R: Testing each level of a factor without creating new variables - r

Suppose I have a data frame with a binary grouping variable and a factor. An example of such a grouping variable could specify assignment to the treatment and control conditions of an experiment. In the below, b is the grouping variable while a is an arbitrary factor variable:
a <- c("a","a","a","b","b")
b <- c(0,0,1,0,1)
df <- data.frame(a,b)
I want to complete two-sample t-tests to assess the below:
For each level of a, whether there is a difference in the mean propensity to adopt that level between the groups specified in b.
I have used the dummies package to create separate dummies for each level of the factor and then manually performed t-tests on the resulting variables:
library(dummies)
new <- dummy.data.frame(df, names = "a")
t.test(new$aa, new$b)
t.test(new$ab, new$b)
I am looking for help with the following:
Is there a way to perform this without creating a large number of dummy variables via dummy.data.frame()?
If there is not a quicker way to do it without creating a large number of dummies, is there a quicker way to complete the t-test across multiple columns?
Note
This is similar to but different from R - How to perform the same operation on multiple variables and nearly the same as this question Apply t-test on many columns in a dataframe split by factor but the solution of that question no longer works.

Here is a base R solution implementing a chi-squired test for equality of proportions, which I believe is more likely to answer whatever question you're asking of your data (see my comment above):
set.seed(1)
## generate similar but larger/more complex toy dataset
a <- sample(letters[1:4], 100, replace = T)
b <- sample(0:1, 10, replace = T)
head((df <- data.frame(a,b)))
a b
1 b 1
2 b 0
3 c 0
4 d 1
5 a 1
6 d 0
## create a set of contingency tables for proportions
## of each level of df$a to the others
cTbls <- lapply(unique(a), function(x) table(df$a==x, df$b))
## apply chi-squared test to each contingency table
results <- lapply(cTbls, prop.test, correct = FALSE)
## preserve names
names(results) <- unique(a)
## only one result displayed for sake of space:
results$b
2-sample test for equality of proportions without continuity
correction
data: X[[i]]
X-squared = 0.18382, df = 1, p-value = 0.6681
alternative hypothesis: two.sided
95 percent confidence interval:
-0.2557295 0.1638177
sample estimates:
prop 1 prop 2
0.4852941 0.5312500
Be aware, however, that is you might not want to interpret your p-values without correcting for multiple comparisons. A quick simulation demonstrates that the chance of incorrectly rejecting the null hypothesis with at least one of of your tests can be dramatically higher than 5%(!) :
set.seed(11)
sum(
replicate(1e4, {
a <- sample(letters[1:4], 100, replace = T)
b <- sample(0:1, 100, replace = T)
df <- data.frame(a,b)
cTbls <- lapply(unique(a), function(x) table(df$a==x, df$b))
results <- lapply(cTbls, prop.test, correct = FALSE)
any(lapply(results, function(x) x$p.value < .05))
})
) / 1e4
[1] 0.1642

I dont exactly understand what this is doing from a statistical standpoint, but this code generates a list where each element is the output from the t.test() you run above:
a <- c("a","a","a","b","b")
b <- c(0,0,1,0,1)
df <- data.frame(a,b)
library(dplyr)
library(tidyr)
dfNew<-df %>% group_by(a) %>% summarise(count = n()) %>% spread(a, count)
lapply(1:ncol(dfNew), function (x)
t.test(c(rep(1, dfNew[1,x]), rep(0, length(b)-dfNew[1,x])), b))
This will save you the typing of t.test(foo, bar) continuously, and also eliminates the need for dummy variables.
Edit: I dont think the above method preserves the order of the columns, only the frequency of values measured as 0 or 1. If the order is important (again, I dont know the goal of this procedure) then you can use the dummy method and lapply through the data.frame you named new.
library(dummies)
new <- dummy.data.frame(df, names = "a")
lapply(1:(ncol(new)-1), function(x)
t.test(new[,x], new[,ncol(new)]))

Related

Combining for loops and ifelse in R

I am trying to write a for loop that will generate a correlation for a fixed column (LPS0) vs. all other columns in the data set. I don't want to use a correlation matrix because I only care about the correlation of LPS0 vs all other columns, not the correlations of the other columns with themselves. I then want to include an if statement to print only the significant correlations (p.value <= 0.05). I ran into some issues where some of the p.values are returned as NA, so I switched to an if_else loop. However, I am now getting an error. My code is as follows:
for(i in 3:ncol(microbiota_lps_0_morm)) {
morm_0 <- cor.test(microbiota_lps_0_morm$LPS0, microbiota_lps_0_morm[[colnames(microbiota_lps_0_morm)[i]]], method = "spearman")
if_else(morm_0$p.value <= 0.05, print(morm_0), print("Not Sig"), print("NA"))
}
The first value is returned, and then the loop stops with the following error:
Error in if_else():
! true must be length 1 (length of condition), not 8.
Backtrace: 1. dplyr::if_else(morm_0$p.value <= 0.05, print(morm_0), print("Not Sig"), print("NA"))
How can I make the loop print morm only when p.value <- 0.05?
Here's a long piece of code which aytomates the whole thing. it might be overkill but you can just take the matrix and use whatever you need. it makes use of the tidyverse.
df <- select_if(mtcars,is.numeric)
glimpse(df)
# keeping real names
dict <- cbind(original=names(df),new=paste0("v",1:ncol(df)))
# but changing names for better data viz
colnames(df) <- paste0("v",1:ncol(df))
# correlating between variables + p values
pvals <- list()
corss <- list()
for (coln in colnames(df)) {
pvals[[coln]] <- map(df, ~ cor.test(df[,coln], .)$p.value)
corss[[coln]] <- map(df, ~ cor(df[,coln], .))
}
# Keeping both matrices in a list
matrices <- list(
pvalues = matrix(data=unlist(pvals),
ncol=length(names(pvals)),
nrow=length(names(pvals))),
correlations = matrix(data=unlist(corss),
ncol=length(names(corss)),
nrow=length(names(corss)))
)
rownames(matrices[[1]]) <- colnames(df)
rownames(matrices[[2]]) <- colnames(df)
# Creating a combined data frame
long_cors <- expand.grid(Var1=names(df),Var2=names(df)) %>%
mutate(cor=unlist(matrices["correlations"]),
pval=unlist(matrices["pvalues"]),
same=Var1==Var2,
significant=pval<0.05,
dpcate=duplicated(cor)) %>%
# Leaving no duplicants, non-significant or self-correlation results
filter(same ==F,significant==T,dpcate==F) %>%
select(-c(same,dpcate,significant))
# Plotting correlations
long_cors %>%mutate(negative=cor<0) %>%
ggplot(aes(x=Var1,y=Var2,
color=negative,size=abs(cor),fill=Var2,
label=round(cor,2)))+
geom_label(show.legend = F,alpha=0.2)+
scale_color_manual(values = c("black","darkred"))+
# Sizing each correlation by it's magnitude
scale_size_area(seq(1,100,length=length(unique(long_cors$Var1))))+ theme_light()+
theme(axis.text = element_text(face = "bold",size=12))+
labs(title="Correlation between variables",
caption = "p < 0.05")+xlab("")+ylab("")
If you want to correlate a column of a matrix with the remaining columns, you can do so with one function call:
mtx <- matrix(rnorm(800), ncol=8)
cor(mtx[,1], mtx[,-1])
However, you will not get p-values. For getting p-values, I would recommend this approach:
library(tidyverse)
significant <- map_dbl(2:ncol(mtx),
~ cor.test(mtx[,1], mtx[,.], use="p", method="s")$p.value)
Whenever you feel like you need a for loop in R, chances are, you should be using another approach. for is a very un-R construct, and R gives many better ways of handling the same issues. map_* family of functions from tidyverse is but one of them. Another approach, in base R, would be to use apply:
significant <- apply(mtx[,-1], 2,
\(x) cor.test(x, mtx[,1], method="s", use="p")$p.value)

How to capture the most important variables in Bootstrapped models in R?

I have several models that I would like to compare their choices of important predictors over the same data set, Lasso being one of them. The data set I am using consists of census data with around a thousand variables that have been renamed to "x1", "x2" and so on for convenience sake (The original names are extremely long). I would like to report the top features then rename these variables with a shorter more concise name.
My attempt to solve this is by extracting the top variables in each iterated model, put it into a list, then finding the mean of the top variables in X amount of loops. However, my issue is I still find variability with the top 10 most used predictors and so I cannot manually alter the variable names as each run on the code chunk yields different results. I suspect this is because I have so many variables in my analysis and due to CV causing the creation of new models every bootstrap.
For the sake of a simple example I used mtcars and will look for the top 3 most common predictors due to only having 10 variables in this data set.
library(glmnet)
data("mtcars") # Base R Dataset
df <- mtcars
topvar <- list()
for (i in 1:100) {
# CV and Splitting
ind <- sample(nrow(df), nrow(df), replace = TRUE)
ind <- unique(ind)
train <- df[ind, ]
xtrain <- model.matrix(mpg~., train)[,-1]
ytrain <- df[ind, 1]
test <- df[-ind, ]
xtest <- model.matrix(mpg~., test)[,-1]
ytest <- df[-ind, 1]
# Create Model per Loop
model <- glmnet(xtrain, ytrain, alpha = 1, lambda = 0.2)
# Store Coeffecients per loop
coef_las <- coef(model, s = 0.2)[-1, ] # Remove intercept
# Store all nonzero Coefficients
topvar[[i]] <- coef_las[which(coef_las != 0)]
}
# Unlist
varimp <- unlist(topvar)
# Count all predictors
novar <- table(names(varimp))
# Find the mean of all variables
meanvar <- tapply(varimp, names(varimp), mean)
# Return top 3 repeated Coefs
repvar <- novar[order(novar, decreasing = TRUE)][1:3]
# Return mean of repeated Coefs
repvar.mean <- meanvar[names(repvar)]
repvar
Now if you were to rerun the code chunk above you would notice that the top 3 variables change and so if I had to rename these variables it would be difficult to do if they are not constant and changing every run. Any suggestions on how I could approach this?
You can use function set.seed() to ensure your sample will return the same sample each time. For example
set.seed(123)
When I add this to above code and then run twice, the following is returned both times:
wt carb hp
98 89 86

2-sample independent t-test where each of two columns is in different data frame

I need to run a 2-sample independent t-test, comparing Column1 to Column2. But Column1 is in DataframeA, and Column2 is in DataframeB. How should I do this?
Just in case relevant (feel free to ignore): I am a true beginner. My experience with R so far has been limited to running 2-sample matched t-tests within the same data frame by doing the following:
t.test(response ~ Column1,
data = (Dataframe1 %>%
gather(key = "Column1", value = "response", "Column1", "Column2")),
paired = TRUE)
TL;DR
t_test_result = t.test(DataframeA$Column1, DataframeB$Column2, paired=TRUE)
Explanation
If the data is paired, I assume that both dataframes will have the same number of observations (same number of rows). You can check this with nrow(DataframeA) == nrow(DataframeB) .
You can think of each column of a dataframe as a vector (an ordered list of values). The way that you have used t.test is by using a formula (y~x), and you were essentially saying: Given the dataframe specified in data, perform a t test to assess the significance in the difference in means of the variable response between the paired groups in Column1.
Another way of thinking about this is by grabbing the data in data and separating it into two vectors: the vector with observations for the first group of Column1, and the one for the second group. Then, for each vector, you compute the mean and stdev and apply the appropriate formula that will give you the t statistic and hence the p value.
Thus, you can just extract those 2 vectors separately and provide them as arguments to the t.test() function. I hope it was beginner-friendly enough ^^ otherwise let me know
EDIT: a few additions
(I was going to reply in the comments but realized I did not have space hehe)
Regarding the what #Ashish did in order to turn it into a Welch's test, I'd say it was to set var.equal = FALSE. The paired parameter controls whether the t-test is run on paired samples or not, and since your data frames have unequal number of rows, I'm suspecting the observations are not matched.
As for the Cohen's d effect size, you can check this stats exchange question, from which I copy the code:
For context, m1 and m2 are the group's means (which you can get with n1 = mean(DataframeA$Column1)), s1 and s2 are the standard deviations (s2 = sd(DataframeB$Column2)) and n1 and n2 the sample sizes (n2 = length(DataframeB$Column2))
lx <- n1- 1 # Number of observations in group 1
ly <- n2- 1 # # Number of observations in group 1
md <- abs(m1-m2) ## mean difference (numerator)
csd <- lx * s1^2 + ly * s2^2
csd <- csd/(lx + ly)
csd <- sqrt(csd) ## common sd computation
cd <- md/csd ## cohen's d
This should work for you
res = t.test(DataFrameA$Column1, DataFrameB$Column2, alternative = "two.sided", var.equal = FALSE)

How does createDataPartition function from caret package split data?

From the documentation:
For bootstrap samples, simple random sampling is used.
For other data splitting, the random sampling is done within the levels of y
when y is a factor in an attempt to balance the class distributions within
the splits.
For numeric y, the sample is split into groups sections based on percentiles
and sampling is done within these subgroups.
For createDataPartition, the number of percentiles is set via the groups
argument.
I don't understand why this "balance" thing is needed. I think I understand it superficially, but any additional insight would be really helpful.
It means, if you have a data set ds with 10000 rows
set.seed(42)
ds <- data.frame(values = runif(10000))
with 2 "classes" with unequal distribution (9000 vs 1000)
ds$class <- c(rep(1, 9000), rep(2, 1000))
ds$class <- as.factor(ds$class)
table(ds$class)
# 1 2
# 9000 1000
you can create a sample, which tries to maintain the ratio / "balance" of the factor classes.
dpart <- createDataPartition(ds$class, p = 0.1, list = F)
dsDP <- ds[dpart, ]
table(dsDP$class)
# 1 2
# 900 100

performing a chi square test across multiple variables and extracting the relevant p value in R

Ok straight to the question. I have a database with lots and lots of categorical variable.
Sample database with a few variables as below
gender <- as.factor(sample( letters[6:7], 100, replace=TRUE, prob=c(0.2, 0.8) ))
smoking <- as.factor(sample(c(0,1),size=100,replace=T,prob=c(0.6,0.4)))
alcohol <- as.factor(sample(c(0,1),size=100,replace=T,prob=c(0.3,0.7)))
htn <- as.factor(sample(c(0,1),size=100,replace=T,prob=c(0.2,0.8)))
tertile <- as.factor(sample(c(1,2,3),size=100,replace=T,prob=c(0.3,0.3,0.4)))
df <- as.data.frame(cbind(gender,smoking,alcohol,htn,tertile))
I want to test the hypothesis, using a chi square test, that there is a difference in the portion of smokers, alcohol use, hypertension (htn) etc by tertile (3 factors). I then want to extract the p values for each variable.
Now i know i can test each individual variable using a 2 by 3 cross tabulation but is there a more efficient code to derive the test statistic and p-value across all variables in one go and extract the p value across each variable
Thanks in advance
Anoop
If you want to do all the comparisons in one statement, you can do
mapply(function(x, y) chisq.test(x, y)$p.value, df[, -5], MoreArgs=list(df[,5]))
# gender smoking alcohol htn
# 0.4967724 0.8251178 0.5008898 0.3775083
Of course doing tests this way is somewhat statistically inefficient since you are doing multiple tests here so some correction is required to maintain an appropriate type 1 error rate.
You can run the following code chunk if you want to get the test result in details:
lapply(df[,-5], function(x) chisq.test(table(x,df$tertile), simulate.p.value = TRUE))
You can get just p-values:
lapply(df[,-5], function(x) chisq.test(table(x,df$tertile), simulate.p.value = TRUE)$p.value)
This is to get the p-values in the data frame:
data.frame(lapply(df[,-5], function(x) chisq.test(table(x,df$tertile), simulate.p.value = TRUE)$p.value))
Thanks to RPub for inspiring.
http://www.rpubs.com/kaz_yos/1204

Resources