Defining adaptive decision variables in JuMPeR - julia

This is the code:
s=5
k=3
mod= RobustModel(solver=GurobiSolver())
#defUnc(mod,ξ[i=1:k,j=1:s])
adaptive(mod,ext[1:k], policy=Affine, depends_on=ξ[1:k])
#defVar(mod, obj)
#setObjective(mod, Max, obj)
The error is:
UndefVarError: Affine not defined.
Why does this problem happen?

You seem to be missing an # in front of adaptive.
Here is an example of your operations using more recent JuMP macro syntax:
julia> using JuMP, JuMPeR, Gurobi
julia> s = 5
5
julia> k = 3
3
julia> mod = RobustModel(solver=GurobiSolver())
Feasibility problem with:
* 0 linear constraints
* 0 variables
Solver is Gurobi
julia> #uncertain(mod,ξ[i=1:k,j=1:s])
3x5 Array{JuMPeR.Uncertain,2}:
ξ[1,1] ξ[1,2] ξ[1,3] ξ[1,4] ξ[1,5]
ξ[2,1] ξ[2,2] ξ[2,3] ξ[2,4] ξ[2,5]
ξ[3,1] ξ[3,2] ξ[3,3] ξ[3,4] ξ[3,5]
julia> #adaptive(mod,ext[1:k], policy=Affine, depends_on=ξ[1:k])
3-element Array{JuMPeR.Adaptive,1}:
JuMPeR.Adaptive(Feasibility problem with:
* 0 linear constraints
* 0 variables
Solver is Gurobi,1)
JuMPeR.Adaptive(Feasibility problem with:
* 0 linear constraints
* 0 variables
Solver is Gurobi,2)
JuMPeR.Adaptive(Feasibility problem with:
* 0 linear constraints
* 0 variables
Solver is Gurobi,3)
julia> #variable(mod, obj)
obj
julia> #objective(mod, Max, obj)
obj

Related

User-defined (nonlinear) objective with vectorized variables in JuMP

Is it possible to use vectorized variables with user-defined objective functions in JuMP for Julia? Like so,
model = Model(GLPK.Optimizer)
A = [
1 1 9 5
3 5 0 8
2 0 6 13
]
b = [7; 3; 5]
c = [1; 3; 5; 2]
#variable(model, x[1:4] >= 0)
#constraint(model, A * x .== b)
# dummy functions, could be nonlinear hypothetically
identity(x) = x
C(x, c) = c' * x
register(model, :identity, 1, identity; autodiff = true)
register(model, :C, 2, C; autodiff = true)
#NLobjective(model, Min, C(identity(x), c))
This throws the error,
ERROR: Unexpected array VariableRef[x[1], x[2], x[3], x[4]] in nonlinear expression. Nonlinear expressions may contain only scalar expression.
Which sounds like no. Is there a workaround to this? I believe scipy.optimize.minimize is capable of optimizing user-defined objectives with vectorized variables?
No, you cannot pass vector arguments to user-defined functions.
Documentation: https://jump.dev/JuMP.jl/stable/manual/nlp/#User-defined-functions-with-vector-inputs
Issue you opened: https://github.com/jump-dev/JuMP.jl/issues/2854
The following is preferable to Prezemyslaw's answer. His suggestion to wrap things in an #expression won't work if the functions are more complicated.
using JuMP, Ipopt
model = Model(Ipopt.Optimizer)
A = [
1 1 9 5
3 5 0 8
2 0 6 13
]
b = [7; 3; 5]
c = [1; 3; 5; 2]
#variable(model, x[1:4] >= 0)
#constraint(model, A * x .== b)
# dummy functions, could be nonlinear hypothetically
identity(x) = x
C(x, c) = c' * x
my_objective(x...) = C(identitiy(collect(x)), c)
register(model, :my_objective, length(x), my_objective; autodiff = true)
#NLobjective(model, Min, my_objective(x...))
Firstly, use optimizer that supports nonlinear models. GLPK does not. Try Ipopt:
using Ipopt
model = Model(Ipopt.Optimizer)
Secondly, JuMP documentation reads (see https://jump.dev/JuMP.jl/stable/manual/nlp/#Syntax-notes):
The syntax accepted in nonlinear macros is more restricted than the syntax for linear and quadratic macros. (...) all expressions must be simple scalar operations. You cannot use dot, matrix-vector products, vector slices, etc.
you need wrap the goal function
#expression(model, expr, C(identity(x), c))
Now you can do:
#NLobjective(model, Min, expr)
To show that it works I solve the model:
julia> optimize!(model)
This is Ipopt version 3.14.4, running with linear solver MUMPS 5.4.1.
...
Total seconds in IPOPT = 0.165
EXIT: Optimal Solution Found.
julia> value.(x)
4-element Vector{Float64}:
0.42307697548737005
0.3461538282496562
0.6923076931757742
-8.46379887234798e-9

Julia DSP: Convolution of discrete signals

Here is the problem. I want to write a convolution for two simple signals x[n]=0.2^n*u[n] and h[n]=u[n+2] for some values of n. This is how I implement it:
using Plots, DSP
x(n) = if n<0 0 else 0.2^n end
h(n) = if n<-2 0 else 1 end
n = -10:10
conv(h.(n),x.(n))
It doesn't work. Here is the error:
`float` not defined on abstractly-typed arrays; please convert to a more specific type
Any idea how may I fix it?
I ran it fine with a fresh REPL session:
julia> using Plots, DSP
[ Info: Precompiling Plots [91a5bcdd-55d7-5caf-9e0b-520d859cae80]
[ Info: Precompiling DSP [717857b8-e6f2-59f4-9121-6e50c889abd2]
julia> x(n) = if n<0 0 else 2^n end
x (generic function with 1 method)
julia> h(n) = if n<-2 0 else 1 end
h (generic function with 1 method)
julia> n = -10:10
-10:10
julia> conv(h.(n),x.(n))
41-element Array{Int64,1}:
0
0
(etc)
1984
1920
1792
1536
1024
julia> plot(conv(h.(n),x.(n)))
(plots ok)
If you change the 2 in 2^n to a float you need to specify Float64:
julia> x(n) = if n<0 0 else 0.2^n end
x (generic function with 1 method)
julia> conv(h.(n),Float64.(x.(n)))
41-element Array{Float64,1}:
0.0
8.458842092382145e-17
2.5376526277146434e-16
4.229421046191072e-17
2.1147105230955362e-16
(etc)
7.997440000004915e-5
1.597440000003685e-5
3.1744000002024485e-6
6.144000000924524e-7
1.0240000015600833e-7

Julia minimize simple scalar function

How do I minimize a simple scalar function in Julia using Newton's method? (or any other suitable optimization scheme)
using Optim
# Function to optimize
function g(x)
return x^2
end
x0 = 2.0 # Initial value
optimize(g, x0, Newton())
The above doesn't seem to work and returns
ERROR: MethodError: no method matching optimize(::typeof(g), ::Float64, ::Newton{LineSearches.InitialStatic{Float64},LineSearches.HagerZhang{Float64,Base.RefValue{Bool}}})
Optim is designed for vector problems and not scalar ones like in your example. You can adjust the example to be a vector-problem with one variable though:
julia> using Optim
julia> function g(x) # <- g accepts x as a vector
return x[1]^2
end
julia> x0 = [2.0] # <- Make this a vector
1-element Vector{Float64}:
2.0
julia> optimize(g, x0, Newton())
* Status: success
* Candidate solution
Final objective value: 0.000000e+00
The optimize function expects an interval, not a starting point:
optimize(g, -10, 10)
returns
Results of Optimization Algorithm
* Algorithm: Brent's Method
* Search Interval: [-10.000000, 10.000000]
* Minimizer: 0.000000e+00
* Minimum: 0.000000e+00
* Iterations: 5
* Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(1.5e-08*|x|+2.2e-16): true
* Objective Function Calls: 6
Concerning available methods I have not read the doc, but you can directly have a look at the source code using the #edit macro:
#edit optimize(g, -10, 10)
Browsing the source you will see:
function optimize(f,
lower::Union{Integer, Real},
upper::Union{Integer, Real},
method::Union{Brent, GoldenSection};
kwargs...)
T = promote_type(typeof(lower/1), typeof(upper/1))
optimize(f,
T(lower),
T(upper),
method;
kwargs...)
end
Hence I think that you have only two methods for unidimensional minimization: Brent and GoldenSection.
By example you can try:
julia> optimize(g, -10, 10, GoldenSection())
Results of Optimization Algorithm
* Algorithm: Golden Section Search
* Search Interval: [-10.000000, 10.000000]
* Minimizer: 1.110871e-16
* Minimum: 1.234035e-32
* Iterations: 79
* Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(1.5e-08*|x|+2.2e-16): true
* Objective Function Calls: 80

Find fixed point of multivariable function in Julia

I need to find the fixed point of a multivariable function in Julia.
Consider the following minimal example:
function example(p::Array{Float64,1})
q = -p
return q
end
Ideally I'd use a package like Roots.jl and call find_zeros(p -> p - example(p)), but I can't find the analogous package for multivariable functions. I found one called IntervalRootFinding, but it oddly requires unicode characters and is sparsely documented, so I can't figure out how to use it.
There are many options. The choice of the best one depends on the nature of example function (you have to understand the nature of your example function and check against a documentation of a specific package if it would support it).
Eg. you can use fixedpoint from NLsolve.jl:
julia> using NLsolve
julia> function example!(q, p::Array{Float64,1})
q .= -p
end
example! (generic function with 1 method)
julia> fixedpoint(example!, ones(1))
Results of Nonlinear Solver Algorithm
* Algorithm: Anderson m=1 beta=1 aa_start=1 droptol=0
* Starting Point: [1.0]
* Zero: [0.0]
* Inf-norm of residuals: 0.000000
* Iterations: 3
* Convergence: true
* |x - x'| < 0.0e+00: true
* |f(x)| < 1.0e-08: true
* Function Calls (f): 3
* Jacobian Calls (df/dx): 0
julia> fixedpoint(example!, ones(3))
Results of Nonlinear Solver Algorithm
* Algorithm: Anderson m=3 beta=1 aa_start=1 droptol=0
* Starting Point: [1.0, 1.0, 1.0]
* Zero: [-2.220446049250313e-16, -2.220446049250313e-16, -2.220446049250313e-16]
* Inf-norm of residuals: 0.000000
* Iterations: 3
* Convergence: true
* |x - x'| < 0.0e+00: false
* |f(x)| < 1.0e-08: true
* Function Calls (f): 3
* Jacobian Calls (df/dx): 0
julia> fixedpoint(example!, ones(5))
Results of Nonlinear Solver Algorithm
* Algorithm: Anderson m=5 beta=1 aa_start=1 droptol=0
* Starting Point: [1.0, 1.0, 1.0, 1.0, 1.0]
* Zero: [0.0, 0.0, 0.0, 0.0, 0.0]
* Inf-norm of residuals: 0.000000
* Iterations: 3
* Convergence: true
* |x - x'| < 0.0e+00: true
* |f(x)| < 1.0e-08: true
* Function Calls (f): 3
* Jacobian Calls (df/dx): 0
If your function would require a global optimization tools to find a fixed point then you can e.g. use BlackBoxOptim.jl with norm(f(x) .-x) as an objective:
julia> using LinearAlgebra
julia> using BlackBoxOptim
julia> function example(p::Array{Float64,1})
q = -p
return q
end
example (generic function with 1 method)
julia> f(x) = norm(example(x) .- x)
f (generic function with 1 method)
julia> bboptimize(f; SearchRange = (-5.0, 5.0), NumDimensions = 1)
Starting optimization with optimizer DiffEvoOpt{FitPopulation{Float64},RadiusLimitedSelector,BlackBoxOptim.AdaptiveDiffEvoRandBin{3},RandomBound{ContinuousRectSearchSpace}}
0.00 secs, 0 evals, 0 steps
Optimization stopped after 10001 steps and 0.15 seconds
Termination reason: Max number of steps (10000) reached
Steps per second = 68972.31
Function evals per second = 69717.14
Improvements/step = 0.35090
Total function evaluations = 10109
Best candidate found: [-8.76093e-40]
Fitness: 0.000000000
julia> bboptimize(f; SearchRange = (-5.0, 5.0), NumDimensions = 3);
Starting optimization with optimizer DiffEvoOpt{FitPopulation{Float64},RadiusLimitedSelector,BlackBoxOptim.AdaptiveDiffEvoRandBin{3},RandomBound{ContinuousRectSearchSpace}}
0.00 secs, 0 evals, 0 steps
Optimization stopped after 10001 steps and 0.02 seconds
Termination reason: Max number of steps (10000) reached
Steps per second = 625061.23
Function evals per second = 631498.72
Improvements/step = 0.32330
Total function evaluations = 10104
Best candidate found: [-3.00106e-12, -5.33545e-12, 5.39072e-13]
Fitness: 0.000000000
julia> bboptimize(f; SearchRange = (-5.0, 5.0), NumDimensions = 5);
Starting optimization with optimizer DiffEvoOpt{FitPopulation{Float64},RadiusLimitedSelector,BlackBoxOptim.AdaptiveDiffEvoRandBin{3},RandomBound{ContinuousRectSearchSpace}}
0.00 secs, 0 evals, 0 steps
Optimization stopped after 10001 steps and 0.02 seconds
Termination reason: Max number of steps (10000) reached
Steps per second = 526366.94
Function evals per second = 530945.88
Improvements/step = 0.29900
Total function evaluations = 10088
Best candidate found: [-9.23635e-8, -2.6889e-8, -2.93044e-8, -1.62639e-7, 3.99672e-8]
Fitness: 0.000000391
I'm an author of IntervalRootFinding.jl. I'm happy to say that the documentation has been improved a lot recently, and no unicode characters are necessary. I suggest using the master branch.
Here's how to solve your example with the package. Note that this package should be able to find all of the roots within a box, and guarantee that it has found all of them. Yours only has 1:
julia> using IntervalArithmetic, IntervalRootFinding
julia> function example(p)
q = -p
return q
end
example (generic function with 2 methods)
julia> X = IntervalBox(-2..2, 2)
[-2, 2] × [-2, 2]
julia> roots(x -> example(x) - x, X, Krawczyk)
1-element Array{Root{IntervalBox{2,Float64}},1}:
Root([0, 0] × [0, 0], :unique)
For more information, I suggest looking at https://discourse.julialang.org/t/ann-intervalrootfinding-jl-for-finding-all-roots-of-a-multivariate-function/9515.

how to change max recursion depth in Julia?

I was curious how quick and accurate, algorithm from Rosseta code ( https://rosettacode.org/wiki/Ackermann_function ) for (4,2) parameters, could be. But got StackOverflowError.
julia> using Memoize
#memoize ack3(m, n) =
m == 0 ? n + 1 :
n == 0 ? ack3(m-1, 1) :
ack3(m-1, ack3(m, n-1))
# WARNING! Next line has to calculate and print number with 19729 digits!
julia> ack3(4,2) # -> StackOverflowError
# has to be -> 2003529930406846464979072351560255750447825475569751419265016973710894059556311
# ...
# 4717124577965048175856395072895337539755822087777506072339445587895905719156733
EDIT:
Oscar Smith is right that trying ack3(4,2) is unrealistic. This is version translated from Rosseta's C++:
module Ackermann
function ackermann(m::UInt, n::UInt)
function ack(m::UInt, n::BigInt)
if m == 0
return n + 1
elseif m == 1
return n + 2
elseif m == 2
return 3 + 2 * n;
elseif m == 3
return 5 + 8 * (BigInt(2) ^ n - 1)
else
if n == 0
return ack(m - 1, BigInt(1))
else
return ack(m - 1, ack(m, n - 1))
end
end
end
return ack(m, BigInt(n))
end
end
julia> import Ackermann;Ackermann.ackermann(UInt(1),UInt(1));#time(a4_2 = Ackermann.ackermann(UInt(4),UInt(2)));t = "$a4_2"; println("len = $(length(t)) first_digits=$(t[1:20]) last digits=$(t[end-20:end])")
0.000041 seconds (57 allocations: 33.344 KiB)
len = 19729 first_digits=20035299304068464649 last digits=445587895905719156733
Julia itself does not have an internal limit to the stack size, but your operating system does. The exact limits here (and how to change them) will be system dependent. On my Mac (and I assume other POSIX-y systems), I can check and change the stack size of programs that get called by my shell with ulimit:
$ ulimit -s
8192
$ julia -q
julia> f(x) = x > 0 ? f(x-1) : 0 # a simpler recursive function
f (generic function with 1 method)
julia> f(523918)
0
julia> f(523919)
ERROR: StackOverflowError:
Stacktrace:
[1] f(::Int64) at ./REPL[1]:1 (repeats 80000 times)
$ ulimit -s 16384
$ julia -q
julia> f(x) = x > 0 ? f(x-1) : 0
f (generic function with 1 method)
julia> f(1048206)
0
julia> f(1048207)
ERROR: StackOverflowError:
Stacktrace:
[1] f(::Int64) at ./REPL[1]:1 (repeats 80000 times)
I believe the exact number of recursive calls that will fit on your stack will depend upon both your system and the complexity of the function itself (that is, how much each recursive call needs to store on the stack). This is the bare minimum. I have no idea how big you'd need to make the stack limit in order to compute that Ackermann function.
Note that I doubled the stack size and it more than doubled the number of recursive calls — this is because of a constant overhead:
julia> log2(523918)
18.998981503278365
julia> 2^19 - 523918
370
julia> log2(1048206)
19.99949084151746
julia> 2^20 - 1048206
370
Just fyi, even if you change the max recursion depth, you won't get the right answer as Julia uses 64 bit integers, so integer overflow with make stuff not work. To get the right answer, you will have to use big ints to have any hope. The next problem is that you probably don't want to memoize, as almost all of the computations are not repeated, and you will be computing the function more than 10^19729 different inputs, which you really do not want to store.

Resources