Related
I've got some multivariate data of beauty vs ages. The ages range from 20-40 at intervals of 2 (20, 22, 24....40), and for each record of data, they are given an age and a beauty rating from 1-5. When I do boxplots of this data (ages across the X-axis, beauty ratings across the Y-axis), there are some outliers plotted outside the whiskers of each box.
I want to remove these outliers from the data frame itself, but I'm not sure how R calculates outliers for its box plots. Below is an example of what my data might look like.
Nobody has posted the simplest answer:
x[!x %in% boxplot.stats(x)$out]
Also see this: http://www.r-statistics.com/2011/01/how-to-label-all-the-outliers-in-a-boxplot/
OK, you should apply something like this to your dataset. Do not replace & save or you'll destroy your data! And, btw, you should (almost) never remove outliers from your data:
remove_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
H <- 1.5 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- NA
y[x > (qnt[2] + H)] <- NA
y
}
To see it in action:
set.seed(1)
x <- rnorm(100)
x <- c(-10, x, 10)
y <- remove_outliers(x)
## png()
par(mfrow = c(1, 2))
boxplot(x)
boxplot(y)
## dev.off()
And once again, you should never do this on your own, outliers are just meant to be! =)
EDIT: I added na.rm = TRUE as default.
EDIT2: Removed quantile function, added subscripting, hence made the function faster! =)
Use outline = FALSE as an option when you do the boxplot (read the help!).
> m <- c(rnorm(10),5,10)
> bp <- boxplot(m, outline = FALSE)
The boxplot function returns the values used to do the plotting (which is actually then done by bxp():
bstats <- boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
#need to "waste" this plot
bstats$out <- NULL
bstats$group <- NULL
bxp(bstats) # this will plot without any outlier points
I purposely did not answer the specific question because I consider it statistical malpractice to remove "outliers". I consider it acceptable practice to not plot them in a boxplot, but removing them just because they exceed some number of standard deviations or some number of inter-quartile widths is a systematic and unscientific mangling of the observational record.
I looked up for packages related to removing outliers, and found this package (surprisingly called "outliers"!): https://cran.r-project.org/web/packages/outliers/outliers.pdf
if you go through it you see different ways of removing outliers and among them I found rm.outlier most convenient one to use and as it says in the link above:
"If the outlier is detected and confirmed by statistical tests, this function can remove it or replace by
sample mean or median" and also here is the usage part from the same source:
"Usage
rm.outlier(x, fill = FALSE, median = FALSE, opposite = FALSE)
Arguments
x a dataset, most frequently a vector. If argument is a dataframe, then outlier is
removed from each column by sapply. The same behavior is applied by apply
when the matrix is given.
fill If set to TRUE, the median or mean is placed instead of outlier. Otherwise, the
outlier(s) is/are simply removed.
median If set to TRUE, median is used instead of mean in outlier replacement.
opposite if set to TRUE, gives opposite value (if largest value has maximum difference
from the mean, it gives smallest and vice versa)
"
x<-quantile(retentiondata$sum_dec_incr,c(0.01,0.99))
data_clean <- data[data$attribute >=x[1] & data$attribute<=x[2],]
I find this very easy to remove outliers. In the above example I am just extracting 2 percentile to 98 percentile of attribute values.
Wouldn't:
z <- df[df$x > quantile(df$x, .25) - 1.5*IQR(df$x) &
df$x < quantile(df$x, .75) + 1.5*IQR(df$x), ] #rows
accomplish this task quite easily?
Adding to #sefarkas' suggestion and using quantile as cut-offs, one could explore the following option:
newdata <- subset(mydata,!(mydata$var > quantile(mydata$var, probs=c(.01, .99))[2] | mydata$var < quantile(mydata$var, probs=c(.01, .99))[1]) )
This will remove the points points beyond the 99th quantile. Care should be taken like what aL3Xa was saying about keeping outliers. It should be removed only for getting an alternative conservative view of the data.
1 way to do that is
my.NEW.data.frame <- my.data.frame[-boxplot.stats(my.data.frame$my.column)$out, ]
or
my.high.value <- which(my.data.frame$age > 200 | my.data.frame$age < 0)
my.NEW.data.frame <- my.data.frame[-my.high.value, ]
Outliers are quite similar to peaks, so a peak detector can be useful for identifying outliers. The method described here has quite good performance using z-scores. The animation part way down the page illustrates the method signaling on outliers, or peaks.
Peaks are not always the same as outliers, but they're similar frequently.
An example is shown here:
This dataset is read from a sensor via serial communications. Occasional serial communication errors, sensor error or both lead to repeated, clearly erroneous data points. There is no statistical value in these point. They are arguably not outliers, they are errors. The z-score peak detector was able to signal on spurious data points and generated a clean resulting dataset:
It is more difficult to remove outliers with grouped data because there is a risk of removing data points that are considered outliers in one group but not in others.
Because no dataset is provided I assume that there is a dependent variable "attractiveness", and two independent variables "age" and "gender". The boxplot shown in the original post above is then created with boxplot(dat$attractiveness ~ dat$gender + dat$age). To remove outliers you can use the following approach:
# Create a separate dataset for each group
group_data = split(dat, list(dat$age, dat$gender))
# Remove outliers from each dataset
group_data = lapply(group_data, function(x) {
# Extract outlier values from boxplot
outliers = boxplot.stats(x$attractiveness)$out
# Remove outliers from data
return(subset(x, !x$attractiveness %in% outliers))
})
# Combine datasets into a single dataset
dat = do.call(rbind, group_data)
Try this. Feed your variable in the function and save the o/p in the variable which would contain removed outliers
outliers<-function(variable){
iqr<-IQR(variable)
q1<-as.numeric(quantile(variable,0.25))
q3<-as.numeric(quantile(variable,0.75))
mild_low<-q1-(1.5*iqr)
mild_high<-q3+(1.5*iqr)
new_variable<-variable[variable>mild_low & variable<mild_high]
return(new_variable)
}
I've got some multivariate data of beauty vs ages. The ages range from 20-40 at intervals of 2 (20, 22, 24....40), and for each record of data, they are given an age and a beauty rating from 1-5. When I do boxplots of this data (ages across the X-axis, beauty ratings across the Y-axis), there are some outliers plotted outside the whiskers of each box.
I want to remove these outliers from the data frame itself, but I'm not sure how R calculates outliers for its box plots. Below is an example of what my data might look like.
Nobody has posted the simplest answer:
x[!x %in% boxplot.stats(x)$out]
Also see this: http://www.r-statistics.com/2011/01/how-to-label-all-the-outliers-in-a-boxplot/
OK, you should apply something like this to your dataset. Do not replace & save or you'll destroy your data! And, btw, you should (almost) never remove outliers from your data:
remove_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
H <- 1.5 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- NA
y[x > (qnt[2] + H)] <- NA
y
}
To see it in action:
set.seed(1)
x <- rnorm(100)
x <- c(-10, x, 10)
y <- remove_outliers(x)
## png()
par(mfrow = c(1, 2))
boxplot(x)
boxplot(y)
## dev.off()
And once again, you should never do this on your own, outliers are just meant to be! =)
EDIT: I added na.rm = TRUE as default.
EDIT2: Removed quantile function, added subscripting, hence made the function faster! =)
Use outline = FALSE as an option when you do the boxplot (read the help!).
> m <- c(rnorm(10),5,10)
> bp <- boxplot(m, outline = FALSE)
The boxplot function returns the values used to do the plotting (which is actually then done by bxp():
bstats <- boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
#need to "waste" this plot
bstats$out <- NULL
bstats$group <- NULL
bxp(bstats) # this will plot without any outlier points
I purposely did not answer the specific question because I consider it statistical malpractice to remove "outliers". I consider it acceptable practice to not plot them in a boxplot, but removing them just because they exceed some number of standard deviations or some number of inter-quartile widths is a systematic and unscientific mangling of the observational record.
I looked up for packages related to removing outliers, and found this package (surprisingly called "outliers"!): https://cran.r-project.org/web/packages/outliers/outliers.pdf
if you go through it you see different ways of removing outliers and among them I found rm.outlier most convenient one to use and as it says in the link above:
"If the outlier is detected and confirmed by statistical tests, this function can remove it or replace by
sample mean or median" and also here is the usage part from the same source:
"Usage
rm.outlier(x, fill = FALSE, median = FALSE, opposite = FALSE)
Arguments
x a dataset, most frequently a vector. If argument is a dataframe, then outlier is
removed from each column by sapply. The same behavior is applied by apply
when the matrix is given.
fill If set to TRUE, the median or mean is placed instead of outlier. Otherwise, the
outlier(s) is/are simply removed.
median If set to TRUE, median is used instead of mean in outlier replacement.
opposite if set to TRUE, gives opposite value (if largest value has maximum difference
from the mean, it gives smallest and vice versa)
"
x<-quantile(retentiondata$sum_dec_incr,c(0.01,0.99))
data_clean <- data[data$attribute >=x[1] & data$attribute<=x[2],]
I find this very easy to remove outliers. In the above example I am just extracting 2 percentile to 98 percentile of attribute values.
Wouldn't:
z <- df[df$x > quantile(df$x, .25) - 1.5*IQR(df$x) &
df$x < quantile(df$x, .75) + 1.5*IQR(df$x), ] #rows
accomplish this task quite easily?
Adding to #sefarkas' suggestion and using quantile as cut-offs, one could explore the following option:
newdata <- subset(mydata,!(mydata$var > quantile(mydata$var, probs=c(.01, .99))[2] | mydata$var < quantile(mydata$var, probs=c(.01, .99))[1]) )
This will remove the points points beyond the 99th quantile. Care should be taken like what aL3Xa was saying about keeping outliers. It should be removed only for getting an alternative conservative view of the data.
1 way to do that is
my.NEW.data.frame <- my.data.frame[-boxplot.stats(my.data.frame$my.column)$out, ]
or
my.high.value <- which(my.data.frame$age > 200 | my.data.frame$age < 0)
my.NEW.data.frame <- my.data.frame[-my.high.value, ]
Outliers are quite similar to peaks, so a peak detector can be useful for identifying outliers. The method described here has quite good performance using z-scores. The animation part way down the page illustrates the method signaling on outliers, or peaks.
Peaks are not always the same as outliers, but they're similar frequently.
An example is shown here:
This dataset is read from a sensor via serial communications. Occasional serial communication errors, sensor error or both lead to repeated, clearly erroneous data points. There is no statistical value in these point. They are arguably not outliers, they are errors. The z-score peak detector was able to signal on spurious data points and generated a clean resulting dataset:
It is more difficult to remove outliers with grouped data because there is a risk of removing data points that are considered outliers in one group but not in others.
Because no dataset is provided I assume that there is a dependent variable "attractiveness", and two independent variables "age" and "gender". The boxplot shown in the original post above is then created with boxplot(dat$attractiveness ~ dat$gender + dat$age). To remove outliers you can use the following approach:
# Create a separate dataset for each group
group_data = split(dat, list(dat$age, dat$gender))
# Remove outliers from each dataset
group_data = lapply(group_data, function(x) {
# Extract outlier values from boxplot
outliers = boxplot.stats(x$attractiveness)$out
# Remove outliers from data
return(subset(x, !x$attractiveness %in% outliers))
})
# Combine datasets into a single dataset
dat = do.call(rbind, group_data)
Try this. Feed your variable in the function and save the o/p in the variable which would contain removed outliers
outliers<-function(variable){
iqr<-IQR(variable)
q1<-as.numeric(quantile(variable,0.25))
q3<-as.numeric(quantile(variable,0.75))
mild_low<-q1-(1.5*iqr)
mild_high<-q3+(1.5*iqr)
new_variable<-variable[variable>mild_low & variable<mild_high]
return(new_variable)
}
Good day,
I have tried to figure this out, but I really can't!! I'll supply an example of my data in R:
x <- c(36,71,106,142,175,210,246,288,357)
y <- c(19.6,20.9,19.8,21.2,17.6,23.6,20.4,18.9,17.2)
table <- data.frame(x,y)
library(nlmrt)
curve <- "y~ a + b*exp(-0.01*x) + (c*x)"
ones <- list(a=1, b=1, c=1)
Then I use wrapnls to fit the curve and to find a solution:
solve <- wrapnls(curve, data=table, start=ones, trace=FALSE)
This is all fine and works for me. Then, using the following, I obtain a prediction of y for each of the x values:
predict(solve)
But how do I find the prediction of y for new x values? For instance:
new_x <- c(10, 30, 50, 70)
I have tried:
predict(solve, new_x)
predict(solve, 10)
It just gives the same output as:
predict(solve)
I really hope someone can help! I know if I use the values of 'solve' for parameters a, b, and c and substitute them into the curve formula with the desired x value that I would be able to this, but I'm wondering if there is a simpler option. Also, without plotting the data first.
Predict requires the new data to be a data.frame with column names that match the variable names used in your model (whether your model has one or many variables). All you need to do is use
predict(solve, data.frame(x=new_x))
# [1] 18.30066 19.21600 19.88409 20.34973
And that will give you a prediction for just those 4 values. It's somewhat unfortunate that any mistakes in specifying the new data results in the fitted values for the original model being returned. An error message probably would have been more useful, but oh well.
I'm using R.
My dataset has about 40 different Variables/Vektors and each has about 80 entries. I'm trying to find significant correlations, that means I want to pick one variable and let R calculate all the correlations of that variable to the other 39 variables.
I tried to do this by using a linear modell with one explaining variable that means: Y=a*X+b.
Then the lm() command gives me an estimator for a and p-value of that estimator for a. I would then go on and use one of the other variables I have for X and try again until I find a p-value thats really small.
I'm sure this is a common problem, is there some sort of package or function that can try all these possibilities (Brute force),show them and then maybe even sorts them by p-value?
You can use the function rcorr from the package Hmisc.
Using the same demo data from Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Then:
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
To access the p-values:
correlations$P
To visualize you can use the package corrgram
library(corrgram)
corrgram(the_data)
Which will produce:
In order to print a list of the significant correlations (p < 0.05), you can use the following.
Using the same demo data from #Richie:
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
Install Hmisc
install.packages("Hmisc")
Import library and find the correlations (#Carlos)
library(Hmisc)
correlations <- rcorr(as.matrix(the_data))
Loop over the values printing the significant correlations
for (i in 1:m){
for (j in 1:m){
if ( !is.na(correlations$P[i,j])){
if ( correlations$P[i,j] < 0.05 ) {
print(paste(rownames(correlations$P)[i], "-" , colnames(correlations$P)[j], ": ", correlations$P[i,j]))
}
}
}
}
Warning
You should not use this for drawing any serious conclusion; only useful for some exploratory analysis and formulate hypothesis. If you run enough tests, you increase the probability of finding some significant p-values by random chance: https://www.xkcd.com/882/. There are statistical methods that are more suitable for this and that do do some adjustments to compensate for running multiple tests, e.g. https://en.wikipedia.org/wiki/Bonferroni_correction.
Here's some sample data for reproducibility.
m <- 40
n <- 80
the_data <- as.data.frame(replicate(m, runif(n), simplify = FALSE))
colnames(the_data) <- c("y", paste0("x", seq_len(m - 1)))
You can calculate the correlation between two columns using cor. This code loops over all columns except the first one (which contains our response), and calculates the correlation between that column and the first column.
correlations <- vapply(
the_data[, -1],
function(x)
{
cor(the_data[, 1], x)
},
numeric(1)
)
You can then find the column with the largest magnitude of correlation with y using:
correlations[which.max(abs(correlations))]
So knowing which variables are correlated which which other variables can be interesting, but please don't draw any big conclusions from this knowledge. You need to have a proper think about what you are trying to understand, and which techniques you need to use. The folks over at Cross Validated can help.
If you are trying to predict y using only one variable than you have to take the one that is mainly correlated with y.
To do this just use the command which.max(abs(cor(x,y))). If you want to use more than one variable in your model then you have to consider something like the lasso estimator
One option is to run a correlation matrix:
cor_result=cor(data)
write.csv(cor_result, file="cor_result.csv")
This correlates all the variables in the file against each other and outputs a matrix.
I've got some multivariate data of beauty vs ages. The ages range from 20-40 at intervals of 2 (20, 22, 24....40), and for each record of data, they are given an age and a beauty rating from 1-5. When I do boxplots of this data (ages across the X-axis, beauty ratings across the Y-axis), there are some outliers plotted outside the whiskers of each box.
I want to remove these outliers from the data frame itself, but I'm not sure how R calculates outliers for its box plots. Below is an example of what my data might look like.
Nobody has posted the simplest answer:
x[!x %in% boxplot.stats(x)$out]
Also see this: http://www.r-statistics.com/2011/01/how-to-label-all-the-outliers-in-a-boxplot/
OK, you should apply something like this to your dataset. Do not replace & save or you'll destroy your data! And, btw, you should (almost) never remove outliers from your data:
remove_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
H <- 1.5 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- NA
y[x > (qnt[2] + H)] <- NA
y
}
To see it in action:
set.seed(1)
x <- rnorm(100)
x <- c(-10, x, 10)
y <- remove_outliers(x)
## png()
par(mfrow = c(1, 2))
boxplot(x)
boxplot(y)
## dev.off()
And once again, you should never do this on your own, outliers are just meant to be! =)
EDIT: I added na.rm = TRUE as default.
EDIT2: Removed quantile function, added subscripting, hence made the function faster! =)
Use outline = FALSE as an option when you do the boxplot (read the help!).
> m <- c(rnorm(10),5,10)
> bp <- boxplot(m, outline = FALSE)
The boxplot function returns the values used to do the plotting (which is actually then done by bxp():
bstats <- boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
#need to "waste" this plot
bstats$out <- NULL
bstats$group <- NULL
bxp(bstats) # this will plot without any outlier points
I purposely did not answer the specific question because I consider it statistical malpractice to remove "outliers". I consider it acceptable practice to not plot them in a boxplot, but removing them just because they exceed some number of standard deviations or some number of inter-quartile widths is a systematic and unscientific mangling of the observational record.
I looked up for packages related to removing outliers, and found this package (surprisingly called "outliers"!): https://cran.r-project.org/web/packages/outliers/outliers.pdf
if you go through it you see different ways of removing outliers and among them I found rm.outlier most convenient one to use and as it says in the link above:
"If the outlier is detected and confirmed by statistical tests, this function can remove it or replace by
sample mean or median" and also here is the usage part from the same source:
"Usage
rm.outlier(x, fill = FALSE, median = FALSE, opposite = FALSE)
Arguments
x a dataset, most frequently a vector. If argument is a dataframe, then outlier is
removed from each column by sapply. The same behavior is applied by apply
when the matrix is given.
fill If set to TRUE, the median or mean is placed instead of outlier. Otherwise, the
outlier(s) is/are simply removed.
median If set to TRUE, median is used instead of mean in outlier replacement.
opposite if set to TRUE, gives opposite value (if largest value has maximum difference
from the mean, it gives smallest and vice versa)
"
x<-quantile(retentiondata$sum_dec_incr,c(0.01,0.99))
data_clean <- data[data$attribute >=x[1] & data$attribute<=x[2],]
I find this very easy to remove outliers. In the above example I am just extracting 2 percentile to 98 percentile of attribute values.
Wouldn't:
z <- df[df$x > quantile(df$x, .25) - 1.5*IQR(df$x) &
df$x < quantile(df$x, .75) + 1.5*IQR(df$x), ] #rows
accomplish this task quite easily?
Adding to #sefarkas' suggestion and using quantile as cut-offs, one could explore the following option:
newdata <- subset(mydata,!(mydata$var > quantile(mydata$var, probs=c(.01, .99))[2] | mydata$var < quantile(mydata$var, probs=c(.01, .99))[1]) )
This will remove the points points beyond the 99th quantile. Care should be taken like what aL3Xa was saying about keeping outliers. It should be removed only for getting an alternative conservative view of the data.
1 way to do that is
my.NEW.data.frame <- my.data.frame[-boxplot.stats(my.data.frame$my.column)$out, ]
or
my.high.value <- which(my.data.frame$age > 200 | my.data.frame$age < 0)
my.NEW.data.frame <- my.data.frame[-my.high.value, ]
Outliers are quite similar to peaks, so a peak detector can be useful for identifying outliers. The method described here has quite good performance using z-scores. The animation part way down the page illustrates the method signaling on outliers, or peaks.
Peaks are not always the same as outliers, but they're similar frequently.
An example is shown here:
This dataset is read from a sensor via serial communications. Occasional serial communication errors, sensor error or both lead to repeated, clearly erroneous data points. There is no statistical value in these point. They are arguably not outliers, they are errors. The z-score peak detector was able to signal on spurious data points and generated a clean resulting dataset:
It is more difficult to remove outliers with grouped data because there is a risk of removing data points that are considered outliers in one group but not in others.
Because no dataset is provided I assume that there is a dependent variable "attractiveness", and two independent variables "age" and "gender". The boxplot shown in the original post above is then created with boxplot(dat$attractiveness ~ dat$gender + dat$age). To remove outliers you can use the following approach:
# Create a separate dataset for each group
group_data = split(dat, list(dat$age, dat$gender))
# Remove outliers from each dataset
group_data = lapply(group_data, function(x) {
# Extract outlier values from boxplot
outliers = boxplot.stats(x$attractiveness)$out
# Remove outliers from data
return(subset(x, !x$attractiveness %in% outliers))
})
# Combine datasets into a single dataset
dat = do.call(rbind, group_data)
Try this. Feed your variable in the function and save the o/p in the variable which would contain removed outliers
outliers<-function(variable){
iqr<-IQR(variable)
q1<-as.numeric(quantile(variable,0.25))
q3<-as.numeric(quantile(variable,0.75))
mild_low<-q1-(1.5*iqr)
mild_high<-q3+(1.5*iqr)
new_variable<-variable[variable>mild_low & variable<mild_high]
return(new_variable)
}