R: assign a value in a upper-level function - r

Probably a simple question, but I can't figure it out myself, working with environments and scoping still confuse me.
I have a function, nested in a function. What I am trying to achieve is to assign a value (using the assign function, I have read that using <<- can be dangerous) from the nested function in its parent and use it there:
myfun <- function(m) {
m*3*y
f1 <- function() {
assign(x = y, value = 2, envir = parent.frame())
}
f1()
}
However, error is returned:
Error in myfun(m = 5) : object 'y' not found
In addition, what if I have a function, nested in a function, nested in a function, nested in a function, etc., and I want to choose in which upper level to assign the value from the lowest level function?

Two points. You need to run f1() before you compute with y. x argument of assign function takes character.
myfun <- function(m) {
f1 <- function() {
assign(x = "y", value = 2, envir = parent.frame())
}
f1()
m*3*y
}
myfun(5)

Related

R: cannot make use of `data.table`'s environment, base environment and global environment all at once

Consider the dummy example below: I want to run a model on a range of subsets of the data.table in a loop, and want to specify the exact line to iterate as a string (with an iterator i)
library(data.table)
DT <- data.table(X = runif(100), Y = runif(100))
f1 <- function(code) {
for (i in c(20,30,50)) {
eval(parse(text = code))
}
}
f1("lm(X ~ Y, data = DT[sample(.N, i)])")
Obviously this doesn't return any output as lm() is merely evaluated in the background 3 times. The actual use case is more convoluted, but this is meant to be a theoretical simplification of it.
The example above, nonetheless, works fine. The problems begin when the function f1 is included in the package, instead of being defined in the global environment. If I'm not mistaken, in this case f1 is defined in the package's base env. Then, calling f1 from global env gives the error: Error in [.data.frame(x, i) : undefined columns selected. R can correctly access iterator i in its base env and DT in the global env, but cannot access the column by name inside data.table's square brackets.
I tried experimenting by setting envir and enclos arguments to eval() to baseenv(), globalenv(), parent.frame(), but haven't managed to find a combination that works.
For example, setting envir = globalenv() seems to result in accessing DT and i, but not X and Y from the DT inside lm(). Setting envir = baseenv() we lose the global env and cannot access DT (envir = baseenv(), enclos = globalenv() doesn't change it). Using envir = list(baseenv(), globalenv()) results in not being able to access anything inside data.table's square brackets, I think, error message: "Error in [.data.frame(x, i) : undefined columns selected".
The problem is that variables are resolved lexicographically. You could try passing in the expression and the substituting the value of i specifically before evaluating. This would take care of eliminating the need for explicit parsing.
f1 <- function(code) {
code <- substitute(code)
for (i in c(20,30,50)) {
cmd <- do.call("substitute", list(code, list(i=i)))
print(cmd)
result <- eval.parent(cmd)
print(result)
}
}
f1(lm(X ~ Y, data = DT[sample(.N, i)]))

Non-standard evaluation in a user-defined function with lapply or with in R

I wrote a wrapper around ftable because I need to compute flat tables with frequency and percentage for many variables. As ftable method for class "formula" uses non-standard evaluation, the wrapper relies on do.call and match.call to allow the use of the subset argument of ftable (more details in my previous question).
mytable <- function(...) {
do.call(what = ftable,
args = as.list(x = match.call()[-1]))
# etc
}
However, I cannot use this wrapper with lapply nor with:
# example 1: error with "lapply"
lapply(X = warpbreaks[c("breaks",
"wool",
"tension")],
FUN = mytable,
row.vars = 1)
Error in (function (x, ...) : object 'X' not found
# example 2: error with "with"
with(data = warpbreaks[warpbreaks$tension == "L", ],
expr = mytable(wool))
Error in (function (x, ...) : object 'wool' not found
These errors seem to be due to match.call not being evaluated in the right environment.
As this question is closely linked to my previous one, here is a sum up of my problems:
The wrapper with do.call and match.call cannot be used with lapply or with.
The wrapper without do.call and match.call cannot use the subset argument of ftable.
And a sum up of my questions:
How can I write a wrapper which allows both to use the subset argument of ftable and to be used with lapply and with? I have ideas to avoid the use of lapply and with, but I am looking to understand and correct these errors to improve my knowledge of R.
Is the error with lapply related to the following note from ?lapply?
For historical reasons, the calls created by lapply are unevaluated,
and code has been written (e.g., bquote) that relies on this. This
means that the recorded call is always of the form FUN(X[[i]], ...),
with i replaced by the current (integer or double) index. This is not
normally a problem, but it can be if FUN uses sys.call or match.call
or if it is a primitive function that makes use of the call. This
means that it is often safer to call primitive functions with a
wrapper, so that e.g. lapply(ll, function(x) is.numeric(x)) is
required to ensure that method dispatch for is.numeric occurs
correctly.
The problem with using match.call with lapply is that match.call returns the literal call that passed into it, without any interpretation. To see what's going on, let's make a simpler function which shows exactly how your function is interpreting the arguments passed into it:
match_call_fun <- function(...) {
call = as.list(match.call()[-1])
print(call)
}
When we call it directly, match.call correctly gets the arguments and puts them in a list that we can use with do.call:
match_call_fun(iris['Species'], 9)
[[1]]
iris["Species"]
[[2]]
[1] 9
But watch what happens when we use lapply (I've only included the output of the internal print statement):
lapply('Species', function(x) match_call_fun(iris[x], 9))
[[1]]
iris[x]
[[2]]
[1] 9
Since match.call gets the literal arguments passed to it, it receives iris[x], not the properly interpreted iris['Species'] that we want. When we pass those arguments into ftable with do.call, it looks for an object x in the current environment, and then returns an error when it can't find it. We need to interpret
As you've seen, adding envir = parent.frame() fixes the problem. This is because, adding that argument tells do.call to evaluate iris[x] in the parent frame, which is the anonymous function in lapply where x has it's proper meaning. To see this in action, let's make another simple function that uses do.call to print ls from 3 different environmental levels:
z <- function(...) {
print(do.call(ls, list()))
print(do.call(ls, list(), envir = parent.frame()))
print(do.call(ls, list(), envir = parent.frame(2)))
}
When we call z() from the global environment, we see the empty environment inside the function, then the Global Environment:
z()
character(0) # Interior function environment
[1] "match_call_fun" "y" "z" # GlobalEnv
[1] "match_call_fun" "y" "z" # GlobalEnv
But when we call from within lapply, we see that one level of parent.frame up is the anonymous function in lapply:
lapply(1, z)
character(0) # Interior function environment
[1] "FUN" "i" "X" # lapply
[1] "match_call_fun" "y" "z" # GlobalEnv
So, by adding envir = parent.frame(), do.call knows to evaluate iris[x] in the lapply environment where it knows that x is actually 'Species', and it evaluates correctly.
mytable_envir <- function(...) {
tab <- do.call(what = ftable,
args = as.list(match.call()[-1]),
envir = parent.frame())
prop <- prop.table(x = tab,
margin = 2) * 100
bind <- cbind(as.matrix(x = tab),
as.matrix(x = prop))
margin <- addmargins(A = bind,
margin = 1)
round(x = margin,
digits = 1)
}
# This works!
lapply(X = c("breaks","wool","tension"),
FUN = function(x) mytable_envir(warpbreaks[x],row.vars = 1))
As for why adding envir = parent.frame() makes a difference since that appears to be the default option. I'm not 100% sure, but my guess is that when the default argument is used, parent.frame is evaluated inside the do.call function, returning the environment in which do.call is run. What we're doing, however, is calling parent.frame outside do.call, which means it returns one level higher than the default version.
Here's a test function that takes parent.frame() as a default value:
fun <- function(y=parent.frame()) {
print(y)
print(parent.frame())
print(parent.frame(2))
print(parent.frame(3))
}
Now look at what happens when we call it from within lapply both with and without passing in parent.frame() as an argument:
lapply(1, function(y) fun())
<environment: 0x12c5bc1b0> # y argument
<environment: 0x12c5bc1b0> # parent.frame called inside
<environment: 0x12c5bc760> # 1 level up = lapply
<environment: R_GlobalEnv> # 2 levels up = globalEnv
lapply(1, function(y) fun(y = parent.frame()))
<environment: 0x104931358> # y argument
<environment: 0x104930da8> # parent.frame called inside
<environment: 0x104931358> # 1 level up = lapply
<environment: R_GlobalEnv> # 2 levels up = globalEnv
In the first example, the value of y is the same as what you get when you call parent.frame() inside the function. In the second example, the value of y is the same as the environment one level up (inside lapply). So, while they look the same, they're actually doing different things: in the first example, parent.frame is being evaluated inside the function when it sees that there is no y= argument, in the second, parent.frame is evaluated in the lapply anonymous function first, before calling fun, and then is passed into it.
As you only want to pass all the arguments passed to ftable u do not need the do.call().
mytable <- function(...) {
tab <- ftable(...)
prop <- prop.table(x = tab,
margin = 2) * 100
bind <- cbind(as.matrix(x = tab),
as.matrix(x = prop))
margin <- addmargins(A = bind,
margin = 1)
return(round(x = margin,
digits = 1))
}
The following lapply creates a table for every Variable separatly i don't know if that is what you want.
lapply(X = c("breaks",
"wool",
"tension"),
FUN = function(x) mytable(warpbreaks[x],
row.vars = 1))
If you want all 3 variables in 1 table
warpbreaks$newVar <- LETTERS[3:4]
lapply(X = cbind("c(\"breaks\", \"wool\", \"tension\")",
"c(\"newVar\", \"tension\",\"wool\")"),
FUN = function(X)
eval(parse(text=paste("mytable(warpbreaks[,",X,"],
row.vars = 1)")))
)
Thanks to this issue, the wrapper became:
# function 1
mytable <- function(...) {
do.call(what = ftable,
args = as.list(x = match.call()[-1]),
envir = parent.frame())
# etc
}
Or:
# function 2
mytable <- function(...) {
mc <- match.call()
mc[[1]] <- quote(expr = ftable)
eval.parent(expr = mc)
# etc
}
I can now use the subset argument of ftable, and use the wrapper in lapply:
lapply(X = warpbreaks[c("wool",
"tension")],
FUN = function(x) mytable(formula = x ~ breaks,
data = warpbreaks,
subset = breaks < 15))
However I do not understand why I have to supply envir = parent.frame() to do.call as it is a default argument.
More importantly, these methods do not resolve another issue: I can not use the subset argument of ftable with mapply.

ISO a good way to let a function accept a mix of supplied arguments, arguments from a list, and defaults

I would like to have a function accept arguments in the usual R way, most of which will have defaults. But I would also like it to accept a list of named arguments corresponding to some or some or all of the formals. Finally, I would like arguments supplied to the function directly, and not through the list, to override the list arguments where they conflict.
I could do this with a bunch of nested if-statements. But I have a feeling there is some elegant, concise, R-ish programming-on-the-language solution -- probably multiple such solutions -- and I would like to learn to use them. To show the kind of solution I am looking for:
> arg_lst <- list(x=0, y=1)
> fn <- function(a_list = NULL, x=2, y=3, z=5, ...){
<missing code>
print(c(x, y, z))
}
> fn(a_list = arg_list, y=7)
Desired output:
x y z
0 7 5
I like a lot about #jdobres's approach, but I don't like the use of assign and the potential scoping breaks.
I also don't like the premise, that a function should be written in a special way for this to work. Wouldn't it be better to write a wrapper, much like do.call, to work this way with any function? Here is that approach:
Edit: solution based off of purrr::invoke
Thinking a bit more about this, purrr::invoke almost get's there - but it will result in an error if a list argument is also passed to .... But we can make slight modifications to the code and get a working version more concisely. This version seems more robust.
library(purrr)
h_invoke = function (.f, .x = NULL, ..., .env = NULL) {
.env <- .env %||% parent.frame()
args <- c(list(...), as.list(.x)) # switch order so ... is first
args = args[!duplicated(names(args))] # remove duplicates
do.call(.f, args, envir = .env)
}
h_invoke(fn, arg_list, y = 7)
# [1] 0 7 5
Original version borrowing heavily from jdobres's code:
hierarchical_do_call = function(f, a_list = NULL, ...){
formal_args = formals() # get the function's defined inputs and defaults
formal_args[names(formal_args) %in% c('f', 'a_list', '...')] = NULL # remove these two from formals
supplied_args <- as.list(match.call())[-1] # get the supplied arguments
supplied_args[c('f', 'a_list')] = NULL # ...but remove the argument list and the function
a_list[names(supplied_args)] = supplied_args
do.call(what = f, args = a_list)
}
fn = function(x=2, y=3, z=5) {
print(c(x, y, z))
}
arg_list <- list(x=0, y=1)
hierarchical_do_call(f = fn, a_list = arg_list, y=7)
# x y z
# 0 7 5
I'm not sure how "elegant" this is, but here's my best attempt to satisfy the OP's requirements. The if/else logic is actually pretty straightforward (no nesting needed, per se). The real work is in collecting and sanitizing the three different input types (formal defaults, the list object, and any supplied arguments).
fn <- function(a_list = NULL, x = 2, y = 3, z = 5, ...) {
formal_args <- formals() # get the function's defined inputs and defaults
formal_args[names(formal_args) %in% c('a_list', '...')] <- NULL # remove these two from formals
supplied_args <- as.list(match.call())[-1] # get the supplied arguments
supplied_args['a_list'] <- NULL # ...but remove the argument list
# for each uniquely named item among the 3 inputs (argument list, defaults, and supplied args):
for (i in unique(c(names(a_list), names(formal_args), names(supplied_args)))) {
if (!is.null(supplied_args[[i]])) {
assign(i, supplied_args[[i]])
} else if (!is.null(a_list[[i]])) {
assign(i, a_list[[i]])
}
}
print(c(x, y, z))
}
arg_lst <- list(x = 0, y = 1)
fn(a_list = arg_lst, y=7)
[1] 0 7 5
With a little more digging into R's meta-programming functions, it's actually possible to pack this hierarchical assignment into its own function, which is designed to operate on the function environment that called it. This makes it easier to reuse this functionality, but it definitely breaks scope and should be considered dangerous.
The "hierarchical assignment" function, mostly the same as before:
hierarchical_assign <- function(a_list) {
formal_args <- formals(sys.function(-1)) # get the function's defined inputs and defaults
formal_args[names(formal_args) %in% c('a_list', '...')] <- NULL # remove these two from formals
supplied_args <- as.list(match.call(sys.function(-1), sys.call(-1)))[-1] # get the supplied arguments
supplied_args['a_list'] <- NULL # ...but remove the argument list
# for each uniquely named item among the 3 inputs (argument list, defaults, and supplied args):
for (i in unique(c(names(a_list), names(formal_args), names(supplied_args)))) {
if (!is.null(supplied_args[[i]])) {
assign(i, supplied_args[[i]], envir = parent.frame())
} else if (!is.null(a_list[[i]])) {
assign(i, a_list[[i]], envir = parent.frame())
}
}
}
And the usage. Note that the the calling function must have an argument named a_list, and it must be passed to hierarchical_assign.
fn <- function(a_list = NULL, x = 2, y = 3, z = 5, ...) {
hierarchical_assign(a_list)
print(c(x, y, z))
}
[1] 0 7 5
I think do.call() does exactly what you want. It accepts a function and a list as arguments, the list being arguments for the functions. I think you will need a wrapper function to create this behavior of "overwriting defaults"

Pass optional arguments to function, three dots

I'm confused how ... works.
tt = function(...) {
return(x)
}
Why doesn't tt(x = 2) return 2?
Instead it fails with the error:
Error in tt(x = 2) : object 'x' not found
Even though I'm passing x as argument ?
Because everything you pass in the ... stays in the .... Variables you pass that aren't explicitly captured by a parameter are not expanded into the local environment. The ... should be used for values your current function doesn't need to interact with at all, but some later function does need to use do they can be easily passed along inside the .... It's meant for a scenario like
ss <- function(x) {
x
}
tt <- function(...) {
return(ss(...))
}
tt(x=2)
If your function needs the variable x to be defined, it should be a parameter
tt <- function(x, ...) {
return(x)
}
If you really want to expand the dots into the current environment (and I strongly suggest that you do not), you can do something like
tt <- function(...) {
list2env(list(...), environment())
return(x)
}
if you define three dots as an argument for your function and want it to work, you need to tell your function where the dots actually go. in your example you are neither defining x as an argument, neither ... feature elsewhere in the body of your function. an example that actually works is:
tt <- function(x, ...){
mean(x, ...)
}
x <- c(1, 2, 3, NA)
tt(x)
#[1] NA
tt(x, na.rm = TRUE)
#[1] 2
here ... is referring to any other arguments that the function mean might take. additionally you have a regular argument x. in the first example tt(x) just returns mean(x), whilst in the second example tt(x, na.rm = TRUE), passes the second argument na.rm = TRUE to mean so tt returns mean(x, na.rm = TRUE).
Another way that the programmers of R use a lot is list(...) as in
tt <- function(...) {
args <- list(...) # As in this
if("x" %in% names(args))
return(args$x)
else
return("Something else.")
}
tt(x = 2)
#[1] 2
tt(y = 1, 2)
#[1] "Something else."
I believe that this is one of their favorite, if not the favorite, way of handling the dots arguments.

match.call called in wrong environment when eval’ing

I tried implementing a function let with the following semantics:
> let(x = 1, y = 2, x + y)
[1] 3
… which is conceptually somewhat similar to substitute with the syntax of with.
The following code almost works (the above invocation for instance works):
let <- function (...) {
args <- match.call(expand.dots = FALSE)$`...`
expr <- args[[length(args)]]
eval(expr,
list2env(lapply(args[-length(args)], eval), parent = parent.frame()))
}
Note the nested eval, the outer to evaluate the actual expression and the inner to evaluate the arguments.
Unfortunately, the latter evaluation happens in the wrong context. This becomes apparent when trying to call let with a function that examines the current frame, such as match.call:
> (function () let(x = match.call(), x))()
Error in match.call() :
unable to find a closure from within which 'match.call' was called
I thought of supplying the parent frame as the evaluating environment for eval, but that doesn’t work:
let <- function (...) {
args <- match.call(expand.dots = FALSE)$`...`
expr <- args[[length(args)]]
parent <- parent.frame()
eval(expr,
list2env(lapply(args[-length(args)], function(x) eval(x, parent)),
parent = parent)
}
This yields the same error. Which leads me to the question: how exactly is match.call evaluated? Why doesn’t this work? And, how do I make this work?
Will this rewrite solve your problem?
let <- function (expr, ...) {
expr <- match.call(expand.dots = FALSE)$expr
given <- list(...)
eval(expr, list2env(given, parent = parent.frame()))
}
let(x = 1, y = 2, x + y)
# [1] 3

Resources