I'm doing some regression using the geepack package and want to use multiple imputation to deal with missing values. The pool() command in mi doesn't work for my GEE, so I have to export (is that right?) so that I can use the data in geepack.
The complete() function produces each iteration, but not the pooled estimates.
Is there a way to produce a data frame with the pooled estimates?
The complete function in the mi package produces a list of m data.frames. You can call gee on each element of that list for the data argument and then use Rubin's rules to obtain pooled estimates.
There are a couple if packages that implement Rubin's rules in R (e.g., mi, mice, mitools, and mitml). The problem is that these implementation require that the functions for fitting statistical models have working methods for coef() and vcov() defined.
The geeglm() function, however, does not define vcov(), and standard implementations will not work. To remedy that situation, it is easiest to just define the missing method for the GEE. Below is an example using the mitml package and one of the example data sets provided with geepack.
library(geepack)
library(mitml)
# example data
data(dietox)
# example imputation
fml <- Feed + Weight ~ 1 + Time + (1|Pig)
imp <- panImpute(data=dietox, formula=fml, n.burn=5000, n.iter=500)
implist <- mitmlComplete(imp, "all")
# fit GEE
fit <- with(implist, geeglm(Weight ~ 1 + Time + Feed, id=Pig))
# define missing vcov() function for geeglm-objects
vcov.geeglm <- function(x) summary(x)$cov.scaled
# combine estimates using Rubin's rules
testEstimates(fit)
Related
I want to implement a "combine then predict" approach for a logistic regression model in R. These are the steps that I already developed, using a fictive example from pima data from faraway package. Step 4 is where my issue occurs.
#-----------activate packages and download data-------------##
library(faraway)
library(mice)
library(margins)
data(pima)
Apply a multiple imputation by chained equation method using MICE package. For the sake of the example, I previously randomly assign missing values to pima dataset using the ampute function from the same package. A number of 20 imputated datasets were generated by setting "m" argument to 20.
#-------------------assign missing values to data-----------------#
result<-ampute(pima)
result<-result$amp
#-------------------multiple imputation by chained equation--------#
#generate 20 imputated datasets
newresult<-mice(result,m=20)
Run a logistic regression on each of the 20 imputated datasets. Inspecting convergence, original and imputated data distributions is skipped for the sake of the example. "Test" variable is set as the binary dependent variable.
#run a logistic regression on each of the 20 imputated datasets
model<-with(newresult,glm(test~pregnant+glucose+diastolic+triceps+age+bmi,family = binomial(link="logit")))
Combine the regression estimations from the 20 imputation models to create a single pooled imputation model.
#pooled regressions
summary(pool(model))
Generate predictions from the pooled imputation model using prediction function from the margins package. This specific function allows to generate predicted values fixed at a specific level (for factors) or values (for continuous variables). In this example, I could chose to generate new predicted probabilites, i.e. P(Y=1), while setting pregnant variable (# of pregnancies) at 3. In other words, it would give me the distribution of the issue in the contra-factual situation where all the observations are set at 3 for this variable. Normally, I would just give my model to the x argument of the prediction function (as below), but in the case of a pooled imputation model with MICE, the object class is a mipo and not a glm object.
#-------------------marginal standardization--------#
prediction(model,at=list(pregnant=3))
This throws the following error:
Error in check_at_names(names(data), at) :
Unrecognized variable name in 'at': (1) <empty>p<empty>r<empty>e<empty>g<empty>n<empty>a<empty>n<empty>t<empty
I thought of two solutions:
a) changing the class object to make it fit prediction()'s requirements
b) extracting pooled imputation regression parameters and reconstruct it in a list that would fit prediction()'s requirements
However, I'm not sure how to achieve this and would enjoy any advice that could help me getting closer to obtaining predictions from a pooled imputation model in R.
You might be interested in knowing that the pima data set is a bit problematic (the Native Americans from whom the data was collected don't want it used for research any more ...)
In addition to #Vincent's comment about marginaleffects, I found this GitHub issue discussing mice support for the emmeans package:
library(emmeans)
emmeans(model, ~pregnant, at=list(pregnant=3))
marginaleffects works in a different way. (Warning, I haven't really looked at the results to make sure they make sense ...)
library(marginaleffects)
fit_reg <- function(dat) {
mod <- glm(test~pregnant+glucose+diastolic+
triceps+age+bmi,
data = dat, family = binomial)
out <- predictions(mod, newdata = datagrid(pregnant=3))
return(out)
}
dat_mice <- mice(pima, m = 20, printFlag = FALSE, .Random.seed = 1024)
dat_mice <- complete(dat_mice, "all")
mod_imputation <- lapply(dat_mice, fit_reg)
mod_imputation <- pool(mod_imputation)
I replaced missing data by using MICE package.
I realized the linear equation modelling by using : summary(pool(with(imputed_base_finale,lm(....)))
I tried to obtain standardized coefficients by using the function lm.beta, however it doesn't work.
lm.beta (with(imputed_base_finale,lm(...)))
Error in lm.beta(with(imputed_base_finale, lm(...)))
object has to be of class lm
How can I obtain these standardized coefficients ?
Thank you for you help!!!
lm.scale works on lm objects and adds standardized coefficients. This however was not build to work on mira objects.
Have you considered using scale on the data before you build a model, effectively getting standardized coefficients?
Instead of standardizing the data before imputation, you could also apply it with post processing during imputation.
I am not sure which of these would be the most robust option.
require(mice)
# non-standardized
imp <- mice(nhanes2)
pool(with(imp,lm(chl ~ bmi)))
# standardized
imp_scale <- mice(scale(nhanes2[,c('bmi','chl')]))
pool(with(imp_scale,lm(chl ~ bmi)))
I was wondering if it is possible to predict with the plm function from the plm package in R for a new dataset of predicting variables. I have create a model object using:
model <- plm(formula, data, index, model = 'pooling')
Now I'm hoping to predict a dependent variable from a new dataset which has not been used in the estimation of the model. I can do it through using the coefficients from the model object like this:
col_idx <- c(...)
df <- cbind(rep(1, nrow(df)), df[(1:ncol(df))[-col_idx]])
fitted_values <- as.matrix(df) %*% as.matrix(model_object$coefficients)
Such that I first define index columns used in the model and dropped columns due to collinearity in col_idx and subsequently construct a matrix of data which needs to be multiplied by the coefficients from the model. However, I can see errors occuring much easier with the manual dropping of columns.
A function designed to do this would make the code a lot more readable I guess. I have also found the pmodel.response() function but I can only get this to work for the dataset which has been used in predicting the actual model object.
Any help would be appreciated!
I wrote a function (predict.out.plm) to do out of sample predictions after estimating First Differences or Fixed Effects models with plm.
The function is posted here:
https://stackoverflow.com/a/44185441/2409896
Is there a way to get R to run all possible models (with all combinations of variables in a dataset) to produce the best/most accurate linear model and then output that model?
I feel like there is a way to do this, but I am having a hard time finding the information.
There are numerous ways this could be achieved, but for a simple way of doing this I would suggest that you have a look at the glmulti package, which is described in detail in this paper:
glmulti: An R Package for Easy Automated Model Selection with (Generalized) Linear Models
Alternatively, very simple example of the model selection as available on the Quick-R website:
# Stepwise Regression
library(MASS)
fit <- lm(y~x1+x2+x3,data=mydata)
step <- stepAIC(fit, direction="both")
step$anova # display results
Or to simplify even more, you can do more manual model comparison:
fit1 <- lm(y ~ x1 + x2 + x3 + x4, data=mydata)
fit2 <- lm(y ~ x1 + x2, data=mydata)
anova(fit1, fit2)
This should get you started. Although you should read my comment from above. This should build you a model based on all the data in your dataset and then compare all of the models with AIC and BIC.
# create a NULL vector called model so we have something to add our layers to
model=NULL
# create a vector of the dataframe column names used to build the formula
vars = names(data)
# remove variable names you don’t want to use (at least
# the response variable (if its in the first column)
vars = vars[-1]
# the combn function will run every different combination of variables and then run the glm
for(i in 1:length(vars)){
xx = combn(vars,i)
if(is.null(dim(xx))){
fla = paste("y ~", paste(xx, collapse="+"))
model[[length(model)+1]]=glm(as.formula(fla),data=data)
} else {
for(j in 1:dim(xx)[2]){
fla = paste("y ~", paste(xx[1:dim(xx)[1],j], collapse="+"))
model[[length(model)+1]]=glm(as.formula(fla),data=data)
}
}
}
# see how many models were build using the loop above
length(model)
# create a vector to extract AIC and BIC values from the model variable
AICs = NULL
BICs = NULL
for(i in 1:length(model)){
AICs[i] = AIC(model[[i]])
BICs[i] = BIC(model[[i]])
}
#see which models were chosen as best by both methods
which(AICs==min(AICs))
which(BICs==min(BICs))
I ended up running forwards, backwards, and stepwise procedures on data to select models and then comparing them based on AIC, BIC, and adj. R-sq. This method seemed most efficient. However, when I received the actual data to be used (the program I was writing was for business purposes), I was told to only model each explanatory variable against the response, so I was able to just call lm(response ~ explanatory) for each variable in question, since the analysis we ended up using it for wasn't worried about how they interacted with each other.
This is a very old question, but for those who are still encountering this discussion - the package olsrr and specifically the function ols_step_all_possible exhaustively produces an ols model for all possible subsets of variables, based on an lm object (such that by feeding it with a full model you will get all possible combinations), and returns a dataframe with R squared, adjusted R squared, aic, bic, etc. for all the models. This is very helpful in finding the best predictors but it is also very much time consuming.
see https://olsrr.rsquaredacademy.com/reference/ols_step_all_possible.html
I do not recommend just "cherry picking" the best performing model, rather I would actually look at the output and choose carefully for the most reasonable outcome. In case you would want to immediately get the best performing model (by some criteria, say number of predictors and R2) you may write a function that saves the dataframe, arranges it by number of predictors and orders it by descending R2 and spits out the top result.
The dredge() function in R also accomplishes this.
I am running logistic regressions using R right now, but I cannot seem to get many useful model fit statistics. I am looking for metrics similar to SAS:
http://www.ats.ucla.edu/stat/sas/output/sas_logit_output.htm
Does anyone know how (or what packages) I can use to extract these stats?
Thanks
Here's a Poisson regression example:
## from ?glm:
d.AD <- data.frame(counts=c(18,17,15,20,10,20,25,13,12),
outcome=gl(3,1,9),
treatment=gl(3,3))
glm.D93 <- glm(counts ~ outcome + treatment,data = d.AD, family=poisson())
Now define a function to fit an intercept-only model with the same response, family, etc., compute summary statistics, and combine them into a table (matrix). The formula .~1 in the update command below means "refit the model with the same response variable [denoted by the dot on the LHS of the tilde] but with only an intercept term [denoted by the 1 on the RHS of the tilde]"
glmsumfun <- function(model) {
glm0 <- update(model,.~1) ## refit with intercept only
## apply built-in logLik (log-likelihood), AIC,
## BIC (Bayesian/Schwarz Information Criterion) functions
## to models with and without intercept ('model' and 'glm0');
## combine the results in a two-column matrix with appropriate
## row and column names
matrix(c(logLik(glm.D93),BIC(glm.D93),AIC(glm.D93),
logLik(glm0),BIC(glm0),AIC(glm0)),ncol=2,
dimnames=list(c("logLik","SC","AIC"),c("full","intercept_only")))
}
Now apply the function:
glmsumfun(glm.D93)
The results:
full intercept_only
logLik -23.38066 -26.10681
SC 57.74744 54.41085
AIC 56.76132 54.21362
EDIT:
anova(glm.D93,test="Chisq") gives a sequential analysis of deviance table containing df, deviance (=-2 log likelihood), residual df, residual deviance, and the likelihood ratio test (chi-squared test) p-value.
drop1(glm.D93) gives a table with the AIC values (df, deviances, etc.) for each single-term deletion; drop1(glm.D93,test="Chisq") additionally gives the LRT test p value.
Certainly glm with a family="binomial" argument is the function most commonly used for logistic regression. The default handling of contrasts of factors is different. R uses treatment contrasts and SAS (I think) uses sum contrasts. You can look these technical issues up on R-help. They have been discussed many, many times over the last ten+ years.
I see Greg Snow mentioned lrm in 'rms'. It has the advantage of being supported by several other functions in the 'rms' suite of methods. I would use it , too, but learning the rms package may take some additional time. I didn't see an option that would create SAS-like output.
If you want to compare the packages on similar problems that UCLA StatComputing pages have another resource: http://www.ats.ucla.edu/stat/r/dae/default.htm , where a large number of methods are exemplified in SPSS, SAS, Stata and R.
Using the lrm function in the rms package may give you the output that you are looking for.