Two different methods of the principal component analysis were conducted to analyze the following data (ch082.dat) using the Box1's R-code, below.https://drive.google.com/file/d/1xykl6ln-bUnXIs-jIA3n5S3XgHjQbkWB/view?usp=sharing
The first method uses the rotation matrix (See 'ans_mat' under the '#rotated data' of the Box1's code) and,
the second method uses the 'pcomp' function (See 'rpca' under the '#rotated data' of the Box1's code).
However, there is a subtle discrepancy in the answer between the method using the rotation matrix and the method using the 'pcomp' function.
make it match
My Question
What should I do so that the result of the rotation matrix -based method matches the result of the'pcomp' function?
As far as I've tried with various data, including other data, the actual discrepancies seem to be limited to scale shifts and mirroring transformations.
The results of the rotation matrix -based method is shown in left panel.
The results of the pcomp function -based method is shown in right panel.
Mirror inversion can be seen in "ch082.dat" data.(See Fig.1);
It seems that, in some j, the sign of the "jth eigenvector of the correlation matrix" and the sign of the "jth column of the output value of the prcomp function" may be reversed. If there is a degree of overlap in the eigenvalues, it is possible that the difference may be more complex than mirror inversion.
Fig.1
There is a scale shift for the Box2's data (See See Fig.2), despite the centralization and normalization to the data.
Fig.2
Box.1
#dataload
##Use the 'setwd' function to specify the directory containing 'ch082.dat'.
##For example, if you put this file directly under the C drive of your Windows PC, you can run the following command.
setwd("C:/") #Depending on where you put the file, you may need to change the path.
getwd()
w1<-read.table("ch082.dat",header = TRUE,row.names = 1,fileEncoding = "UTF-8")
w1
#Function for standardizing data
#Thanks to https://qiita.com/ohisama2/items/5922fac0c8a6c21fcbf8
standalize <- function(data)
{ for(i in length(data[1,]))
{
x <- as.matrix(data[,i])
y <- (x-mean(x)/sd(x))
data[,i] <- y
}
return(data)}
#Method using rotation matrix
z_=standalize(w1)
B_mat=cor(z_) #Compute correlation matrix
eigen_m <- eigen(B_mat)
sample_mat <- as.matrix(z_)
ans_mat=sample_mat
for(j in 1:length(sample_mat[1,])){
ans_mat[,j]=sample_mat%*%eigen_m$vectors[,j]
}
#Method using "rpca" function
rpca <- prcomp(w1,center=TRUE, scale=TRUE)
#eigen vectors
eigen_m$vectors
rpca
#rotated data
ans_mat
rpca$x
#Graph Plots
par(mfrow=c(1,2))
plot(
ans_mat[,1],
ans_mat[,2],
main="Rotation using eigenvectors"
)
plot(rpca$x[,1], rpca$x[,2],
main="Principal component score")
par(mfrow=c(1,1))
#summary
summary(rpca)$importance
Box2.
sample_data <- data.frame(
X = c(2,4, 6, 5,7, 8,10),
Y = c(6,8,10,11,9,12,14)
)
X = c(2,4, 6, 5,7, 8,10)
Y = c(6,8,10,11,9,12,14)
plot(Y ~ X)
w1=sample_data
Reference
https://logics-of-blue.com/principal-components-analysis/
(Written in Japanease)
The two sets of results agree. First we can simplify your code a bit. You don't need your function or the for loop:
z_ <- scale(w1)
B_mat <- cor(z_)
eigen_m <- eigen(B_mat)
ans_mat <- z_ %*% eigen_m$vectors
Now the prcomp version
z_pca <- prcomp(z_)
z_pca$sdev^2 # Equals eigen_m$values
z_pca$rotation # Equals eigen_m$vectors
z_pca$x # Equals ans_mat
Your original code mislabeled ans_mat columns. They are actually the principal component scores. You can fix that with
colnames(ans_mat) <- colnames(z_pca$x)
The pc loadings (and therefore the scores) are not uniquely defined with respect to reflection. In other words multiplying all of the loadings or scores in one component by -1 flips them but does not change their relationships to one another. Multiply z_pca$x[, 1] by -1 and the plots will match:
z_pca$x[, 1] <- z_pca$x[, 1] * -1
dev.new(width=10, height=6)
par(mfrow=c(1,2))
plot(ans_mat[,1], ans_mat[,2], main="Rotation using eigenvectors")
plot(z_pca$x[,1], z_pca$x[,2], main="Principal component score")
I am working with the cumulative emergence of flies over time (taken at irregular intervals) over many summers (though first I am just trying to make one year work). The cumulative emergence follows a sigmoid pattern and I want to create a maximum likelihood estimation of a 3-parameter Weibull cumulative distribution function. The three-parameter models I've been trying to use in the fitdistrplus package keep giving me an error. I think this must have something to do with how my data is structured, but I cannot figure it out. Obviously I want it to read each point as an x (degree days) and a y (emergence) value, but it seems to be unable to read two columns. The main error I'm getting says "Non-numeric argument to mathematical function" or (with slightly different code) "data must be a numeric vector of length greater than 1". Below is my code including added columns in the df_dd_em dataframe for cumulative emergence and percent emergence in case that is useful.
degree_days <- c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94)
emergence <- c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0)
cum_em <- cumsum(emergence)
df_dd_em <- data.frame (degree_days, emergence, cum_em)
df_dd_em$percent <- ave(df_dd_em$emergence, FUN = function(df_dd_em) 100*(df_dd_em)/46)
df_dd_em$cum_per <- ave(df_dd_em$cum_em, FUN = function(df_dd_em) 100*(df_dd_em)/46)
x <- pweibull(df_dd_em[c(1,3)],shape=5)
dframe2.mle <- fitdist(x, "weibull",method='mle')
Here's my best guess at what you're after:
Set up data:
dd <- data.frame(degree_days=c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94),
emergence=c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0))
dd <- transform(dd,cum_em=cumsum(emergence))
We're actually going to fit to an "interval-censored" distribution (i.e. probability of emergence between successive degree day observations: this version assumes that the first observation refers to observations before the first degree-day observation, you could change it to refer to observations after the last observation).
library(bbmle)
## y*log(p) allowing for 0/0 occurrences:
y_log_p <- function(y,p) ifelse(y==0 & p==0,0,y*log(p))
NLLfun <- function(scale,shape,x=dd$degree_days,y=dd$emergence) {
prob <- pmax(diff(pweibull(c(-Inf,x), ## or (c(x,Inf))
shape=shape,scale=scale)),1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
library(bbmle)
I should probably have used something more systematic like the method of moments (i.e. matching the mean and variance of a Weibull distribution with the mean and variance of the data), but I just hacked around a bit to find plausible starting values:
## preliminary look (method of moments would be better)
scvec <- 10^(seq(0,4,length=101))
plot(scvec,sapply(scvec,NLLfun,shape=1))
It's important to use parscale to let R know that the parameters are on very different scales:
startvals <- list(scale=1000,shape=1)
m1 <- mle2(NLLfun,start=startvals,
control=list(parscale=unlist(startvals)))
Now try with a three-parameter Weibull (as originally requested) -- requires only a slight modification of what we already have:
library(FAdist)
NLLfun2 <- function(scale,shape,thres,
x=dd$degree_days,y=dd$emergence) {
prob <- pmax(diff(pweibull3(c(-Inf,x),shape=shape,scale=scale,thres)),
1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
startvals2 <- list(scale=1000,shape=1,thres=100)
m2 <- mle2(NLLfun2,start=startvals2,
control=list(parscale=unlist(startvals2)))
Looks like the three-parameter fit is much better:
library(emdbook)
AICtab(m1,m2)
## dAIC df
## m2 0.0 3
## m1 21.7 2
And here's the graphical summary:
with(dd,plot(cum_em~degree_days,cex=3))
with(as.list(coef(m1)),curve(sum(dd$emergence)*
pweibull(x,shape=shape,scale=scale),col=2,
add=TRUE))
with(as.list(coef(m2)),curve(sum(dd$emergence)*
pweibull3(x,shape=shape,
scale=scale,thres=thres),col=4,
add=TRUE))
(could also do this more elegantly with ggplot2 ...)
These don't seem like spectacularly good fits, but they're sane. (You could in principle do a chi-squared goodness-of-fit test based on the expected number of emergences per interval, and accounting for the fact that you've fitted a three-parameter model, although the values might be a bit low ...)
Confidence intervals on the fit are a bit of a nuisance; your choices are (1) bootstrapping; (2) parametric bootstrapping (resample parameters assuming a multivariate normal distribution of the data); (3) delta method.
Using bbmle::mle2 makes it easy to do things like get profile confidence intervals:
confint(m1)
## 2.5 % 97.5 %
## scale 1576.685652 1777.437283
## shape 4.223867 6.318481
dd <- data.frame(degree_days=c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94),
emergence=c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0))
dd$cum_em <- cumsum(dd$emergence)
dd$percent <- ave(dd$emergence, FUN = function(dd) 100*(dd)/46)
dd$cum_per <- ave(dd$cum_em, FUN = function(dd) 100*(dd)/46)
dd <- transform(dd)
#start 3 parameter model
library(FAdist)
## y*log(p) allowing for 0/0 occurrences:
y_log_p <- function(y,p) ifelse(y==0 & p==0,0,y*log(p))
NLLfun2 <- function(scale,shape,thres,
x=dd$degree_days,y=dd$percent) {
prob <- pmax(diff(pweibull3(c(-Inf,x),shape=shape,scale=scale,thres)),
1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
startvals2 <- list(scale=1000,shape=1,thres=100)
m2 <- mle2(NLLfun2,start=startvals2,
control=list(parscale=unlist(startvals2)))
summary(m2)
#graphical summary
windows(5,5)
with(dd,plot(cum_per~degree_days,cex=3))
with(as.list(coef(m2)),curve(sum(dd$percent)*
pweibull3(x,shape=shape,
scale=scale,thres=thres),col=4,
add=TRUE))
I would like to perform a backwards principal component calculation in R, meaning: obtaining the original matrix by the PCA object itself.
This is an example case:
# Load an expression matrix
load(url("http://www.giorgilab.org/allexp_rsn.rda"))
# Calculate PCA
pca <- prcomp(t(allexp_rsn))
In order to obtain the original matrix, one should multiply the rotations by the PCA themselves, as such:
test<-pca$rotation%*%pca$x
However, as you may check, the calculated "test" matrix is completely different from the original "allexp_rsn" matrix. What am I doing wrong? Is the function prcomp adding something else to the svs procedure?
Thanks :-)
Using USArrests:
pca <- prcomp(t(USArrests))
out <- t(pca$x%*%t(pca$rotation))
out <- sweep(out, 1, pca$center, '+')
apply(USArrests - out, 2, sum)
Murder Assault UrbanPop Rape
1.070921e-12 -2.778222e-12 3.801404e-13 1.428191e-12
Remember that a prerequisite to perform PC analysis is to scale and center the data. I believe that prcomp procedure does that, so pca$x returns scaled original data (with mean 0 and std. equal to 1).
Here is a solution using the eigen function, applied to a B/W image matrix to illustrate the point. The function uses increasing numbers of PCs, but you can use all of them, or only some of them
library(gplots)
library(png)
# Download an image:
download.file("http://www.giorgilab.org/pictures/monalisa.tar.gz",destfile="monalisa.tar.gz",cacheOK = FALSE)
untar("monalisa.tar.gz")
# Read image:
img <- readPNG("monalisa.png")
# Dimension
d<-1
# Rotate it:
rotate <- function(x) t(apply(x, 2, rev))
centermat<-rotate(img[,,d])
# Plot it
image(centermat,col=gray(c(0:100)/100))
# Increasing PCA
png("increasingPCA.png",width=2000,height=2000,pointsize=20)
par(mfrow=c(5,5),mar=c(0,0,0,0))
for(end in (1:25)*12){
for(d in 1){
centermat<-rotate(img[,,d])
eig <- eigen(cov(centermat))
n <- 1:end
eigmat<-t(eig$vectors[,n] %*% (t(eig$vectors[,n]) %*% t(centermat)))
image(eigmat,col=gray(c(0:100)/100))
}
}
dev.off()