Here an example of my data.frame:
df = read.table(text='colA colB colC
10 11 7
10 34 7
10 89 7
10 21 7
2 23 5
2 21 5
2 56 5
22 14 3
22 19 3
22 90 3
11 19 2
11 45 2
1 45 0
1 23 0
9 8 0
9 11 0
9 21 0', header = TRUE)
I need to group the rows by colA and colC and add a new column which states the sum of unique values based on colB.
In steps here what I need to do for this specific data.frame:
group rows with colA = 10 and 9, colA = 2 and 1, colA = 22 and colA = 11;
find the unique values of colB per each group;
add the unique values in a new col (newcolD).
Note that colC states the total number of observations for colA = 10 and 9, colA = 2 and 1, colA = 22 and colA = 11.
The data.frame needs to remain ordered decreasingly by colC.
My expected output is:
colA colB colC newcolD
10 11 7 5
10 34 7 5
10 89 7 5
10 21 7 5
9 8 0 5
9 11 0 5
9 21 0 5
2 23 5 4
2 21 5 4
2 56 5 4
1 45 0 4
1 23 0 4
22 14 3 3
22 19 3 3
22 90 3 3
11 19 2 2
11 45 2 2
To note that in df the colB duplicated values are: 11 and 21 for group 10 and 9, and 23 for group 2 and 1.
You can do that with dplyr. The trick is to create a new grouping column which groups consecutive values in colA. This is done with cumsum(c(1, diff(colA) < -1) in the example below.
df1 = read.table(text='colA colB colC
10 11 7
10 34 7
10 89 7
10 21 7
2 23 5
2 21 5
2 56 5
22 14 3
22 19 3
22 90 3
1 45 0
1 23 0
9 8 0
9 11 0
9 21 0', header = TRUE,stringsAsFactors=FALSE)
library(dplyr)
df1 %>%
arrange(desc(colA)) %>%
group_by(group_sequential = cumsum(c(1, diff(colA) < -1))) %>%
mutate(newcolD=n_distinct(colB))
colA colB colC group_sequential newcolD
<int> <int> <int> <dbl> <int>
1 22 14 3 1 3
2 22 19 3 1 3
3 22 90 3 1 3
4 10 11 7 2 5
5 10 34 7 2 5
6 10 89 7 2 5
7 10 21 7 2 5
8 9 8 0 2 5
9 9 11 0 2 5
10 9 21 0 2 5
11 2 23 5 3 4
12 2 21 5 3 4
13 2 56 5 3 4
14 1 45 0 3 4
15 1 23 0 3 4
EDIT FOR NEW DATA
With the data you added, we need to create a custom grouping. I use case_when in the example below. This matches the order you show in the desired output column. In the text, you wrote that you wanted the table to be sorted by colC. To do so, change the last line to arrange(desc(colC))
df1 = read.table(text='colA colB colC
10 11 7
10 34 7
10 89 7
10 21 7
2 23 5
2 21 5
2 56 5
22 14 3
22 19 3
22 90 3
11 19 2
11 45 2
1 45 0
1 23 0
9 8 0
9 11 0
9 21 0', header = TRUE,stringsAsFactors=FALSE)
library(dplyr)
df1 %>%
group_by(group_sequential = case_when(.$colA==10|.$colA==9~1,
.$colA==2|.$colA==1~2,
.$colA==22~3,
.$colA==11~4)) %>%
mutate(newcolD=n_distinct(colB)) %>%
arrange(desc(newcolD))
colA colB colC group_sequential newcolD
<int> <int> <int> <dbl> <int>
1 10 11 7 1 5
2 10 34 7 1 5
3 10 89 7 1 5
4 10 21 7 1 5
5 9 8 0 1 5
6 9 11 0 1 5
7 9 21 0 1 5
8 2 23 5 2 4
9 2 21 5 2 4
10 2 56 5 2 4
11 1 45 0 2 4
12 1 23 0 2 4
13 22 14 3 3 3
14 22 19 3 3 3
15 22 90 3 3 3
16 11 19 2 4 2
17 11 45 2 4 2
You're really not making it easy for us, reposting slight variations of the same question instead of updating the old one and presenting conditions that are vague and inconsistent with what the desired output implies. Anyhow, here is my attempt. This is more an answer to the second question you posted, as that was a bit more general in form.
It's a bit messy, it's pretty much a direct translation of your conditions into a for loop with some if statements. I chose to focus on your written conditions rather than the expected output as that was the easier one to understand. If you want a better answer, please consider cleaning up you question(s) considerably.
df1 <- read.table(text="
colA colB colC
10 11 7
10 34 7
10 89 7
10 21 7
2 23 5
2 21 5
2 56 5
22 14 3
22 19 3
22 90 3
11 19 2
11 45 2
1 45 0
1 23 0
9 8 0
9 11 0
9 21 0", header=TRUE)
df2 <- read.table(text="
colA colB colC
10 11 7
10 34 7
10 89 7
10 21 7
2 23 5
2 21 5
2 56 5
33 24 3
33 78 3
22 14 3
22 19 3
22 90 3
11 19 2
11 45 2
1 45 0
1 23 0
9 8 0
9 11 0
9 21 0
32 11 0", header=TRUE)
df <- df1
for (i in 1:nrow(df)) {
df$colD[i] <- ifelse(df$colC[i] == 0,
0,
length(unique(df$colA[1:i])))
if (any(df$colA[i]-1 == df$colA[1:i]) & df$colC[i] != 0) {
df$colD[i] <- df$colD[which(df$colA[i]-1 == df$colA[1:i])][1]
}
}
# colA colB colC colD
# 10 11 7 1
# 10 34 7 1
# 10 89 7 1
# 10 21 7 1
# 2 23 5 2
# 2 21 5 2
# 2 56 5 2
# 22 14 3 3
# 22 19 3 3
# 22 90 3 3
# 11 19 2 1
# 11 45 2 1
# 1 45 0 0
# 1 23 0 0
# 9 8 0 0
# 9 11 0 0
# 9 21 0 0
df <- df2
for (i in 1:nrow(df)) {
df$colD[i] <- ifelse(df$colC[i] == 0,
0,
length(unique(df$colA[1:i])))
if (any(df$colA[i]-1 == df$colA[1:i]) & df$colC[i] != 0) {
df$colD[i] <- df$colD[which(df$colA[i]-1 == df$colA[1:i])][1]
}
}
df
# colA colB colC colD
# 10 11 7 1
# 10 34 7 1
# 10 89 7 1
# 10 21 7 1
# 2 23 5 2
# 2 21 5 2
# 2 56 5 2
# 33 24 3 3
# 33 78 3 3
# 22 14 3 4
# 22 19 3 4
# 22 90 3 4
# 11 19 2 1
# 11 45 2 1
# 1 45 0 0
# 1 23 0 0
# 9 8 0 0
# 9 11 0 0
# 9 21 0 0
# 32 11 0 0
To also group the rows where colC is zero, it's sufficient to adjust the conditionals like this:
for (i in 1:nrow(df)) {
df$colD[i] <- length(unique(df$colA[1:i]))
if (any(df$colA[i]-1 == df$colA[1:i])) {
df$colD[i] <- df$colD[which(df$colA[i]-1 == df$colA[1:i])][1]
}
}
Related
I have a dataframe with 2 columns: time and day. there are 3 days and for each day, time runs from 1 to 12. I want to add new rows for each day with times: -2, 1 and 0. How do I do this?
I have tried using add_row and specifying the row number to add to, but this changes each time a new row is added making the process tedious. Thanks in advance
picture of the dataframe
We could use add_row
then slice the desired sequence
and bind all to a dataframe:
library(tibble)
library(dplyr)
df1 <- df %>%
add_row(time = -2:0, Day = c(1,1,1), .before = 1) %>%
slice(1:15)
df2 <- bind_rows(df1, df1, df1) %>%
mutate(Day = rep(row_number(), each=15, length.out = n()))
Output:
# A tibble: 45 x 2
time Day
<dbl> <int>
1 -2 1
2 -1 1
3 0 1
4 1 1
5 2 1
6 3 1
7 4 1
8 5 1
9 6 1
10 7 1
11 8 1
12 9 1
13 10 1
14 11 1
15 12 1
16 -2 2
17 -1 2
18 0 2
19 1 2
20 2 2
21 3 2
22 4 2
23 5 2
24 6 2
25 7 2
26 8 2
27 9 2
28 10 2
29 11 2
30 12 2
31 -2 3
32 -1 3
33 0 3
34 1 3
35 2 3
36 3 3
37 4 3
38 5 3
39 6 3
40 7 3
41 8 3
42 9 3
43 10 3
44 11 3
45 12 3
Here's a fast way to create the desired dataframe from scratch using expand.grid(), rather than adding individual rows:
df <- expand.grid(-2:12,1:3)
colnames(df) <- c("time","day")
Results:
df
time day
1 -2 1
2 -1 1
3 0 1
4 1 1
5 2 1
6 3 1
7 4 1
8 5 1
9 6 1
10 7 1
11 8 1
12 9 1
13 10 1
14 11 1
15 12 1
16 -2 2
17 -1 2
18 0 2
19 1 2
20 2 2
21 3 2
22 4 2
23 5 2
24 6 2
25 7 2
26 8 2
27 9 2
28 10 2
29 11 2
30 12 2
31 -2 3
32 -1 3
33 0 3
34 1 3
35 2 3
36 3 3
37 4 3
38 5 3
39 6 3
40 7 3
41 8 3
42 9 3
43 10 3
44 11 3
45 12 3
You can use tidyr::crossing
library(dplyr)
library(tidyr)
add_values <- c(-2, 1, 0)
crossing(time = add_values, Day = unique(day$Day)) %>%
bind_rows(day) %>%
arrange(Day, time)
# A tibble: 45 x 2
# time Day
# <dbl> <int>
# 1 -2 1
# 2 0 1
# 3 1 1
# 4 1 1
# 5 2 1
# 6 3 1
# 7 4 1
# 8 5 1
# 9 6 1
#10 7 1
# … with 35 more rows
If you meant -2, -1 and 0 you can also use complete.
tidyr::complete(day, Day, time = -2:0)
I would like to repeat the first two rows for each id two times. I don't know how to do that. Does anyone have a suggestion?
id <- rep(1:4,each=6)
scored <- c(12,13,NA,NA,NA,NA,14,20,NA,NA,NA,NA,23,56,NA,NA,NA,NA, 45,78,NA,NA,NA,NA)
df <- data.frame(id,scored)
df
id scored
1 1 12
2 1 13
3 1 NA
4 1 NA
5 1 NA
6 1 NA
7 2 14
8 2 20
9 2 NA
10 2 NA
11 2 NA
12 2 NA
13 3 23
14 3 56
15 3 NA
16 3 NA
17 3 NA
18 3 NA
19 4 45
20 4 78
21 4 NA
22 4 NA
23 4 NA
24 4 NA
>
I want it to look like:
df
id score
1 1 12
2 1 13
3 1 12
4 1 13
5 1 12
6 1 13
7 2 14
8 2 20
9 2 14
10 2 20
11 2 14
12 2 20
13 3 23
14 3 56
15 3 23
16 3 56
17 3 23
18 3 56
19 4 45
20 4 78
21 4 45
22 4 78
23 4 45
24 4 78
>
..................................................
..................................................
..................................................
We can do a group by rep on the non-NA elements of 'scored'
library(dplyr)
df %>%
group_by(id) %>%
mutate(scored = rep(scored[!is.na(scored)], length.out = n()))
# A tibble: 24 x 2
# Groups: id [4]
# id scored
# <int> <dbl>
# 1 1 12
# 2 1 13
# 3 1 12
# 4 1 13
# 5 1 12
# 6 1 13
# 7 2 14
# 8 2 20
# 9 2 14
#10 2 20
# … with 14 more rows
Suppose I have two data frames such like:
set.seed(123)
df0<-data.frame(pos=3:12,
count0=rbinom(10, 50, 0.5),
count2=rbinom(10, 20, 0.5))
df0
pos count0 count2
1 3 23 14
2 4 28 10
3 5 24 11
4 6 29 10
5 7 30 7
6 8 19 13
7 9 25 8
8 10 29 6
9 11 25 9
10 12 25 14
df1<-data.frame(start=c(4, 7, 11, 14),
end=c(6, 9, 12, 15),
cnv=c(1, 2, 3, 4))
df1
start end cnv
1 4 6 1
2 7 9 2
3 11 12 3
4 14 15 4
What I want is to merge df0 and df1 using the df0$pos with the ranges ofdf1$start and df1$end. If the pos falls into the range of start:end, fills in the cnv from df1 otherwise set cnv as zeros. An output from the above example would be:
pos count0 count2 cnv
1 3 23 14 0
2 4 28 10 1
3 5 24 11 1
4 6 29 10 1
5 7 30 7 2
6 8 19 13 2
7 9 25 8 2
8 10 29 6 0
9 11 25 9 3
10 12 25 14 3
We can use sapply to find if there is an index which is present in range else return 0.
df0$cnv <- sapply(df0$pos, function(x) {
inds <- x >= df1$start & x <= df1$end
if (any(inds))
df1$cnv[inds]
else 0
})
df0
# pos count0 count2 cnv
#1 3 23 14 0
#2 4 28 10 1
#3 5 24 11 1
#4 6 29 10 1
#5 7 30 7 2
#6 8 19 13 2
#7 9 25 8 2
#8 10 29 6 0
#9 11 25 9 3
#10 12 25 14 3
Suppose I have the next data frame.
table<-data.frame(group=c(0,5,10,15,20,25,30,35,40,0,5,10,15,20,25,30,35,40,0,5,10,15,20,25,30,35,40),plan=c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3),price=c(1,4,5,6,8,9,12,12,12,3,5,6,7,10,12,20,20,20,5,6,8,12,15,20,22,28,28))
group plan price
1 0 1 1
2 5 1 4
3 10 1 5
4 15 1 6
5 20 1 8
6 25 1 9
7 30 1 12
8 35 1 12
9 40 1 12
10 0 2 3
11 5 2 5
12 10 2 6
13 15 2 7
14 20 2 10
15 25 2 12
16 30 2 20
17 35 2 20
18 40 2 20
How can I get the values from the table up to the maximum price, without duplicates.
So the result would be:
group plan price
1 0 1 1
2 5 1 4
3 10 1 5
4 15 1 6
5 20 1 8
6 25 1 9
7 30 1 12
10 0 2 3
11 5 2 5
12 10 2 6
13 15 2 7
14 20 2 10
15 25 2 12
16 30 2 20
You can use slice in dplyr:
library(dplyr)
table %>%
group_by(plan) %>%
slice(1:which.max(price == max(price)))
which.max gives the index of the first occurrence of price == max(price). Using that, I can slice the data.frame to only keep rows for each plan up to the maximum price.
Result:
# A tibble: 22 x 3
# Groups: plan [3]
group plan price
<dbl> <dbl> <dbl>
1 0 1 1
2 5 1 4
3 10 1 5
4 15 1 6
5 20 1 8
6 25 1 9
7 30 1 12
8 0 2 3
9 5 2 5
10 10 2 6
# ... with 12 more rows
I've a data frame like this
w<-c(0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0)
i would like an index position starting after value 1.
output : NA,NA,NA,NA,NA,1,2,3,4,5,6,7,1,2,3,4,5,1,2,3,4,5,6,7,8,9
ideally applicable to a data frame.
Thanks
edit : w is a data frame,
roughly this function
m<-as.data.frame(w)
m[m!=1] <- row(m)[m!=1]
m
w
1 1
2 2
3 3
4 4
5 5
6 1
7 7
8 8
9 9
10 10
11 11
12 12
13 1
14 14
15 15
16 16
17 17
18 1
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
but with a return to 1 when value 1 is matching.
> m
w wanted
1 1 NA
2 2 NA
3 3 NA
4 4 NA
5 5 NA
6 1 1
7 7 2
8 8 3
9 9 4
10 10 5
11 11 6
12 12 7
13 1 1
14 14 2
15 15 3
16 16 4
17 17 5
18 1 1
19 19 2
20 20 3
21 21 4
22 22 5
23 23 6
24 24 7
25 25 8
26 26 9
Thanks
This assumes that the data is ordered in the way shown in example.
m$wanted <- with(m, ave(w, cumsum(c(TRUE,diff(w) <0)), FUN=seq_along))
m$wanted
#[1] 1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5 1 2 3 4 5 6 7 8 9
For the given data including repeated 1's and non-sequential input, the following works:
m[9,1] <- 100
m[3,1] <- 55
m[14,1] <- 60
m[14,1] <- 60
m[25,1] <- 1
m[19,1] <- 1
m$result <- 1:nrow(m) - which(m$w == 1)[cumsum(m$w == 1)] + 1
But if the data does not start on 1:
m[1,1] <- 2
Then this works:
firstone <- which(m$w == 1)[1]
subindex <- m[firstone:nrow(m),'w'] == 1
m$result <- c(rep(NA,firstone-1),1:length(subindex) - which(subindex)[cumsum(subindex)] + 1)