Need help modeling a palette type - functional-programming

I am trying to create a Palette type in Elm by following the guidelines in Model the problem article. My first thought was to say:
type alias Palette = List Color
But this has drawbacks. A palette is a list of colors but it also must have two color, one for background and one for foreground.
My second try was to have a record type:
type alias Palette =
{ bg : Color
, fg : List Color
}
this is better but how do I make sure the fg field is a list with at least one element?
Any hints on how to think functionally and make illegal states unrepresentable?
Thanks!

If I understand your question correctly, you are looking for a data type that represents a list with at least one element. You can define your own such list with something like this:
type NonEmptyList a = ListItem a (NonEmptyList a) | RootItem a
To make life easier, you could then define a few helper functions so that you can translate to and from a normal Elm List:
toList : NonEmptyList a -> List a
toList list =
case list of
RootItem x -> [x]
ListItem x rest -> x :: toList rest
fromList : List a -> Maybe (NonEmptyList a)
fromList list =
case list of
[] -> Nothing
[x] -> Just (RootItem x)
(x::xs) -> Maybe.map (ListItem x) <| fromList xs
You could then define your Palette in terms of your new non-empty list.
type alias Palette =
{ bg : Color
, fg : NonEmptyList Color
}
Now your fg field is always guaranteed by the compiler to have at least one value.

Related

Standard ML : Check conditions when iterating a list

i'm studying the programming language Standard ML and i am wondering how i can iterate a list with a check condition.
In other languages we have for loops like :
var input;
for(var i = 0; i < arr.length; i++) {
if(arr[i] == input) {
//you have arrived at your condition...
} else {
//other case
}
}
f.ex
i want to iterate through a list and check if the input variable matches a existing element in the list.
i = 5
xs = [1,5,2,3,6] --> the element matches after one iteration.
fun check i nil = []
| check i (x::xs) = if i=x
then //dowork
else //iterate;
I've gone through many documentations on how to implement this without success.
It would be really helpful if someone could give me some explaining regarding how i can use let val A in B end; inside or outside of if conditions for this kind of work.
how i can iterate a list with a check condition
fun check i nil = []
| check i (x::xs) = if i=x
then //dowork
else //iterate;
i want to iterate through a list and check if the input variable matches a existing element in the list.
I would call this a predicate combinator. It already exists in the standard library and is called List.exists. But you can also make it yourself:
fun exists p [] = false
| exists p (x::xs) = p x orelse exists p xs
This is a simplification of the if-then-else you're attempting, which would look like:
fun exists p [] = false
| exists p (x::xs) = if p x then true else exists p xs
If-then-else isn't really necessary when the result type is a boolean, since orelse, andalso and not are short-circuiting (will not evaluate their second operand if the result can be determined with the first).
Using this List.exists function to check if a list contains a specific element, you have to construct a p that compares the list element with some given value, e.g.:
fun check y xs = List.exists (fn x => ...) xs
This may seem a bit more complicated than simply writing check recursively from scratch,
fun check y [] = false
| check y (x::xs) = ... orelse check y xs
but a solution using higher-order functions is preferred for several reasons.
One is that a seasoned reader will quickly detect what you're doing when seeing List.exists: Ah, you're scanning a list for an element given a predicate. Whereas if your function is explicitly recursive, the reader will have to read the entire recursion scheme: OK, the function doesn't do anything funky, which I'd have known if I'd seen e.g. List.exists.

OCaml directed graphs vertex module

I have seen some graphs vertex signatures and even come up with my own:
module type VERTEX = sig
type t
type label
val equal : t -> t -> bool
val create : label -> t
val label : t -> label
end
But I have completely no idea how to implement it as a module. What types should t and label be? How can I create a t based on a label? And how do I get the label from a t?
I'm an author of Graphlib, so I can't pass by as this question hits me directly into my heart. Honestly, I was asked this question millions of times offline and never was able to provide a good answer.
The real problem is that the graph interfaces from the OCamlGraph library are all messed up. We started Graphlib as an attempt to fix them. However, OCamlGraph is a valuable repository of Graph algorithms, thus we have constrained ourselves to be compatible with the OCamlGraph interface. The main problem for us was and still is this Vertex interface that basically establishes a bijection between the set of labels and the set of nodes. People usually stumble on this, as this doesn't make sense - why do we need two different types, one for the label and another for the vertex, if they are the same?
Indeed, the simplest implementation of the VERTEX interface is the following module
module Int : VERTEX with type label = int = struct
type t = int
type label = int
let create x = x
let label x = x
end
In that case, we indeed have a trivial bijection (via the identity endofunctor) between the set of labels and the set of vertices.
However, the deeper look, shows us that a signature
val create : label -> t
val label : t -> label
Is not really a bijection, as the bijection is a one-to-one mapping. It is not really required or enforced by the type system. For example, the create function could be a surjection of label onto t, where label is some distinctive element of a family of vertices. Correspondingly, the label function, could be a forgetting functor that returns the distinctive label and forgetting everything else.
Given this approach, we can have another implementation:
module Labeled = struct
type label = int
type t = {
label : label;
data : "";
}
let create label = {label; data = ""}
let label n = n.label
let data n = n.data
let with_data n data = {n with data}
let compare x y = compare x.label y.label
end
In that implementation, we use the label as an identity of a node, and arbitrary attribute can be attached to a node. In this interpretation, the create function partitions all sets of nodes into a set of equivalence classes, where all members of a class, share the same identity, i.e., they represent the same real-world entity in different points of time or space. For example,
type color = Red | Yellow | Green
module TrafficLight = struct
type label = int
type t = {
id : label;
color : color
}
let create id = {id; color=Red}
let label t = t.id
let compare x y = compare x.id y.id
let switch t color = {t with color}
let color t = t.color
end
In this model, we represent a traffic light with its id number. The color attribute doesn't affect an identity of a traffic light (if a traffic light switches to another color it is still the same traffic light, although in a functional programming language it is represented with two different objects).
The main problem with the above representation is that in all graph textbooks the label is used in the opposite meaning - as an opaque attribute. In a textbook, they will refer to the color of a traffic light as a label. And the node itself will be represented as an int. That's why I'm saying that OCamlGraph interfaces are messed up (and consequently the Graphlib interfaces). So, if you don't want to fall in a contradiction with textbooks, then you should use unlabeled graphs (with int probably is the best representation of a node). And if you need to attach attributes to your nodes, you can use external finite maps, i.e., arrays, maps, associative lists, or any other dictionaries. Otherwise, you need to keep in mind that your label is not a label, but vice verse - the node.
With all this said, let's specify a better interface for a graph vertex:
module type VERTEX = sig
type id
type label
type t
val create : id -> t
val id : t -> id
val label : t -> label
val with_label : t -> label -> label
end
The proposed interface is compatible with your interface (and thus with the OCamlGraph), as it is isomorphic modulo renaming (i.e., we renamed label to id). It also allows us to create efficient unlabeled nodes, where id = t, as well as attach arbitrary information to a node without relying on external mappings.
Implementing a module based on a signature is like a mini puzzle. Here's how I would analyze it:
The first remark I have when reading that signature, is that there is no way in that signature to build values of type label. So, our implementation will need to be a bit larger, maybe by specifying type label = string.
Now, we have:
val create : label -> t
val label : t -> label
Which is a bijection (the types are "equivalent"). The simplest way to implement that is by defining type t = label, so that it's really only one type, but from the exterior of the module you don't know that.
The rest is
type t
val equal: t -> t -> bool
We said that label = string, and t = label. So t = string, and equal is the string equality.
Boom! here we are:
module String_vertex : VERTEX with type label = string = struct
type label = string
type t = string
let equal = String.equal
let create x = x
let label x = x
end
The VERTEX with type label = string part is just if you want to define it in the same file. Otherwise, you can do something like:
(* string_vertex.ml *)
type label = string
type t = string
let equal = String.equal
let create x = x
let label x = x
and any functor F that takes a VERTEX can be called with F(String_vertex).
It would be best practice to create string_vertex.mli with contents include VERTEX with type label = string, though.

expression has type 'a list -> 'b list but an expression was expected of type 'b list

This is my function
let rec helper inputList = function
| [] -> []
| a :: b :: hd ->
if a = b then helper ([b::hd])
else a :: helper (b::hd)
It's not complete, however I can't see why I keep getting the error in the title at helper ([b::hd]). I've tried helper (b::hd) or helper (b::hd::[]) however all come up with errors. How do I make it so that it works?
When you use function you are supplying a pattern for the parameter of the function. But you already have a parameter named inputList. So this function helper is expecting two parameters (but it ignores the first).
You can fix this by removing inputList.
You also have a problem in your first recursive call to helper. Your expression [b :: hd] is a list of lists. I suspect that you want something more like just b :: hd here.
There is at least one other problem, but I hope this helps get you started.
There are multiple errors here. One is that the keyword function means we have an implicit parameter over which we are working. So the pattern matching happens on that "invisible" parameter. But here you defined probably the explicit one: inputList. So we can remove that one:
let rec helper = function
| [] -> []
| a :: b :: hd -> if a = b then helper ([b::hd]) else a :: helper (b:: hd)
Next there is a problem with the types: in the recursion, you use:
helper ([b::hd]); and
a :: helper (b:: hd)
But you put these on the same line, and that makes no sense, since the first one passes a list of lists of elements, and the second a list of elements. So the result of the first one would be a list of list of elements, and the second one a list of elements. It does not make sense to merge these.
If I understood correctly that you want to ensure that no two consecutive elements should occur that are equal, then we should rewrite it to:
let rec helper = function
| [] -> []
| a :: b :: hd -> if a = b then helper (b::hd) else a :: helper (b:: hd)
You have defined two patterns here:
one for the empty list; and
one for a list with at least two elements.
The second one will perform recursion on the tail of the list b :: hd. So that means that eventually when we pass it a list with n elements, it will recursively work on a list with n-1 elements, n-2 elements, etc. But eventually it will have one element. And there is no case for that. So we need to add a case for the one element pattern:
let rec helper = function
| [] -> []
| h :: [] -> h :: []
| a :: b :: hd -> if a = b then helper (b::hd) else a :: helper (b:: hd)

how return a new type with an update value

If I want to change a value on a list, I will return a new list with the new value instead of changing the value on the old list.
Now I have four types. I need to update the value location in varEnd, instead of changing the value, I need to return a new type with the update value
type varEnd = {
v: ctype;
k: varkind;
l: location;
}
;;
type varStart = {
ct: ctype;
sy: sTable;
n: int;
stm: stmt list;
e: expr
}
and sEntry = Var of varEnd | Fun of varStart
and sTable = (string * sEntry) list
type environment = sTable list;;
(a function where environment is the only parameter i can use)
let allocateMem (env:environment) : environment =
I tried to use List.iter, but it changes the value directly, which type is also not mutable. I think List.fold will be a better option.
The biggest issue i have is there are four different types.
I think you're saying that you know how to change an element of a list by constructing a new list.
Now you want to do this to an environment, and an environment is a list of quite complicated things. But this doesn't make any difference, the way to change the list is the same. The only difference is that the replacement value will be a complicated thing.
I don't know what you mean when you say you have four types. I see a lot more than four types listed here. But on the other hand, an environment seems to contain things of basically two different types.
Maybe (but possibly not) you're saying you don't know a good way to change just one of the four fields of a record while leaving the others the same. This is something for which there's a good answer. Assume that x is something of type varEnd. Then you can say:
{ x with l = loc }
If, in fact, you don't know how to modify an element of a list by creating a new list, then that's the thing to figure out first. You can do it with a fold, but in fact you can also do it with List.map, which is a little simpler. You can't do it with List.iter.
Update
Assume we have a record type like this:
type r = { a: int; b: float; }
Here's a function that takes r list list and adds 1.0 to the b fields of those records whose a fields are 0.
let incr_ll rll =
let f r = if r.a = 0 then { r with b = r.b +. 1.0 } else r in
List.map (List.map f) rll
The type of this function is r list list -> r list list.

What is 'Pattern Matching' in functional languages?

I'm reading about functional programming and I've noticed that Pattern Matching is mentioned in many articles as one of the core features of functional languages.
Can someone explain for a Java/C++/JavaScript developer what does it mean?
Understanding pattern matching requires explaining three parts:
Algebraic data types.
What pattern matching is
Why its awesome.
Algebraic data types in a nutshell
ML-like functional languages allow you define simple data types called "disjoint unions" or "algebraic data types". These data structures are simple containers, and can be recursively defined. For example:
type 'a list =
| Nil
| Cons of 'a * 'a list
defines a stack-like data structure. Think of it as equivalent to this C#:
public abstract class List<T>
{
public class Nil : List<T> { }
public class Cons : List<T>
{
public readonly T Item1;
public readonly List<T> Item2;
public Cons(T item1, List<T> item2)
{
this.Item1 = item1;
this.Item2 = item2;
}
}
}
So, the Cons and Nil identifiers define simple a simple class, where the of x * y * z * ... defines a constructor and some data types. The parameters to the constructor are unnamed, they're identified by position and data type.
You create instances of your a list class as such:
let x = Cons(1, Cons(2, Cons(3, Cons(4, Nil))))
Which is the same as:
Stack<int> x = new Cons(1, new Cons(2, new Cons(3, new Cons(4, new Nil()))));
Pattern matching in a nutshell
Pattern matching is a kind of type-testing. So let's say we created a stack object like the one above, we can implement methods to peek and pop the stack as follows:
let peek s =
match s with
| Cons(hd, tl) -> hd
| Nil -> failwith "Empty stack"
let pop s =
match s with
| Cons(hd, tl) -> tl
| Nil -> failwith "Empty stack"
The methods above are equivalent (although not implemented as such) to the following C#:
public static T Peek<T>(Stack<T> s)
{
if (s is Stack<T>.Cons)
{
T hd = ((Stack<T>.Cons)s).Item1;
Stack<T> tl = ((Stack<T>.Cons)s).Item2;
return hd;
}
else if (s is Stack<T>.Nil)
throw new Exception("Empty stack");
else
throw new MatchFailureException();
}
public static Stack<T> Pop<T>(Stack<T> s)
{
if (s is Stack<T>.Cons)
{
T hd = ((Stack<T>.Cons)s).Item1;
Stack<T> tl = ((Stack<T>.Cons)s).Item2;
return tl;
}
else if (s is Stack<T>.Nil)
throw new Exception("Empty stack");
else
throw new MatchFailureException();
}
(Almost always, ML languages implement pattern matching without run-time type-tests or casts, so the C# code is somewhat deceptive. Let's brush implementation details aside with some hand-waving please :) )
Data structure decomposition in a nutshell
Ok, let's go back to the peek method:
let peek s =
match s with
| Cons(hd, tl) -> hd
| Nil -> failwith "Empty stack"
The trick is understanding that the hd and tl identifiers are variables (errm... since they're immutable, they're not really "variables", but "values" ;) ). If s has the type Cons, then we're going to pull out its values out of the constructor and bind them to variables named hd and tl.
Pattern matching is useful because it lets us decompose a data structure by its shape instead of its contents. So imagine if we define a binary tree as follows:
type 'a tree =
| Node of 'a tree * 'a * 'a tree
| Nil
We can define some tree rotations as follows:
let rotateLeft = function
| Node(a, p, Node(b, q, c)) -> Node(Node(a, p, b), q, c)
| x -> x
let rotateRight = function
| Node(Node(a, p, b), q, c) -> Node(a, p, Node(b, q, c))
| x -> x
(The let rotateRight = function constructor is syntax sugar for let rotateRight s = match s with ....)
So in addition to binding data structure to variables, we can also drill down into it. Let's say we have a node let x = Node(Nil, 1, Nil). If we call rotateLeft x, we test x against the first pattern, which fails to match because the right child has type Nil instead of Node. It'll move to the next pattern, x -> x, which will match any input and return it unmodified.
For comparison, we'd write the methods above in C# as:
public abstract class Tree<T>
{
public abstract U Match<U>(Func<U> nilFunc, Func<Tree<T>, T, Tree<T>, U> nodeFunc);
public class Nil : Tree<T>
{
public override U Match<U>(Func<U> nilFunc, Func<Tree<T>, T, Tree<T>, U> nodeFunc)
{
return nilFunc();
}
}
public class Node : Tree<T>
{
readonly Tree<T> Left;
readonly T Value;
readonly Tree<T> Right;
public Node(Tree<T> left, T value, Tree<T> right)
{
this.Left = left;
this.Value = value;
this.Right = right;
}
public override U Match<U>(Func<U> nilFunc, Func<Tree<T>, T, Tree<T>, U> nodeFunc)
{
return nodeFunc(Left, Value, Right);
}
}
public static Tree<T> RotateLeft(Tree<T> t)
{
return t.Match(
() => t,
(l, x, r) => r.Match(
() => t,
(rl, rx, rr) => new Node(new Node(l, x, rl), rx, rr))));
}
public static Tree<T> RotateRight(Tree<T> t)
{
return t.Match(
() => t,
(l, x, r) => l.Match(
() => t,
(ll, lx, lr) => new Node(ll, lx, new Node(lr, x, r))));
}
}
For seriously.
Pattern matching is awesome
You can implement something similar to pattern matching in C# using the visitor pattern, but its not nearly as flexible because you can't effectively decompose complex data structures. Moreover, if you are using pattern matching, the compiler will tell you if you left out a case. How awesome is that?
Think about how you'd implement similar functionality in C# or languages without pattern matching. Think about how you'd do it without test-tests and casts at runtime. Its certainly not hard, just cumbersome and bulky. And you don't have the compiler checking to make sure you've covered every case.
So pattern matching helps you decompose and navigate data structures in a very convenient, compact syntax, it enables the compiler to check the logic of your code, at least a little bit. It really is a killer feature.
Short answer: Pattern matching arises because functional languages treat the equals sign as an assertion of equivalence instead of assignment.
Long answer: Pattern matching is a form of dispatch based on the “shape” of the value that it's given. In a functional language, the datatypes that you define are usually what are known as discriminated unions or algebraic data types. For instance, what's a (linked) list? A linked list List of things of some type a is either the empty list Nil or some element of type a Consed onto a List a (a list of as). In Haskell (the functional language I'm most familiar with), we write this
data List a = Nil
| Cons a (List a)
All discriminated unions are defined this way: a single type has a fixed number of different ways to create it; the creators, like Nil and Cons here, are called constructors. This means that a value of the type List a could have been created with two different constructors—it could have two different shapes. So suppose we want to write a head function to get the first element of the list. In Haskell, we would write this as
-- `head` is a function from a `List a` to an `a`.
head :: List a -> a
-- An empty list has no first item, so we raise an error.
head Nil = error "empty list"
-- If we are given a `Cons`, we only want the first part; that's the list's head.
head (Cons h _) = h
Since List a values can be of two different kinds, we need to handle each one separately; this is the pattern matching. In head x, if x matches the pattern Nil, then we run the first case; if it matches the pattern Cons h _, we run the second.
Short answer, explained: I think one of the best ways to think about this behavior is by changing how you think of the equals sign. In the curly-bracket languages, by and large, = denotes assignment: a = b means “make a into b.” In a lot of functional languages, however, = denotes an assertion of equality: let Cons a (Cons b Nil) = frob x asserts that the thing on the left, Cons a (Cons b Nil), is equivalent to the thing on the right, frob x; in addition, all variables used on the left become visible. This is also what's happening with function arguments: we assert that the first argument looks like Nil, and if it doesn't, we keep checking.
It means that instead of writing
double f(int x, int y) {
if (y == 0) {
if (x == 0)
return NaN;
else if (x > 0)
return Infinity;
else
return -Infinity;
} else
return (double)x / y;
}
You can write
f(0, 0) = NaN;
f(x, 0) | x > 0 = Infinity;
| else = -Infinity;
f(x, y) = (double)x / y;
Hey, C++ supports pattern matching too.
static const int PositiveInfinity = -1;
static const int NegativeInfinity = -2;
static const int NaN = -3;
template <int x, int y> struct Divide {
enum { value = x / y };
};
template <bool x_gt_0> struct aux { enum { value = PositiveInfinity }; };
template <> struct aux<false> { enum { value = NegativeInfinity }; };
template <int x> struct Divide<x, 0> {
enum { value = aux<(x>0)>::value };
};
template <> struct Divide<0, 0> {
enum { value = NaN };
};
#include <cstdio>
int main () {
printf("%d %d %d %d\n", Divide<7,2>::value, Divide<1,0>::value, Divide<0,0>::value, Divide<-1,0>::value);
return 0;
};
Pattern matching is sort of like overloaded methods on steroids. The simplest case would be the same roughly the same as what you seen in java, arguments are a list of types with names. The correct method to call is based on the arguments passed in, and it doubles as an assignment of those arguments to the parameter name.
Patterns just go a step further, and can destructure the arguments passed in even further. It can also potentially use guards to actually match based on the value of the argument. To demonstrate, I'll pretend like JavaScript had pattern matching.
function foo(a,b,c){} //no pattern matching, just a list of arguments
function foo2([a],{prop1:d,prop2:e}, 35){} //invented pattern matching in JavaScript
In foo2, it expects a to be an array, it breaks apart the second argument, expecting an object with two props (prop1,prop2) and assigns the values of those properties to variables d and e, and then expects the third argument to be 35.
Unlike in JavaScript, languages with pattern matching usually allow multiple functions with the same name, but different patterns. In this way it is like method overloading. I'll give an example in erlang:
fibo(0) -> 0 ;
fibo(1) -> 1 ;
fibo(N) when N > 0 -> fibo(N-1) + fibo(N-2) .
Blur your eyes a little and you can imagine this in javascript. Something like this maybe:
function fibo(0){return 0;}
function fibo(1){return 1;}
function fibo(N) when N > 0 {return fibo(N-1) + fibo(N-2);}
Point being that when you call fibo, the implementation it uses is based on the arguments, but where Java is limited to types as the only means of overloading, pattern matching can do more.
Beyond function overloading as shown here, the same principle can be applied other places, such as case statements or destructuring assingments. JavaScript even has this in 1.7.
Pattern matching allows you to match a value (or an object) against some patterns to select a branch of the code. From the C++ point of view, it may sound a bit similar to the switch statement. In functional languages, pattern matching can be used for matching on standard primitive values such as integers. However, it is more useful for composed types.
First, let's demonstrate pattern matching on primitive values (using extended pseudo-C++ switch):
switch(num) {
case 1:
// runs this when num == 1
case n when n > 10:
// runs this when num > 10
case _:
// runs this for all other cases (underscore means 'match all')
}
The second use deals with functional data types such as tuples (which allow you to store multiple objects in a single value) and discriminated unions which allow you to create a type that can contain one of several options. This sounds a bit like enum except that each label can also carry some values. In a pseudo-C++ syntax:
enum Shape {
Rectangle of { int left, int top, int width, int height }
Circle of { int x, int y, int radius }
}
A value of type Shape can now contain either Rectangle with all the coordinates or a Circle with the center and the radius. Pattern matching allows you to write a function for working with the Shape type:
switch(shape) {
case Rectangle(l, t, w, h):
// declares variables l, t, w, h and assigns properties
// of the rectangle value to the new variables
case Circle(x, y, r):
// this branch is run for circles (properties are assigned to variables)
}
Finally, you can also use nested patterns that combine both of the features. For example, you could use Circle(0, 0, radius) to match for all shapes that have the center in the point [0, 0] and have any radius (the value of the radius will be assigned to the new variable radius).
This may sound a bit unfamiliar from the C++ point of view, but I hope that my pseudo-C++ make the explanation clear. Functional programming is based on quite different concepts, so it makes better sense in a functional language!
Pattern matching is where the interpreter for your language will pick a particular function based on the structure and content of the arguments you give it.
It is not only a functional language feature but is available for many different languages.
The first time I came across the idea was when I learned prolog where it is really central to the language.
e.g.
last([LastItem], LastItem).
last([Head|Tail], LastItem) :-
last(Tail, LastItem).
The above code will give the last item of a list. The input arg is the first and the result is the second.
If there is only one item in the list the interpreter will pick the first version and the second argument will be set to equal the first i.e. a value will be assigned to the result.
If the list has both a head and a tail the interpreter will pick the second version and recurse until it there is only one item left in the list.
For many people, picking up a new concept is easier if some easy examples are provided, so here we go:
Let's say you have a list of three integers, and wanted to add the first and the third element. Without pattern matching, you could do it like this (examples in Haskell):
Prelude> let is = [1,2,3]
Prelude> head is + is !! 2
4
Now, although this is a toy example, imagine we would like to bind the first and third integer to variables and sum them:
addFirstAndThird is =
let first = head is
third = is !! 3
in first + third
This extraction of values from a data structure is what pattern matching does. You basically "mirror" the structure of something, giving variables to bind for the places of interest:
addFirstAndThird [first,_,third] = first + third
When you call this function with [1,2,3] as its argument, [1,2,3] will be unified with [first,_,third], binding first to 1, third to 3 and discarding 2 (_ is a placeholder for things you don't care about).
Now, if you only wanted to match lists with 2 as the second element, you can do it like this:
addFirstAndThird [first,2,third] = first + third
This will only work for lists with 2 as their second element and throw an exception otherwise, because no definition for addFirstAndThird is given for non-matching lists.
Until now, we used pattern matching only for destructuring binding. Above that, you can give multiple definitions of the same function, where the first matching definition is used, thus, pattern matching is a little like "a switch statement on stereoids":
addFirstAndThird [first,2,third] = first + third
addFirstAndThird _ = 0
addFirstAndThird will happily add the first and third element of lists with 2 as their second element, and otherwise "fall through" and "return" 0. This "switch-like" functionality can not only be used in function definitions, e.g.:
Prelude> case [1,3,3] of [a,2,c] -> a+c; _ -> 0
0
Prelude> case [1,2,3] of [a,2,c] -> a+c; _ -> 0
4
Further, it is not restricted to lists, but can be used with other types as well, for example matching the Just and Nothing value constructors of the Maybe type in order to "unwrap" the value:
Prelude> case (Just 1) of (Just x) -> succ x; Nothing -> 0
2
Prelude> case Nothing of (Just x) -> succ x; Nothing -> 0
0
Sure, those were mere toy examples, and I did not even try to give a formal or exhaustive explanation, but they should suffice to grasp the basic concept.
You should start with the Wikipedia page that gives a pretty good explanation. Then, read the relevant chapter of the Haskell wikibook.
This is a nice definition from the above wikibook:
So pattern matching is a way of
assigning names to things (or binding
those names to those things), and
possibly breaking down expressions
into subexpressions at the same time
(as we did with the list in the
definition of map).
Here is a really short example that shows pattern matching usefulness:
Let's say you want to sort up an element in a list:
["Venice","Paris","New York","Amsterdam"]
to (I've sorted up "New York")
["Venice","New York","Paris","Amsterdam"]
in an more imperative language you would write:
function up(city, cities){
for(var i = 0; i < cities.length; i++){
if(cities[i] === city && i > 0){
var prev = cities[i-1];
cities[i-1] = city;
cities[i] = prev;
}
}
return cities;
}
In a functional language you would instead write:
let up list value =
match list with
| [] -> []
| previous::current::tail when current = value -> current::previous::tail
| current::tail -> current::(up tail value)
As you can see the pattern matched solution has less noise, you can clearly see what are the different cases and how easy it's to travel and de-structure our list.
I've written a more detailed blog post about it here.

Resources