How can I insert a new row after each row where the hp exceeds 110 in the mtcars dataset, still keeping the cars with hp <=110?
library(tidyverse)
data(mtcars)
I´ve tried the following but without success--
mtcars %>% modify_if(.p = .$hp>110,.f = add_row(.after=1)) #noe equal lengths
mtcars %>% filter(hp>110) %>% add_row(.after=1) #only gives an extra row for the first row meeting condition
mtcars %>% rownames_to_column() %>%
group_by(rowname) %>% modify_if(.p=.$hp>110,.f=add_row(.after=1)) #not egual length
the following - using purrr- seems to work:
foo <- function(df){
if (df$hp>110) {df<-add_row(.data=df,.after=1)}
df
}
mtcars %>% rownames_to_column(var = "make") %>% nest(-make) %>%
mutate(new=map(data,~ foo(.x))) %>% select (-data) %>% unnest(new)
Any function called add_row_if ???
This inserts a new row of random numbers (runif(length(.)) beneath each row that matches your filter:
mtcars %>% filter(hp > 110) %>%
group_by(row_number()) %>%
do (
rbind(., runif(length(.)))
) %>%
ungroup()
# # A tibble: 36 × 12
# mpg cyl disp hp drat wt qsec vs
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 18.70000000 8.0000000 360.0000000 175.0000000 3.15000000 3.440000000 17.02000000 0.0000000
# 2 0.98189043 0.5940565 0.7401747 0.7300069 0.73460416 0.102802673 0.06632293 0.3771534
# 3 14.30000000 8.0000000 360.0000000 245.0000000 3.21000000 3.570000000 15.84000000 0.0000000
# 4 0.02192815 0.4811006 0.6456729 0.2900382 0.69145964 0.741733891 0.34932004 0.1356568
# 5 19.20000000 6.0000000 167.6000000 123.0000000 3.92000000 3.440000000 18.30000000 1.0000000
# 6 0.95568849 0.6532453 0.8744450 0.3346875 0.66217223 0.776532606 0.24731722 0.9633778
# 7 17.80000000 6.0000000 167.6000000 123.0000000 3.92000000 3.440000000 18.90000000 1.0000000
# 8 0.43592634 0.6036127 0.3185138 0.1035780 0.48505561 0.007380369 0.24154177 0.4978268
# 9 16.40000000 8.0000000 275.8000000 180.0000000 3.07000000 4.070000000 17.40000000 0.0000000
# 10 0.10970496 0.9063285 0.4659718 0.2793090 0.04670105 0.337342230 0.85691425 0.2758889
# # ... with 26 more rows, and 4 more variables: am <dbl>, gear <dbl>, carb <dbl>,
# # `row_number()` <dbl>
Related
I'm having trouble figuring out how to use purrr::map() with mutate(across(...)).
I want to do a linear model and pull out the estimate for the slope of multiple columns as predicted by a single column.
Here is what I'm attempting with an example data set:
mtcars %>%
mutate(across(-mpg),
map(.x, lst(slope = ~lm(.x ~ mpg, data = .x) %>%
tidy() %>%
filter(term != "(Intercept") %>%
pull(estimate)
)))
The output I'm looking for would be new columns for each non-mpg column with _slope appended to the name, ie cyl_slope
In my actual data, I'll be grouping by another variable as well in case that matters, as I need the slope for each group for each predicted variable. I have this working in a standard mutate doing one variable at a time as follows:
df %>%
group_by(unitid) %>%
nest() %>%
mutate(tuition_and_fees_as_pct_total_rev_slope = map_dbl(data, ~lm(tuition_and_fees_as_pct_total_rev ~ year, data = .x) %>%
tidy() %>%
filter(term == "year") %>%
pull(estimate)
))
So:
I think my issue is how to pass the column name being predicted into the lm
I don't know if the solution requires nesting or not, so it would be appreciated if in the mtcars example that is considered.
If we wanted to do lm on all other columns with independent variable as 'mpg', one option is to loop over the column names of the 'mtcars' except the 'mpg', create the formula with reformulate, apply the lm, convert to a tidy format, filter out the 'Intercept' and select the 'estimate' column
library(dplyr)
library(tidyr)
library(broom)
map_dfc(setdiff(names(mtcars), 'mpg'), ~
lm(reformulate('mpg', response = .x), data = mtcars) %>%
tidy %>%
filter(term != "(Intercept)") %>%
select(estimate))
-output
# A tibble: 1 x 10
# estimate...1 estimate...2 estimate...3 estimate...4 estimate...5 estimate...6 estimate...7 estimate...8 estimate...9 estimate...10
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 -0.253 -17.4 -8.83 0.0604 -0.141 0.124 0.0555 0.0497 0.0588 -0.148
Or this can be done more easily with a matrix as dependent
library(stringr)
lm(as.matrix(mtcars[setdiff(names(mtcars), "mpg")]) ~ mpg,
data = mtcars) %>%
tidy %>%
filter(term != "(Intercept)") %>%
select(response, estimate) %>%
mutate(response = str_c(response, '_slope'))
-output
# A tibble: 10 x 2
# response estimate
# <chr> <dbl>
# 1 cyl_slope -0.253
# 2 disp_slope -17.4
# 3 hp_slope -8.83
# 4 drat_slope 0.0604
# 5 wt_slope -0.141
# 6 qsec_slope 0.124
# 7 vs_slope 0.0555
# 8 am_slope 0.0497
# 9 gear_slope 0.0588
#10 carb_slope -0.148
Or another option is summarise with across
mtcars %>%
summarise(across(-mpg, ~ list(lm(reformulate('mpg',
response = cur_column())) %>%
tidy %>%
filter(term != "(Intercept)") %>%
pull(estimate)), .names = "{.col}_slope")) %>%
unnest(everything())
# A tibble: 1 x 10
# cyl_slope disp_slope hp_slope drat_slope wt_slope qsec_slope vs_slope am_slope gear_slope carb_slope
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 -0.253 -17.4 -8.83 0.0604 -0.141 0.124 0.0555 0.0497 0.0588 -0.148
One option could be:
map_dfr(.x = names(select(mtcars, -c(mpg, vs))),
~ mtcars %>%
group_by(vs) %>%
nest() %>%
mutate(variable = .x,
estimate = map_dbl(data, function(y) lm(!!sym(.x) ~ mpg, data = y) %>%
tidy() %>%
filter(term != "(Intercept)") %>%
pull(estimate))) %>%
select(-data))
vs variable estimate
<dbl> <chr> <dbl>
1 0 cyl -0.242
2 1 cyl -0.116
3 0 disp -22.5
4 1 disp -8.01
5 0 hp -10.1
6 1 hp -3.26
7 0 drat 0.0748
8 1 drat 0.0529
9 0 wt -0.192
10 1 wt -0.113
11 0 qsec -0.0357
12 1 qsec -0.0432
13 0 am 0.0742
14 1 am 0.0710
15 0 gear 0.114
16 1 gear 0.0492
17 0 carb -0.0883
18 1 carb -0.0790
Can someone help me please?
I Have Column A, Column B and Column C, I want to get the top value of column C, grouped by A, but also have the information of B for those top values
Max <-X %>% select(A,B,C) %>% group_by(A) %>% summarise(top = max(C))
But this code only show me the top values of each unique A data, so I dont know whats the B value assigned to that. (Important, making group_by(A,B) doesnt work, because it doesnt give the top values for each unique A value, it returns the same as the data base X)
This could be achieved via dplyr::top_n or ? dplyr::slice_max like so:
library(dplyr)
mtcars %>% select(cyl, mpg, hp) %>% group_by(cyl) %>% top_n(1, hp)
#> # A tibble: 3 x 3
#> # Groups: cyl [3]
#> cyl mpg hp
#> <dbl> <dbl> <dbl>
#> 1 4 30.4 113
#> 2 6 19.7 175
#> 3 8 15 335
mtcars %>% select(cyl, mpg, hp) %>% group_by(cyl) %>% slice_max(hp)
#> # A tibble: 3 x 3
#> # Groups: cyl [3]
#> cyl mpg hp
#> <dbl> <dbl> <dbl>
#> 1 4 30.4 113
#> 2 6 19.7 175
#> 3 8 15 335
So, in your case it should be:
Max <-X %>% select(A,B,C) %>% group_by(A) %>% slice_max(C)
I want to use filter or similar function inside summarise from dplyr package. So I've got a dataframe (e.g. mtcars) where I need to group by factor (e.g. cyl) and then calculate some statistics and a percentage of total wt for every cyl type —> wt.pc.
The question is how can I subset/filter wt column inside summarise function to get a percentage but without last 10 rows?
I've tried this code but it returns NA:(
mtcars %>%
group_by(cyl) %>%
summarise(wt = round(sum(wt)),
wt.pc = sum(wt) * 100 / sum(mtcars[, 6]),
wt.pc.short = sum(wt[1:22]) * 100 / sum(mtcars[1:22, 6]),
drat.max = round(max(drat)))
# A tibble: 3 x 5
cyl wt wt.pc wt.pc.short drat.max
<dbl> <dbl> <dbl> <dbl> <dbl>
1 4 25 24.3 NA 5
2 6 22 21.4 NA 4
3 8 56 54.4 NA 4
wt.pc.short — % of sum(wt) for every cyl for shorter dataframe mtcars[1:22,]
Something like this?
mtcars %>%
mutate(id = row_number()) %>%
group_by(cyl) %>%
summarise(wt_new = round(sum(wt)), # note the change in name here!
wt.pc = sum(wt) * 100 / sum(mtcars[, 6]),
wt.pc.short = sum(wt[id<23]) * 100 / sum(mtcars[1:22, 6]),
drat.max = round(max(drat)))
# A tibble: 3 x 5
cyl wt_new wt.pc wt.pc.short drat.max
<dbl> <dbl> <dbl> <dbl> <dbl>
1 4 25 24.3 22.7 5
2 6 22 21.4 25.8 4
3 8 56 54.4 51.6 4
The important part here is that when you assign wt in the call to summarize, all subsequent references to wt will take the previously assigned wt, not the original wt. A statement such as wt[1:22] is thus somewhat problematic. You can see this here:
mean(mtcars[,"mpg"])
# [1] 20.09062
var(mtcars[,"mpg"])
# [1] 36.3241
mtcars %>% summarise(var_before = var(mpg),
mpg = mean(mpg),
var_after = var(mpg))
# var_before mpg var_after
# 1 36.3241 20.09062 NA
I think you can do it like this. First we calculate the row number within the group, if max(row_number) > 10 then we have enough observations to remove the last 10 rows, in which case we filter to max(ID)-9 (i.e. remove the last 10 rows), otherwise ID==ID returns true and doesn't remove anything.
mtcars %>% group_by(cyl) %>%
mutate(ID = row_number()) %>%
filter(if (max(ID) > 10) ID < (max(ID) - 9) else ID == ID)
I noticed that when supplying column indices to dplyr::summarize_at the column to be summarized is determined excluding the grouping column(s). I wonder if that is how it's supposed to be since by this design, using the correct column index depends on whether the summarising column(s) are positioned before or after the grouping columns.
Here's an example:
library(dplyr)
data("mtcars")
# grouping column after summarise columns
mtcars %>% group_by(gear) %>% summarise_at(3:4, mean)
## A tibble: 3 x 3
# gear disp hp
# <dbl> <dbl> <dbl>
#1 3 326.3000 176.1333
#2 4 123.0167 89.5000
#3 5 202.4800 195.6000
# grouping columns before summarise columns
mtcars %>% group_by(cyl) %>% summarise_at(3:4, mean)
## A tibble: 3 x 3
# cyl hp drat
# <dbl> <dbl> <dbl>
#1 4 82.63636 4.070909
#2 6 122.28571 3.585714
#3 8 209.21429 3.229286
# no grouping columns
mtcars %>% summarise_at(3:4, mean)
# disp hp
#1 230.7219 146.6875
# actual third & fourth columns
names(mtcars)[3:4]
#[1] "disp" "hp"
packageVersion("dplyr")
#[1] ‘0.7.2’
Notice how the summarised columns change depending on grouping and position of the grouping column.
Is this the same on other platforms? Is it a bug or a feature?
with version 0.7.5 this behavior can't be reproduced anymore:
library(dplyr)
mtcars %>% group_by(gear) %>% summarise_at(3:4, mean)
# # A tibble: 3 x 3
# gear disp hp
# <dbl> <dbl> <dbl>
# 1 3 326. 176.
# 2 4 123. 89.5
# 3 5 202. 196.
mtcars %>% group_by(cyl) %>% summarise_at(3:4, mean)
# # A tibble: 3 x 3
# cyl disp hp
# <dbl> <dbl> <dbl>
# 1 4 105. 82.6
# 2 6 183. 122.
# 3 8 353. 209.
#docendodiscimus thanks for pointing this out, because even if this feature was intentional, documentation doesn't explicitly explain this and in my case could be source of errors. Actually, this problem was solved before answering on the other question, and my comment above does it properly with the same logic.
At this moment, possible solution is to provide names instead of indexes. But one is still able to make it using indexes just by adding few symbols .vars = names(.)[3:4], like below:
mtcars %>%
group_by(cyl) %>%
summarise_at( .vars = colnames(.)[3:4] , mean)
mtcars %>%
group_by(cyl) %>%
summarise_at( .vars = names(.)[3:4] , mean)
## A tibble: 3 x 3
# cyl disp hp
# <dbl> <dbl> <dbl>
#1 4 105.1364 82.63636
#2 6 183.3143 122.28571
#3 8 353.1000 209.21429
In R, I would like to manipulate (say multiply) data.frame columns with appropriately named values stored in a vector (or data.frame, if that's easier).
Let's say, I want to first summarise the variables disp, hp, and wt from the mtcars dataset.
vars <- c("disp", "hp", "wt")
mtcars %>%
summarise_at(vars, funs(sum(.))
(throw a group_by(cyl) into the mix, or use mutate_at if you'd like to have more rows)
Now I'd like to multiply each of the resulting columns with a particular value, given by
multiplier <- c("disp" = 2, "hp" = 3, "wt" = 4)
Is it possible to refer to these within the summarise_at function?
The result should look like this (and I don't want to have to refer to the variable names directly while getting there):
disp hp wt
14766.2 14082 411.808
UPDATE:
Maybe my MWE was too minimal. Let's say I want to do the same operation with a data.frame grouped by cyl
mtcars %>%
group_by(cyl) %>%
summarise_at(vars, sum)
The result should thus be:
cyl disp hp wt
1 4 2313.0 2727 100.572
2 6 2566.4 2568 87.280
3 8 9886.8 8787 223.956
UPDATE 2:
Maybe I was not explicit enough here either, but the columns in the data.frame should be multiplied by the respective values in the vector (and only those columns mentioned in the vector), so e.g. disp should be multiplied by 2, hp by 3 and wt by 4, all other variables (e.g. cyl) should remain untouched by the multiplication.
We could also do this with map function from purrr
library(purrr)
mtcars %>%
summarise_at(vars, sum) %>%
map2_df(multiplier, `*`)
# disp hp wt
# <dbl> <dbl> <dbl>
# 1 14766.2 14082 411.808
For the updated question
d1 <- mtcars %>%
group_by(cyl) %>%
summarise_at(vars, sum)
d1 %>%
select(one_of(vars)) %>%
map2_df(multiplier[vars], ~ .x * .y) %>%
bind_cols(d1 %>% select(-one_of(vars)), .)
# cyl disp hp wt
# <dbl> <dbl> <dbl> <dbl>
#1 4 2313.0 2727 100.572
#2 6 2566.4 2568 87.280
#3 8 9886.8 8787 223.956
Or we can use gather/spread
library(tidyr)
mtcars %>%
group_by(cyl) %>%
summarise_at(vars, sum) %>%
gather(var, val, -cyl) %>%
mutate(val = val*multiplier[match(var, names(multiplier))]) %>%
spread(var, val)
# cyl disp hp wt
# <dbl> <dbl> <dbl> <dbl>
#1 4 2313.0 2727 100.572
#2 6 2566.4 2568 87.280
#3 8 9886.8 8787 223.956
I am not sure if you can do this in the summarise_at function, but this is close alternative...
library(dplyr)
library(purrr)
vars <- c("disp", "hp", "wt")
multiplier <- c("disp" = 2, "hp" = 3, "wt" = 4)
mtcars %>%
summarise_at(vars, sum) %>%
do(. * multiplier)
disp hp wt
1 14766.2 14082 411.808
****REDUX****
Include the grouping var cyl in the multiplier and set it equal to 1. #akrun's map2_df does the real work here.
vars <- c("disp", "hp", "wt")
multiplier <- c("cyl" = 1, "disp" = 2, "hp" = 3, "wt" = 4)
mtcars %>%
group_by(cyl) %>%
summarise_at(vars, sum) %>%
map2_df(multiplier, ~ .x * .y)
cyl disp hp wt
<dbl> <dbl> <dbl> <dbl>
1 4 2313.0 2727 100.572
2 6 2566.4 2568 87.280
3 8 9886.8 8787 223.956