I tried implementing a function let with the following semantics:
> let(x = 1, y = 2, x + y)
[1] 3
… which is conceptually somewhat similar to substitute with the syntax of with.
The following code almost works (the above invocation for instance works):
let <- function (...) {
args <- match.call(expand.dots = FALSE)$`...`
expr <- args[[length(args)]]
eval(expr,
list2env(lapply(args[-length(args)], eval), parent = parent.frame()))
}
Note the nested eval, the outer to evaluate the actual expression and the inner to evaluate the arguments.
Unfortunately, the latter evaluation happens in the wrong context. This becomes apparent when trying to call let with a function that examines the current frame, such as match.call:
> (function () let(x = match.call(), x))()
Error in match.call() :
unable to find a closure from within which 'match.call' was called
I thought of supplying the parent frame as the evaluating environment for eval, but that doesn’t work:
let <- function (...) {
args <- match.call(expand.dots = FALSE)$`...`
expr <- args[[length(args)]]
parent <- parent.frame()
eval(expr,
list2env(lapply(args[-length(args)], function(x) eval(x, parent)),
parent = parent)
}
This yields the same error. Which leads me to the question: how exactly is match.call evaluated? Why doesn’t this work? And, how do I make this work?
Will this rewrite solve your problem?
let <- function (expr, ...) {
expr <- match.call(expand.dots = FALSE)$expr
given <- list(...)
eval(expr, list2env(given, parent = parent.frame()))
}
let(x = 1, y = 2, x + y)
# [1] 3
Related
I wrote a wrapper around ftable because I need to compute flat tables with frequency and percentage for many variables. As ftable method for class "formula" uses non-standard evaluation, the wrapper relies on do.call and match.call to allow the use of the subset argument of ftable (more details in my previous question).
mytable <- function(...) {
do.call(what = ftable,
args = as.list(x = match.call()[-1]))
# etc
}
However, I cannot use this wrapper with lapply nor with:
# example 1: error with "lapply"
lapply(X = warpbreaks[c("breaks",
"wool",
"tension")],
FUN = mytable,
row.vars = 1)
Error in (function (x, ...) : object 'X' not found
# example 2: error with "with"
with(data = warpbreaks[warpbreaks$tension == "L", ],
expr = mytable(wool))
Error in (function (x, ...) : object 'wool' not found
These errors seem to be due to match.call not being evaluated in the right environment.
As this question is closely linked to my previous one, here is a sum up of my problems:
The wrapper with do.call and match.call cannot be used with lapply or with.
The wrapper without do.call and match.call cannot use the subset argument of ftable.
And a sum up of my questions:
How can I write a wrapper which allows both to use the subset argument of ftable and to be used with lapply and with? I have ideas to avoid the use of lapply and with, but I am looking to understand and correct these errors to improve my knowledge of R.
Is the error with lapply related to the following note from ?lapply?
For historical reasons, the calls created by lapply are unevaluated,
and code has been written (e.g., bquote) that relies on this. This
means that the recorded call is always of the form FUN(X[[i]], ...),
with i replaced by the current (integer or double) index. This is not
normally a problem, but it can be if FUN uses sys.call or match.call
or if it is a primitive function that makes use of the call. This
means that it is often safer to call primitive functions with a
wrapper, so that e.g. lapply(ll, function(x) is.numeric(x)) is
required to ensure that method dispatch for is.numeric occurs
correctly.
The problem with using match.call with lapply is that match.call returns the literal call that passed into it, without any interpretation. To see what's going on, let's make a simpler function which shows exactly how your function is interpreting the arguments passed into it:
match_call_fun <- function(...) {
call = as.list(match.call()[-1])
print(call)
}
When we call it directly, match.call correctly gets the arguments and puts them in a list that we can use with do.call:
match_call_fun(iris['Species'], 9)
[[1]]
iris["Species"]
[[2]]
[1] 9
But watch what happens when we use lapply (I've only included the output of the internal print statement):
lapply('Species', function(x) match_call_fun(iris[x], 9))
[[1]]
iris[x]
[[2]]
[1] 9
Since match.call gets the literal arguments passed to it, it receives iris[x], not the properly interpreted iris['Species'] that we want. When we pass those arguments into ftable with do.call, it looks for an object x in the current environment, and then returns an error when it can't find it. We need to interpret
As you've seen, adding envir = parent.frame() fixes the problem. This is because, adding that argument tells do.call to evaluate iris[x] in the parent frame, which is the anonymous function in lapply where x has it's proper meaning. To see this in action, let's make another simple function that uses do.call to print ls from 3 different environmental levels:
z <- function(...) {
print(do.call(ls, list()))
print(do.call(ls, list(), envir = parent.frame()))
print(do.call(ls, list(), envir = parent.frame(2)))
}
When we call z() from the global environment, we see the empty environment inside the function, then the Global Environment:
z()
character(0) # Interior function environment
[1] "match_call_fun" "y" "z" # GlobalEnv
[1] "match_call_fun" "y" "z" # GlobalEnv
But when we call from within lapply, we see that one level of parent.frame up is the anonymous function in lapply:
lapply(1, z)
character(0) # Interior function environment
[1] "FUN" "i" "X" # lapply
[1] "match_call_fun" "y" "z" # GlobalEnv
So, by adding envir = parent.frame(), do.call knows to evaluate iris[x] in the lapply environment where it knows that x is actually 'Species', and it evaluates correctly.
mytable_envir <- function(...) {
tab <- do.call(what = ftable,
args = as.list(match.call()[-1]),
envir = parent.frame())
prop <- prop.table(x = tab,
margin = 2) * 100
bind <- cbind(as.matrix(x = tab),
as.matrix(x = prop))
margin <- addmargins(A = bind,
margin = 1)
round(x = margin,
digits = 1)
}
# This works!
lapply(X = c("breaks","wool","tension"),
FUN = function(x) mytable_envir(warpbreaks[x],row.vars = 1))
As for why adding envir = parent.frame() makes a difference since that appears to be the default option. I'm not 100% sure, but my guess is that when the default argument is used, parent.frame is evaluated inside the do.call function, returning the environment in which do.call is run. What we're doing, however, is calling parent.frame outside do.call, which means it returns one level higher than the default version.
Here's a test function that takes parent.frame() as a default value:
fun <- function(y=parent.frame()) {
print(y)
print(parent.frame())
print(parent.frame(2))
print(parent.frame(3))
}
Now look at what happens when we call it from within lapply both with and without passing in parent.frame() as an argument:
lapply(1, function(y) fun())
<environment: 0x12c5bc1b0> # y argument
<environment: 0x12c5bc1b0> # parent.frame called inside
<environment: 0x12c5bc760> # 1 level up = lapply
<environment: R_GlobalEnv> # 2 levels up = globalEnv
lapply(1, function(y) fun(y = parent.frame()))
<environment: 0x104931358> # y argument
<environment: 0x104930da8> # parent.frame called inside
<environment: 0x104931358> # 1 level up = lapply
<environment: R_GlobalEnv> # 2 levels up = globalEnv
In the first example, the value of y is the same as what you get when you call parent.frame() inside the function. In the second example, the value of y is the same as the environment one level up (inside lapply). So, while they look the same, they're actually doing different things: in the first example, parent.frame is being evaluated inside the function when it sees that there is no y= argument, in the second, parent.frame is evaluated in the lapply anonymous function first, before calling fun, and then is passed into it.
As you only want to pass all the arguments passed to ftable u do not need the do.call().
mytable <- function(...) {
tab <- ftable(...)
prop <- prop.table(x = tab,
margin = 2) * 100
bind <- cbind(as.matrix(x = tab),
as.matrix(x = prop))
margin <- addmargins(A = bind,
margin = 1)
return(round(x = margin,
digits = 1))
}
The following lapply creates a table for every Variable separatly i don't know if that is what you want.
lapply(X = c("breaks",
"wool",
"tension"),
FUN = function(x) mytable(warpbreaks[x],
row.vars = 1))
If you want all 3 variables in 1 table
warpbreaks$newVar <- LETTERS[3:4]
lapply(X = cbind("c(\"breaks\", \"wool\", \"tension\")",
"c(\"newVar\", \"tension\",\"wool\")"),
FUN = function(X)
eval(parse(text=paste("mytable(warpbreaks[,",X,"],
row.vars = 1)")))
)
Thanks to this issue, the wrapper became:
# function 1
mytable <- function(...) {
do.call(what = ftable,
args = as.list(x = match.call()[-1]),
envir = parent.frame())
# etc
}
Or:
# function 2
mytable <- function(...) {
mc <- match.call()
mc[[1]] <- quote(expr = ftable)
eval.parent(expr = mc)
# etc
}
I can now use the subset argument of ftable, and use the wrapper in lapply:
lapply(X = warpbreaks[c("wool",
"tension")],
FUN = function(x) mytable(formula = x ~ breaks,
data = warpbreaks,
subset = breaks < 15))
However I do not understand why I have to supply envir = parent.frame() to do.call as it is a default argument.
More importantly, these methods do not resolve another issue: I can not use the subset argument of ftable with mapply.
I'm trying to use the curve3d function in the emdbook-package to create a contour plot of a function defined locally inside another function as shown in the following minimal example:
library(emdbook)
testcurve3d <- function(a) {
fn <- function(x,y) {
x*y*a
}
curve3d(fn(x,y))
}
Unexpectedly, this generates the error
> testcurve3d(2)
Error in fn(x, y) : could not find function "fn"
whereas the same idea works fine with the more basic curve function of the base-package:
testcurve <- function(a) {
fn <- function(x) {
x*a
}
curve(a*x)
}
testcurve(2)
The question is how curve3d can be rewritten such that it behaves as expected.
You can temporarily attach the function environment to the search path to get it to work:
testcurve3d <- function(a) {
fn <- function(x,y) {
x*y*a
}
e <- environment()
attach(e)
curve3d(fn(x,y))
detach(e)
}
Analysis
The problem comes from this line in curve3d:
eval(expr, envir = env, enclos = parent.frame(2))
At this point, we appear to be 10 frames deep, and fn is defined in parent.frame(8). So you can edit the line in curve3d to use that, but I'm not sure how robust this is. Perhaps parent.frame(sys.nframe()-2) might be more robust, but as ?sys.parent warns there can be some strange things going on:
Strictly, sys.parent and parent.frame refer to the context of the
parent interpreted function. So internal functions (which may or may
not set contexts and so may or may not appear on the call stack) may
not be counted, and S3 methods can also do surprising things.
Beware of the effect of lazy evaluation: these two functions look at
the call stack at the time they are evaluated, not at the time they
are called. Passing calls to them as function arguments is unlikely to
be a good idea.
The eval - parse solution bypasses some worries about variable scope. This passes the value of both the variable and function directly as opposed to passing the variable or function names.
library(emdbook)
testcurve3d <- function(a) {
fn <- eval(parse(text = paste0(
"function(x, y) {",
"x*y*", a,
"}"
)))
eval(parse(text = paste0(
"curve3d(", deparse(fn)[3], ")"
)))
}
testcurve3d(2)
I have found other solution that I do not like very much, but maybe it will help you.
You can create the function fn how a call object and eval this in curve3d:
fn <- quote((function(x, y) {x*y*a})(x, y))
eval(call("curve3d", fn))
Inside of the other function, the continuous problem exists, a must be in the global environment, but it is can fix with substitute.
Example:
testcurve3d <- function(a) {
fn <- substitute((function(x, y) {
c <- cos(a*pi*x)
s <- sin(a*pi*y/3)
return(c + s)
})(x, y), list(a = a))
eval(call("curve3d", fn, zlab = "fn"))
}
par(mfrow = c(1, 2))
testcurve3d(2)
testcurve3d(5)
This is my function:
f <- function(a, b, ...){
c(as.list(environment()), list(...))
}
If I call f(a = 2) no error will be raised, although b is missing. I would like to get an error in this case:
Error in f(a = 2) : argument "b" is missing, with no default
What piece of dynamic and efficient code I must add such that this error be raised? I was thinking something in line of the following: force(as.symbol(names(formals()))).
Note: In case you wonder why I need this kind of function: It is a way to standardize the kinds of lists. Such a list must have a and b, and possibly other keys. I could play with objects too...
Solutions: See Carl's answer or comments below.
f <- function(a, b, ...){
sapply(ls(environment()), get, envir = environment(), inherits = FALSE)
c(as.list(environment()), list(...))
}
Or
f <- function(a, b, ...){
stopifnot(all(setdiff(names(formals()), '...') %in% names(as.list(match.call()[-1]))))
c(as.list(environment()), list(...))
}
An idea... first check for all arguments that exist in the any function anonymously... meaning regardless of the functions, get the arguments into a list with no preset requirements:
#' A function to grab all arguments of any calling environment.. ie.. a function
#'
#'
#' \code{grab.args}
#'
grab.args <- function() {
envir <- parent.frame()
func <- sys.function(-1)
call <- sys.call(-1)
dots <- match.call(func, call, expand.dots=FALSE)$...
c(as.list(envir), dots)
}
Then, in whatever function you use it for.. store the initial arguments on a list does_have, then find all the arguments that are pre-defined in the environment with should_have, loop through the list to match names and find if any are missing values... if any are... create the error with the names that are missing, if not... do your thing...
#' As an example
#'
f <- function(a, b, ...){
does_have <- grab.args()
should_have <- ls(envir = environment())
check_all <- sapply(should_have, function(i){
!nchar(does_have[[i]])
})
if(any(mapply(isTRUE, check_all))){
need_these <- paste(names(which(mapply(isTRUE,check_all))), collapse = " and ")
cat(sprintf('Values needed for %s', need_these))
}else {
does_have
}
}
Outputs for cause....
> f(mine = "yours", a = 3)
Values needed for b
> f(b = 12)
Values needed for a
> f(hey = "you")
Values needed for a and b
Edit to throw an actual error...
f <- function(a,b,...){
Filter(missing, sapply(ls(environment()), get, environment()))
}
> f(a = 2, wtf = "lol")
Error in FUN(X[[i]], ...) : argument "b" is missing, with no default
I know about methods(), which returns all methods for a given class. Suppose I have x and I want to know what method will be called when I call foo(x). Is there a oneliner or package that will do this?
The shortest I can think of is:
sapply(class(x), function(y) try(getS3method('foo', y), silent = TRUE))
and then to check the class of the results... but is there not a builtin for this?
Update
The full one liner would be:
fm <- function (x, method) {
cls <- c(class(x), 'default')
results <- lapply(cls, function(y) try(getS3method(method, y), silent = TRUE))
Find(function (x) class(x) != 'try-error', results)
}
This will work with most things but be aware that it might fail with some complex objects. For example, according to ?S3Methods, calling foo on matrix(1:4, 2, 2) would try foo.matrix, then foo.numeric, then foo.default; whereas this code will just look for foo.matrix and foo.default.
findMethod defined below is not a one-liner but its body has only 4 lines of code (and if we required that the generic be passed as a character string it could be reduced to 3 lines of code). It will return a character string representing the name of the method that would be dispatched by the input generic given that generic and its arguments. (Replace the last line of the body of findMethod with get(X(...)) if you want to return the method itself instead.) Internally it creates a generic X and an X method corresponding to each method of the input generic such that each X method returns the name of the method of the input generic that would be run. The X generic and its methods are all created within the findMethod function so they disappear when findMethod exits. To get the result we just run X with the input argument(s) as the final line of the findMethod function body.
findMethod <- function(generic, ...) {
ch <- deparse(substitute(generic))
f <- X <- function(x, ...) UseMethod("X")
for(m in methods(ch)) assign(sub(ch, "X", m, fixed = TRUE), "body<-"(f, value = m))
X(...)
}
Now test it. (Note that the one-liner in the question fails with an error in several of these tests but findMethod gives the expected result.)
findMethod(as.ts, iris)
## [1] "as.ts.default"
findMethod(print, iris)
## [1] "print.data.frame"
findMethod(print, Sys.time())
## [1] "print.POSIXct"
findMethod(print, 22)
## [1] "print.default"
# in this example it looks at 2nd component of class vector as no print.ordered exists
class(ordered(3))
## [1] "ordered" "factor"
findMethod(print, ordered(3))
## [1] "print.factor"
findMethod(`[`, BOD, 1:2, "Time")
## [1] "[.data.frame"
I use this:
s3_method <- function(generic, class, env = parent.frame()) {
fn <- get(generic, envir = env)
ns <- asNamespace(topenv(fn))
tbl <- ns$.__S3MethodsTable__.
for (c in class) {
name <- paste0(generic, ".", c)
if (exists(name, envir = tbl, inherits = FALSE)) {
return(get(name, envir = tbl))
}
if (exists(name, envir = globalenv(), inherits = FALSE)) {
return(get(name, envir = globalenv()))
}
}
NULL
}
For simplicity this doesn't return methods defined by assignment in the calling environment. The global environment is checked for convenience during development. These are the same rules used in r-lib packages.
Probably a simple question, but I can't figure it out myself, working with environments and scoping still confuse me.
I have a function, nested in a function. What I am trying to achieve is to assign a value (using the assign function, I have read that using <<- can be dangerous) from the nested function in its parent and use it there:
myfun <- function(m) {
m*3*y
f1 <- function() {
assign(x = y, value = 2, envir = parent.frame())
}
f1()
}
However, error is returned:
Error in myfun(m = 5) : object 'y' not found
In addition, what if I have a function, nested in a function, nested in a function, nested in a function, etc., and I want to choose in which upper level to assign the value from the lowest level function?
Two points. You need to run f1() before you compute with y. x argument of assign function takes character.
myfun <- function(m) {
f1 <- function() {
assign(x = "y", value = 2, envir = parent.frame())
}
f1()
m*3*y
}
myfun(5)