Context: I have fitted a glmnet to my data. But for operational reason we would actually like to have rule-set. So I then fitted a C5.0Rules model to the predicted class from my glmnet. i.e. the C5.0Rules is essentially approximating my glmnet. However, as a result, the C5.0Rules will report a very high confidence (and other performance metrics), because its target is easy. A natural approach to correct this is to re-estimate the confidence (and other performance metrics) using the real response, or another dataset. But I need to do this so that the model remembers this new confidence, so in the future, it will report the corrected confidence level along with the prediction. How do I do that?
Reproducible example:
library(glmnet)
library(C50)
library(caret)
data(churn)
## original glmnet
glmnet=train(churn~.-state-area_code-international_plan-voice_mail_plan,data=churnTrain,method="glmnet")
## only retain useful predictors
temp=varImp(glmnet)$importance
reducedVar=rownames(temp)[temp>0]
churnTrain2=data.frame(churnTrain[,match(reducedVar,colnames(churnTrain))],
prediction=fitted(glmnet))
## fit my C5.0 which approximates the glmnet prediction
C5=train(prediction~.,data=churnTrain2,method="C5.0Rules")
summary(C5) ## notice the high confidence and performance measure.
(An alternative approach I can think of is to get C5.0 to predict the predicted probability instead of class, but this turns it into a regression problem so I won't be able to use C5.0)
Related
I know when random forest (RF) is used for classification, the AUC normally is used to assess the quality of classification after applying it to test data. However,I have no clue the parameter to assess the quality of regression with RF. Now I want to use RF for the regression analysis, e.g. using a metrics with several hundreds samples and features to predict the concentration (numerical) of chemicals.
The first step is to run randomForest to build the regression model, with y as continuous numerics. How can I know whether the model is good or not, based on the Mean of squared residuals and % Var explained? Sometime my % Var explained is negative.
Afterwards, if the model is fine and/or used straightforward for test data, and I get the predicted values. Now how can I assess the predicted values good or not? I read online some calculated the accuracy (formula: 1-abs(predicted-actual)/actual), which also makes sense to me. However, I have many zero values in my actual dataset, are there any other solutions to assess the accuracy of predicted values?
Looking forward to any suggestions and thanks in advance.
The randomForest R package comes with an importance function which can used to determine the accuracy of a model. From the documentation:
importance(x, type=NULL, class=NULL, scale=TRUE, ...), where x is the output from your initial call to randomForest.
There are two types of importance measurements. One uses a permutation of out of bag data to test the accuracy of the model. The other uses the GINI index. Again, from the documentation:
Here are the definitions of the variable importance measures. The first measure is computed from permuting OOB data: For each tree, the prediction error on the out-of-bag portion of the data is recorded (error rate for classification, MSE for regression). Then the same is done after permuting each predictor variable. The difference between the two are then averaged over all trees, and normalized by the standard deviation of the differences. If the standard deviation of the differences is equal to 0 for a variable, the division is not done (but the average is almost always equal to 0 in that case).
The second measure is the total decrease in node impurities from splitting on the variable, averaged over all trees. For classification, the node impurity is measured by the Gini index. For regression, it is measured by residual sum of squares.
For further information, one more simple importance check you may do, really more of a sanity check than anything else, is to use something called the best constant model. The best constant model has a constant output, which is the mean of all responses in the test data set. The best constant model can be assumed to be the crudest model possible. You may compare the average performance of your random forest model against the best constant model, for a given set of test data. If the latter does not outperform the former by at least a factor of say 3-5, then your RF model is not very good.
Sorry for a quite stupid question. I am doing multiple comparisons of morphologic traits through correlations of bootstraped data. I'm curious if such multiple comparisons are impacting my level of inference, as well as the effect of the potential multicollinearity in my data. Perhaps, a reasonable option would be to use my bootstraps to generate maximum likelihood and then generate AICc-s to do comparisons with all of my parameters, to see what comes out as most important... the problem is that although I have (more or less clear) the way, I don't know how to implement this in R. Can anybody be so kind as to throw some light on this for me?
So far, here an example (using R language, but not my data):
library(boot)
data(iris)
head(iris)
# The function
pearson <- function(data, indices){
dt<-data[indices,]
c(
cor(dt[,1], dt[,2], method='p'),
median(dt[,1]),
median(dt[,2])
)
}
# One example: iris$Sepal.Length ~ iris$Sepal.Width
# I calculate the r-squared with 1000 replications
set.seed(12345)
dat <- iris[,c(1,2)]
dat <- na.omit(dat)
results <- boot(dat, statistic=pearson, R=1000)
# 95% CIs
boot.ci(results, type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
CALL :
boot.ci(boot.out = results, type = "bca")
Intervals :
Level BCa
95% (-0.2490, 0.0423 )
Calculations and Intervals on Original Scale
plot(results)
I have several more pairs of comparisons.
More of a Cross Validated question.
Multicollinearity shouldn't be a problem if you're just assessing the relationship between two variables (in your case correlation). Multicollinearity only becomes an issue when you fit a model, e.g. multiple regression, with several highly correlated predictors.
Multiple comparisons is always a problem though because it increases your type-I error. The way to address that is to do a multiple comparison correction, e.g. Bonferroni-Holm or the less conservative FDR. That can have its downsides though, especially if you have a lot of predictors and few observations - it may lower your power so much that you won't be able to find any effect, no matter how big it is.
In high-dimensional setting like this, your best bet may be with some sort of regularized regression method. With regularization, you put all predictors into your model at once, similarly to doing multiple regression, however, the trick is that you constrain the model so that all of the regression slopes are pulled towards zero, so that only the ones with the big effects "survive". The machine learning versions of regularized regression are called ridge, LASSO, and elastic net, and they can be fitted using the glmnet package. There is also Bayesian equivalents in so-called shrinkage priors, such as horseshoe (see e.g. https://avehtari.github.io/modelselection/regularizedhorseshoe_slides.pdf). You can fit Bayesian regularized regression using the brms package.
hybrid Gibbs models are flexible for fitting spatial pattern data, however, I am confused on how to get the confidence interval for the fitted model's estimate. for instance, I fitted a hybrid geyer model including a hardcore and a geyer saturation components, got the estimates:
Mo.hybrid<-Hybrid(H=Hardcore(), G=Geyer(81,1))
my.hybrid<-ppm(my.X~1,Mo.hybrid, correction="bord")
#beta = 1.629279e-06
#Hard core distance: 31.85573
#Fitted G interaction parameter gamma: 10.241487
what I interested is the gamma, which present the aggregation of points. obviously, the data X is a sample, i.e., of cells in a anatomical image. in order to report statistical result, a confidence interval for gamma is needed. however, i do not have replicates for the image data.
can i simlate 10 time of the fitted hybrid model, then refitted them to get confidence interval of the estimate? something like:
mo.Y<-rmhmodel(cif=c("hardcore","geyer"),
par=list(list(beta=1.629279e-06,hc=31.85573),
list(beta=1, gamma=10.241487,r=81,sat=1)), w=my.X)
Y1<-rmh(model=mo.Y, control = list(nrep=1e6,p=1, fixall=TRUE),
start=list(n.start=c(npoint(my.X))))
Y1.fit<-ppm(Y1~1, Mo.hybrid,rbord=0.1)
# simulate and fit Y2,Y3,...Y10 in same way
or:
Y10<-simulate(my.hybrid,nsim=10)
Y1.fit<-ppm(Y10[1]~1, Mo.hybrid,rbord=0.1)
# fit Y2,Y3,...Y10 in same way
certainly, the algorithms is different, the rmh() can control simulated intensity while the simulate() does not.
now the questions are:
is it right to use simualtion to get confidence interval of estimate?
or the fitted model can provide estimate interval that could be extracted?
if simulation is ok, which algorithm is better in my case?
The function confint calculates confidence intervals for the canonical parameters of a statistical model. It is defined in the standard stats package. You can apply it to fitted point process models in spatstat: in your example just type confint(my.hybrid).
You wanted a confidence interval for the non-canonical parameter gamma. The canonical parameter is theta = log(gamma) so if you do exp(confint(my.hybrid) you can read off the confidence interval for gamma.
Confidence intervals and other forms of inference for fitted point process models are discussed in detail in the spatstat book chapters 9, 10 and 13.
The confidence intervals described above are the asymptotic ones (based on the asymptotic variance matrix using the central limit theorem).
If you really wanted to estimate the variance-covariance matrix by simulation, it would be safer and easier to fit the model using method='ho' (which performs the simulation) and then apply confint as before (which would then use the variance of the simulations rather than the asymptotic variance).
rmh.ppm and simulate.ppm are essentially the same algorithm, apart from some book-keeping. The differences observed in your example occur because you passed different arguments. You could have passed the same arguments to either of these functions.
I am trying to use a generalized least square model (gls in R) on my panel data to deal with autocorrelation problem.
I do not want to have any lags for any variables.
I am trying to use Durbin-Watson test (dwtest in R) to check the autocorrelation problem from my generalized least square model (gls).
However, I find that the dwtest is not applicable over gls function while it is applicable to other functions such as lm.
Is there a way to check the autocorrelation problem from my gls model?
Durbin-Watson test is designed to check for presence of autocorrelation in standard least-squares models (such as one fitted by lm). If autocorrelation is detected, one can then capture it explicitly in the model using, for example, generalized least squares (gls in R). My understanding is that Durbin-Watson is not appropriate to then test for "goodness of fit" in the resulting models, as gls residuals may no longer follow the same distribution as residuals from the standard lm model. (Somebody with deeper knowledge of statistics should correct me, if I'm wrong).
With that said, function durbinWatsonTest from the car package will accept arbitrary residuals and return the associated test statistic. You can therefore do something like this:
v <- gls( ... )$residuals
attr(v,"std") <- NULL # get rid of the additional attribute
car::durbinWatsonTest( v )
Note that durbinWatsonTest will compute p-values only for lm models (likely due to the considerations described above), but you can estimate them empirically by permuting your data / residuals.
Are there any utilities/packages for showing various performance metrics of a regression model on some labeled test data? Basic stuff I can easily write like RMSE, R-squared, etc., but maybe with some extra utilities for visualization, or reporting the distribution of prediction confidence/variance, or other things I haven't thought of. This is usually reported in most training utilities (like caret's train), but only over the training data (AFAICT). Thanks in advance.
This question is really quite broad and should be focused a bit, but here's a small subset of functions written to work with linear models:
x <- rnorm(seq(1,100,1))
y <- rnorm(seq(1,100,1))
model <- lm(x~y)
#general summary
summary(model)
#Visualize some diagnostics
plot(model)
#Coefficient values
coef(model)
#Confidence intervals
confint(model)
#predict values
predict(model)
#predict new values
predict(model, newdata = data.frame(y = 1:10))
#Residuals
resid(model)
#Standardized residuals
rstandard(model)
#Studentized residuals
rstudent(model)
#AIC
AIC(model)
#BIC
BIC(model)
#Cook's distance
cooks.distance(model)
#DFFITS
dffits(model)
#lots of measures related to model fit
influence.measures(model)
Bootstrap confidence intervals for parameters of models can be computed using the recommended package boot. It is a very general package requiring you to write a simple wrapper function to return the parameter of interest, say fit the model with some supplied data and return one of the model coefficients, whilst it takes care of the rest, doing the sampling and computation of intervals etc.
Consider also the caret package, which is a wrapper around a large number of modelling functions, but also provides facilities to compare model performance using a range of metrics using an independent test set or a resampling of the training data (k-fold, bootstrap). caret is well documented and quite easy to use, though to get the best out of it, you do need to be familiar with the modelling function you want to employ.