=-100000) but it returns an error NaN error.
Ex: round(2e-07, digits=6) gives 0, while I would like 1e-06 and another function to give 1e-07.
# Is this what you're looking for?
# find the nearest power of ten for some number
x <- 0.0000234889 # Set test input value
y <- log10(x) # What is the fractional base ten logarithm?
yy <- round(y) # What is the nearest whole number base ten log?
xx <- 10 ^ yy # What integer power of ten is nearest the input?
print(xx)
# [1] 1e-05
The digits argument to the round() function must be positive. If you want your number to show up in scientific notation with an exponent n, just just do
round(value, 10^n)
However, this will only get you what you want up to a point. For example, you can do round(0.0000234889, 10^6) but you still get 2.34889e-05. (Notice that an exponent of 6 was specified but you got 5.)
Use options("scipen" = ) like this:
num <- 0.0000234889
> num
[1] 2.34889e-05
options("scipen" = 10)
options()$scipen
> num
[1] 0.0000234889
This will change the global option for the session. Read documentation here:https://stat.ethz.ch/R-manual/R-devel/library/base/html/options.html

"non-finite function value" when using integrate() in R

I am using the following R code, taken from a published paper (citation below). This is the code:
int2=function(x,r,n,p) {
(1+x)^((n-1-p)/2)*(1+(1-r^2)*x)^(-(n-1)/2)*x^(-3/2)*exp(-n/(2*x))}
integrate(f=int2,lower=0,upper=Inf,n=530,r=sqrt(.245),p=3, stop.on.error=FALSE)
When I run it, I get the error "non-finite function value". Yet Maple is able to compute this as 4.046018765*10^27.
I tried using "integral" in package pracma, which gives me a different error:
Error in if (delta < tol) break : missing value where TRUE/FALSE needed
The overall goal is to compute a ratio of two integrals, as described in Wetzels & Wagenmakers (2012) "A default Bayesian hypothesis test for correlations" (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505519/). The entire function is as follows:
jzs.pcorbf = function(r0, r1, p0, p1, n) {
int = function(r,n,p,g) {
(1+g)^((n-1-p)/2)*(1+(1-r^2)*g)^(-(n-1)/2)*g^(-3/2)*exp(-n/(2*g))};
bf10=integrate(int, lower=0,upper=Inf,r=r1,p=p1,n=n)$value/
integrate(int,lower=0,upper=Inf,r=r0,p=p0,n=n)$value;
return(bf10)
}
Thanks!
The issue is that your integral function is generating NaN values when called with x values in its domain. You're integrating from 0 to Infinity, so let's check a valid x value of 1000:
int2(1000, sqrt(0.245), 530, 3)
# [1] NaN
Your objective multiplies four pieces:
x <- 1000
r <- sqrt(0.245)
n <- 530
p <- 3
(1+x)^((n-1-p)/2)
# [1] Inf
(1+(1-r^2)*x)^(-(n-1)/2)
# [1] 0
x^(-3/2)
# [1] 3.162278e-05
exp(-n/(2*x))
# [1] 0.7672059
We can now see that the issue is that you're multiplying infinity by 0 (or rather something numerically equal to infinity times something numerically equal to 0), which is causing the numerical issues. Instead of calculating a*b*c*d, it will be more stable to calculate exp(log(a) + log(b) + log(c) + log(d)) (using the identity that log(a*b*c*d) = log(a)+log(b)+log(c)+log(d)). One other quick note -- the value x=0 needs a special case.
int3 = function(x, r, n, p) {
loga <- ((n-1-p)/2) * log(1+x)
logb <- (-(n-1)/2) * log(1+(1-r^2)*x)
logc <- -3/2 * log(x)
logd <- -n/(2*x)
return(ifelse(x == 0, 0, exp(loga + logb + logc + logd)))
}
integrate(f=int3,lower=0,upper=Inf,n=530,r=sqrt(.245),p=3, stop.on.error=FALSE)
# 1.553185e+27 with absolute error < 2.6e+18

Resources