Find elements in vector in R - r

A matrix I have has exactly 2 rows and n columns example
c(0,0,0,0,1,0,2,0,1,0,1,1,1,0,2)->a1
c(0,2,0,0,0,0,2,1,1,0,0,0,0,2,0)->a2
rbind(a1,a2)->matr
for a specific column ( in this example 9 with 1 in both rows) I do need to find to the left and to the right the first instance of 2/0 or 0/2 - in this example to the left is 2 and the other is 14)
The elements of every row can either be 0,1,2 - nothing else . Is there a way to do that operation on large matrixes (with 2 rows) fast? I need to to it 600k times so speed might be a consideration

library(compiler)
myfun <- cmpfun(function(m, cl) {
li <- ri <- cl
nc <- ncol(m)
repeat {
li <- li - 1
if(li == 0 || ((m[1, li] != 1) && (m[1, li] + m[2, li] == 2))) {
l <- li
break
}
}
repeat {
ri <- ri + 1
if(ri == nc || ((m[1, ri] != 1) && (m[1, ri] + m[2, ri] == 2))) {
r <- ri
break
}
}
c(l, r)
})
and, after taking into account #Martin Morgan's observations,
set.seed(1)
N <- 1000000
test <- rbind(sample(0:2, N, replace = TRUE),
sample(0:2, N, replace = TRUE))
library(microbenchmark)
microbenchmark(myfun(test, N / 2), fun(test, N / 2), foo(test, N / 2),
AWebb(test, N / 2), RHertel(test, N / 2))
# Unit: microseconds
expr min lq mean median uq max neval cld
# myfun(test, N/2) 4.658 20.033 2.237153e+01 22.536 26.022 85.567 100 a
# fun(test, N/2) 36685.750 47842.185 9.762663e+04 65571.546 120321.921 365958.316 100 b
# foo(test, N/2) 2622845.039 3009735.216 3.244457e+06 3185893.218 3369894.754 5170015.109 100 d
# AWebb(test, N/2) 121504.084 142926.590 1.990204e+05 193864.670 209918.770 489765.471 100 c
# RHertel(test, N/2) 65998.733 76805.465 1.187384e+05 86089.980 144793.416 385880.056 100 b
set.seed(123)
test <- rbind(sample(0:2, N, replace = TRUE, prob = c(5, 90, 5)),
sample(0:2, N, replace = TRUE, prob = c(5, 90, 5)))
microbenchmark(myfun(test, N / 2), fun(test, N / 2), foo(test, N / 2),
AWebb(test, N / 2), RHertel(test, N / 2))
# Unit: microseconds
# expr min lq mean median uq max neval cld
# myfun(test, N/2) 81.805 103.732 121.9619 106.459 122.36 307.736 100 a
# fun(test, N/2) 26362.845 34553.968 83582.9801 42325.755 106303.84 403212.369 100 b
# foo(test, N/2) 2598806.742 2952221.561 3244907.3385 3188498.072 3505774.31 4382981.304 100 d
# AWebb(test, N/2) 109446.866 125243.095 199204.1013 176207.024 242577.02 653299.857 100 c
# RHertel(test, N/2) 56045.309 67566.762 125066.9207 79042.886 143996.71 632227.710 100 b

I was slower than #Laterow, but anyhow, this is a similar approach
foo <- function(mtr, targetcol) {
matr1 <- colSums(mtr)
matr2 <- apply(mtr, 2, function(x) x[1]*x[2])
cols <- which(matr1 == 2 & matr2 == 0) - targetcol
left <- cols[cols < 0]
right <- cols[cols > 0]
c(ifelse(length(left) == 0, NA, targetcol + max(left)),
ifelse(length(right) == 0, NA, targetcol + min(right)))
}
foo(matr,9) #2 14

Combine the information by squaring the rows and adding them. The right result should be 4. Then, simply find the first column that is smaller than 9 (rev(which())[1]) and the first column that is larger than 9 (which()[1]).
fun <- function(matr, col){
valid <- which((matr[1,]^2 + matr[2,]^2) == 4)
if (length(valid) == 0) return(c(NA,NA))
left <- valid[rev(which(valid < col))[1]]
right <- valid[which(valid > col)[1]]
c(left,right)
}
fun(matr,9)
# [1] 2 14
fun(matr,1)
# [1] NA 2
fun(matrix(0,nrow=2,ncol=100),9)
# [1] NA NA
Benchmark
set.seed(1)
test <- rbind(sample(0:2,1000000,replace=T),
sample(0:2,1000000,replace=T))
microbenchmark::microbenchmark(fun(test,9))
# Unit: milliseconds
# expr min lq mean median uq max neval
# fun(test, 9) 22.7297 27.21038 30.91314 27.55106 28.08437 51.92393 100
Edit: Thanks to #MatthewLundberg for pointing out a lot of mistakes.

If you are doing this many times, precompute all the locations
loc <- which((a1==2 & a2==0) | (a1==0 & a2==2))
You can then find the first to the left and right with findInterval
i<-findInterval(9,loc);loc[c(i,i+1)]
# [1] 2 14
Note that findInterval is vectorized should you care to specify multiple target columns.

That is an interesting question. Here's how I would address it.
First a vector is defined which contains the product of each column:
a3 <- matr[1,]*matr[2,]
Then we can find the columns with pairs of (0/2) or (2/0) rather easily, since we know that the matrix can only contain the values 0, 1, and 2:
the02s <- which(colSums(matr)==2 & a3==0)
Next we want to find the pairs of (0/2) or (2/0) that are closest to a given column number, on the left and on the right of that column. The column number could be 9, for instance:
thecol <- 9
Now we have basically all we need to find the index (the column number in the matrix) of a combination of (0/2) or (2/0) that is closest to the column thecol. We just need to use the output of findInterval():
pos <- findInterval(thecol,the02s)
pos <- c(pos, pos+1)
pos[pos==0] <- NA # output NA if no column was found on the left
And the result is:
the02s[pos]
# 2 14
So the indices of the closest columns on either side of thecol fulfilling the required condition would be 2 and 14 in this case, and we can confirm that these column numbers both contain one of the relevant combinations:
matr[,14]
#a1 a2
# 0 2
matr[,2]
#a1 a2
# 0 2
Edit: I changed the answer such that NA is returned in the case where no column exists on the left and/or on the right of thecol in the matrix that fulfills the required condition.

Related

For a dataset of 0's and 1's, set all but the first 1 in each row to 0's

I have a data.frame of 1,480 rows and 1,400 columns like:
1 2 3 4 5 6 ..... 1399 1400
1 0 0 0 1 0 0 ..... 1 0 #first occurrence would be at 4
2 0 0 0 0 0 1 ..... 0 1
3 1 0 0 1 0 0 ..... 0 0
## and etc
Each row contains a series of 0's and 1's - predominantly 0's. For each row, I want to find at which column the first 1 shows up and set the remaining values to 0's.
My current implementation can efficiently find the occurrence of the first 1, but I've only figured out how to zero out the remaining values iteratively by row. In repeated simulations, this iterative process is taking too long.
Here is the current implementation:
N <- length(df[which(df$arm == 0), "pt_id"]) # of patients
M <- max_days
#
# df is like the data frame shown above
#
df[which(df$arm == 0), 5:length(colnames(df))] <- unlist(lapply(matrix(data = rep(pbo_hr, M*N), nrow=N, ncol = M), rbinom, n=1, size = 1))
event_day_post_rand <- apply(df[,5:length(colnames(df))], MARGIN = 1, FUN = function(x) which (x>0)[1])
df <- add_column(df, "event_day_post_rand" = event_day_post_rand, .after = "arm_id")
##
## From here trial days start on column 6 for df
##
#zero out events that occurred after the first event, since each patient can only have 1 max event which will be taken as the earliest event
for (pt_id in df[which(!is.na(df$event_day_post_rand)),"pt_id"]){
event_idx = df[which(df$pt_id == pt_id), "event_day_post_rand"]
df[which(df$pt_id == pt_id), as.character(5+event_idx+1):"1400"] <- 0
}
We can do
mat <- as.matrix(df) ## data frame to matrix
j <- max.col(mat, ties.method = "first")
mat[] <- 0
mat[cbind(1:nrow(mat), j)] <- 1
df <- data.frame(mat) ## matrix to data frame
I also suggest just using a matrix to store these values. In addition, the result will be a sparse matrix. So I recommend
library(Matrix)
sparseMatrix(i = 1:nrow(mat), j = j, x = rep(1, length(j)))
We can get a little more performance by setting the 1 elements to 0 whose rows are duplicates.
Since the OP is open to starting with a matrix rather than a data.frame, I'll do the same.
# dummy data
m <- matrix(sample(0:1, 1480L*1400L, TRUE, c(0.9, 0.1)), 1480L, 1400L)
# proposed solution
f1 <- function(m) {
ones <- which(m == 1L)
m[ones[duplicated((ones - 1L) %% nrow(m), nmax = nrow(m))]] <- 0L
m
}
# Zheyuan Li's solution
f2 <- function(m) {
j <- max.col(m, ties.method = "first")
m[] <- 0L
m[cbind(1:nrow(m), j)] <- 1L
m
}
microbenchmark::microbenchmark(f1 = f1(m),
f2 = f2(m),
check = "identical")
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> f1 9.1457 11.45020 12.04258 11.9011 12.3529 37.6716 100
#> f2 12.8424 14.92955 17.31811 15.3251 16.0550 43.6314 100
Zheyuan Li's suggestion to go with a sparse matrix is a good idea.
# convert to a memory-efficient nsparseMatrix
library(Matrix)
m1 <- as(Matrix(f1(m), dimnames = list(NULL, NULL), sparse = TRUE), "nsparseMatrix")
object.size(m)
#> 8288216 bytes
object.size(m1)
#> 12864 bytes
# proposed function to go directly to a sparse matrix
f3 <- function(m) {
n <- nrow(m)
ones <- which(m == 1L) - 1L
i <- ones %% n
idx <- which(!duplicated(i, nmax = n))
sparseMatrix(i[idx], ones[idx] %/% n, dims = dim(m), index1 = FALSE, repr = "C")
}
# going directly to a sparse matrix using Zheyuan Li's solution
f4 <- function(m) {
sparseMatrix(1:nrow(m), max.col(m, ties.method = "first"), dims = dim(m), repr = "C")
}
identical(m1, f3(m))
#> [1] TRUE
identical(m1, f4(m))
#> [1] TRUE
microbenchmark::microbenchmark(f1 = f1(m),
f3 = f3(m),
f4 = f4(m))
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> f1 9.1719 9.30715 11.12569 9.52300 11.92740 83.8518 100
#> f3 7.4330 7.59875 12.62412 7.69610 11.08815 84.8291 100
#> f4 8.9607 9.31115 14.01477 9.49415 11.44825 87.1577 100

Count number of occurrences of vector in list

I have a list of vectors of variable length, for example:
q <- list(c(1,3,5), c(2,4), c(1,3,5), c(2,5), c(7), c(2,5))
I need to count the number of occurrences for each of the vectors in the list, for example (any other suitable datastructure acceptable):
list(list(c(1,3,5), 2), list(c(2,4), 1), list(c(2,5), 2), list(c(7), 1))
Is there an efficient way to do this? The actual list has tens of thousands of items so quadratic behaviour is not feasible.
match and unique accept and handle "list"s too (?match warns for being slow on "list"s). So, with:
match(q, unique(q))
#[1] 1 2 1 3 4 3
each element is mapped to a single integer. Then:
tabulate(match(q, unique(q)))
#[1] 2 1 2 1
And find a structure to present the results:
as.data.frame(cbind(vec = unique(q), n = tabulate(match(q, unique(q)))))
# vec n
#1 1, 3, 5 2
#2 2, 4 1
#3 2, 5 2
#4 7 1
Alternatively to match(x, unique(x)) approach, we could map each element to a single value with deparseing:
table(sapply(q, deparse))
#
# 7 c(1, 3, 5) c(2, 4) c(2, 5)
# 1 2 1 2
Also, since this is a case with unique integers, and assuming in a small range, we could map each element to a single integer after transforming each element to a binary representation:
n = max(unlist(q))
pow2 = 2 ^ (0:(n - 1))
sapply(q, function(x) tabulate(x, nbins = n)) # 'binary' form
sapply(q, function(x) sum(tabulate(x, nbins = n) * pow2))
#[1] 21 10 21 18 64 18
and then tabulate as before.
And just to compare the above alternatives:
f1 = function(x)
{
ux = unique(x)
i = match(x, ux)
cbind(vec = ux, n = tabulate(i))
}
f2 = function(x)
{
xc = sapply(x, deparse)
i = match(xc, unique(xc))
cbind(vec = x[!duplicated(i)], n = tabulate(i))
}
f3 = function(x)
{
n = max(unlist(x))
pow2 = 2 ^ (0:(n - 1))
v = sapply(x, function(X) sum(tabulate(X, nbins = n) * pow2))
i = match(v, unique(v))
cbind(vec = x[!duplicated(v)], n = tabulate(i))
}
q2 = rep_len(q, 1e3)
all.equal(f1(q2), f2(q2))
#[1] TRUE
all.equal(f2(q2), f3(q2))
#[1] TRUE
microbenchmark::microbenchmark(f1(q2), f2(q2), f3(q2))
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# f1(q2) 7.980041 8.161524 10.525946 8.291678 8.848133 178.96333 100 b
# f2(q2) 24.407143 24.964991 27.311056 25.514834 27.538643 45.25388 100 c
# f3(q2) 3.951567 4.127482 4.688778 4.261985 4.518463 10.25980 100 a
Another interesting alternative is based on ordering. R > 3.3.0 has a grouping function, built off data.table, which, along with the ordering, provides some attributes for further manipulation:
Make all elements of equal length and "transpose" (probably the most slow operation in this case, though I'm not sure how else to feed grouping):
n = max(lengths(q))
qq = .mapply(c, lapply(q, "[", seq_len(n)), NULL)
Use ordering to group similar elements mapped to integers:
gr = do.call(grouping, qq)
e = attr(gr, "ends")
i = rep(seq_along(e), c(e[1], diff(e)))[order(gr)]
i
#[1] 1 2 1 3 4 3
then, tabulate as before.
To continue the comparisons:
f4 = function(x)
{
n = max(lengths(x))
x2 = .mapply(c, lapply(x, "[", seq_len(n)), NULL)
gr = do.call(grouping, x2)
e = attr(gr, "ends")
i = rep(seq_along(e), c(e[1], diff(e)))[order(gr)]
cbind(vec = x[!duplicated(i)], n = tabulate(i))
}
all.equal(f3(q2), f4(q2))
#[1] TRUE
microbenchmark::microbenchmark(f1(q2), f2(q2), f3(q2), f4(q2))
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# f1(q2) 7.956377 8.048250 8.792181 8.131771 8.270101 21.944331 100 b
# f2(q2) 24.228966 24.618728 28.043548 25.031807 26.188219 195.456203 100 c
# f3(q2) 3.963746 4.103295 4.801138 4.179508 4.360991 35.105431 100 a
# f4(q2) 2.874151 2.985512 3.219568 3.066248 3.186657 7.763236 100 a
In this comparison q's elements are of small length to accomodate for f3, but f3 (because of large exponentiation) and f4 (because of mapply) will suffer, in performance, if "list"s of larger elements are used.
One way is to paste each vector , unlist and tabulate, i.e.
table(unlist(lapply(q, paste, collapse = ',')))
#1,3,5 2,4 2,5 7
# 2 1 2 1

Optimized way of looking for a specific value in R across all the rows in a large matrix

I have a large sparse matrix 1M X 10 (1 Million rows and 10 columns), I want to look every row in the matrix for a value and create a new vector based on it. Below is my code. I am wondering if there is any way I can optimize it.
CreatenewVector <- function(TestMatrix){
newColumn = c()
for(i in 1:nrow(TestMatrix)){ ## Loop begins
Value = ifelse(1 %in% TestMatrix[i,],1,0)
newColumn = c(newColumn,Value)
} ##Loop ends
return(newColumn)
}
## SampleInput: TestMatrix = matrix(c(1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0), byrow = T, nrow = 4)
## Sampleoutput: = (1,1,1,0)
## In the input TestMatrix, each vector represents a row. for instance (1,0,0) is the first row and so on.
Assuming you are using a normal matrix object, not a special sparse matrix class, you should use rowSums.
rowSums(x == 1) > 0
if x is the name of your matrix. This will return a logical vector, you can easily coerce to numeric with as.numeric() if you prefer 1/0 to true/false.
To give some sense of timing I benchmarked first using a thousand row matrix, then a million row matrix:
gregor = function(x) {as.numeric(rowSums(x == 1L) > 0L)}
# original method in question
op1 = function(x){
newColumn = c()
for(i in 1:nrow(x)){ ## Loop begins
Value = ifelse(1 %in% x[i,],1,0)
newColumn = c(newColumn,Value)
} ##Loop ends
return(newColumn)
}
# modified original:
# eliminated unnecessary ifelse
# pre-allocated result vector (no growing in a loop!)
# saved numeric conversion to the end
op2 = function(x){
newColumn = logical(nrow(x))
for(i in 1:nrow(x)){ ## Loop begins
newColumn[i] = 1L %in% x[i,]
} ##Loop ends
return(as.numeric(newColumn))
}
bouncy = function(x) {
as.numeric(apply(x, 1, function(y) any(y == 1L)))
}
Here are the results for a thousand row matrix:
n = 1e3
x = matrix(sample(c(0L, 1L), size = n, replace = T), ncol = 4)
microbenchmark(gregor(x), op1(x), op2(x), bouncy(x), times = 20)
# Unit: microseconds
# expr min lq mean median uq max neval cld
# gregor(x) 12.164 15.7750 20.14625 20.1465 24.8980 30.410 20 a
# op1(x) 1224.736 1258.9465 1345.46110 1275.6715 1338.0105 2002.075 20 d
# op2(x) 846.140 864.7655 935.46740 886.2425 951.4325 1287.075 20 c
# bouncy(x) 439.795 453.8595 496.96475 486.5495 508.0260 711.199 20 b
Using rowSums is the clear winner. I eliminated OP1 from the next test on a million row matrix:
n = 1e6
x = matrix(sample(c(0L, 1L), size = n, replace = T), ncol = 4)
microbenchmark(gregor(x), op2(x), bouncy(x), times = 30)
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# gregor(x) 9.371777 10.02862 12.55963 10.61343 14.13236 27.70671 30 a
# op2(x) 822.171523 856.68916 937.23602 881.39219 1028.26738 1183.68569 30 c
# bouncy(x) 391.604590 412.51063 502.61117 502.02431 588.78785 656.18824 30 b
Where the relative margin is even more in favor of rowSums.

Compare each row with other rows of matrix

I am looking for an efficient solution for the following problem:
b <- matrix(c(0,0,0,1,1,0), nrow = 2, byrow = T)
weight <- c(1,1)
times <- 5
abc <- do.call(rbind, replicate(times, b, simplify=FALSE))
weight <- rep.int(weight,times)
sum1 <- as.numeric(rep.int(NA,nrow(abc)))
##Rprof()
for(j in 1:nrow(abc)){
a <- abc[j,]
sum1[j] <- sum(weight[rowSums(t(a == t(abc)) + 0) == ncol(abc)])
}
##Rprof(NULL)
##summaryRprof()
Is there a faster way to do this? Rprof shows that rowSums(), t(), == and + are quite slow. If nrows is 20,000 it takes like 21 seconds.
Thanks for helping!
Edit: I have a matrix abc and a vector weight with length equal to nrow(abc). The first value of weight corresponds to the first row of matrix abc and so on... Now, I would like to determine which rows of matrix abc are equal. Then, I want to remember the position of those rows in order to sum up the corresponding weights which have the same position. The appropriate sum I wanna store for each row.
Here is a way that looks valid and fast:
ff <- function(mat, weights)
{
rs <- apply(mat, 1, paste, collapse = ";")
unlist(lapply(unique(rs),
function(x)
sum(weights[match(rs, x, 0) > 0])))[match(rs, unique(rs))]
}
ff(abc, weight)
# [1] 5 5 5 5 5 5 5 5 5 5
And comparing with your function:
ffOP <- function(mat, weights)
{
sum1 <- as.numeric(rep.int(NA,nrow(mat)))
for(j in 1:nrow(mat)) {
a <- mat[j,]
sum1[j] <- sum(weights[rowSums(t(a == t(mat)) + 0) == ncol(mat)])
}
sum1
}
ffOP(abc, weight)
# [1] 5 5 5 5 5 5 5 5 5 5
library(microbenchmark)
m = do.call(rbind, replicate(1e3, matrix(0:11, 3, 4), simplify = F))
set.seed(101); w = runif(1e3*3)
all.equal(ffOP(m, w), ff(m, w))
#[1] TRUE
microbenchmark(ffOP(m, w), ff(m, w), times = 10)
#Unit: milliseconds
# expr min lq median uq max neval
# ffOP(m, w) 969.83968 986.47941 996.68563 1015.53552 1051.23847 10
# ff(m, w) 20.42426 20.64002 21.36508 21.97182 22.59127 10
For the record, I, also, implemented your approach in C and here are the benchmarkings:
#> microbenchmark(ffOP(m, w), ff(m, w), ffC(m, w), times = 10)
#Unit: milliseconds
# expr min lq median uq max neval
# ffOP(m, w) 957.66691 967.09429 991.35232 1000.53070 1016.74100 10
# ff(m, w) 20.60243 20.85578 21.70578 22.13434 23.04924 10
# ffC(m, w) 36.24618 36.40940 37.18927 37.39877 38.83358 10

Speeding up a function: checking NA count before computing mean

The function below calculates the mean of a vector. However, it first checks the proportion of NA's present in the vector
and if above a given threshold, returns NA instead of the mean.
My issue is that my current implementation is rather innefficient. It takes more than 7x longer than simply running mean(vec, na.rm=TRUE)
I tried an alternate method using na.omit, but that is even slower.
Given the size of my data, executing the single lapply is taking over 40 minutes.
Any suggestions on how to accomplish the same task more quickly?
UPDATE - RE: #thelatemail 's solution and #Arun's comment:
I am executing this function over several hundred groups, each group of varying size. The sample data (originally) provided in this question was provided as a neat data frame simply for ease of creating artificial data.
Alternate sample data to avoid the confusion
# Sample Data
# ------------
set.seed(1)
# slightly different sizes for each group
N1 <- 5e3
N2 <- N1 + as.integer(rnorm(1, 0, 100))
# One group has only a moderate amount of NA's
SAMP1 <- rnorm(N1)
SAMP1[sample(N1, .25 * N1, FALSE)] <- NA # add in NA's
# Another group has many NA's
SAMP2 <- rnorm(N2)
SAMP2[sample(N2, .95 * N2, FALSE)] <- NA # add in large number of NA's
# put them all in a list
SAMP.NEW <- list(SAMP1, SAMP2)
# keep it clean
rm(SAMP1, SAMP2)
# Execute
# -------
lapply(SAMP.NEW, meanIfThresh)
Original Sample Data, function etc
# Sample Data
# ------------
set.seed(1)
rows <- 20000 # actual data has more than 7M rows
cols <- 1000
SAMP <- replicate(cols, rnorm(rows))
SAMP[sample(length(SAMP), .25 * length(SAMP), FALSE)] <- NA # add in NA's
# Select 5 random rows, and have them be 90% NA
tooSparse <- sample(rows, 5)
for (r in tooSparse)
SAMP[r, sample(cols, cols * .9, FALSE)] <- NA
# Function
# ------------
meanIfThresh <- function(vec, thresh=12/15) {
# Calculates the mean of vec, however,
# if the number of non-NA values of vec is less than thresh, returns NA
# thresh : represents how much data must be PRSENT.
# ie, if thresh is 80%, then there must be at least
len <- length(vec)
if( (sum(is.na(vec)) / len) > thresh)
return(NA_real_)
# if the proportion of NA's is greater than the threshold, return NA
# example: if I'm looking at 14 days, and I have 12 NA's,
# my proportion is 85.7 % = (12 / 14)
# default thesh is 80.0 % = (12 / 15)
# Thus, 12 NAs in a group of 14 would be rejected
# else, calculate the mean, removing NA's
return(mean(vec, na.rm=TRUE))
}
# Execute
# -----------------
apply(SAMP, 1, meanIfThresh)
# Compare with `mean`
#----------------
plain <- apply(SAMP, 1, mean, na.rm=TRUE)
modified <- apply(SAMP, 1, meanIfThresh)
# obviously different
identical(plain, modified)
plain[tooSparse]
modified[tooSparse]
microbenchmark( "meanIfThresh" = apply(SAMP, 1, meanIfThresh)
, "mean (regular)" = apply(SAMP, 1, mean, na.rm=TRUE)
, times = 15L)
# With the actual data, the penalty is sevenfold
# Unit: seconds
# expr min lq median uq max neval
# meanIfThresh 1.658600 1.677472 1.690460 1.751913 2.110871 15
# mean (regular) 1.422478 1.485320 1.503468 1.532175 1.547450 15
Couldn't you just replace the high NA rows' mean values afterwards like so?:
# changed `result <- apply(SAMP,1,mean,na.rm=TRUE)`
result <- rowMeans(SAMP, na.rm=TRUE)
NArows <- rowSums(is.na(SAMP))/ncol(SAMP) > 0.8
result[NArows] <- NA
Some benchmarking:
Ricardo <- function(vec, thresh=12/15) {
len <- length(vec)
if( (sum(is.na(vec)) / len) > thresh)
return(NA_real_)
return(mean(vec, na.rm=TRUE))
}
DanielFischer <- function(vec, thresh=12/15) {
len <- length(vec)
nas <- is.na(vec)
Nna <- sum(nas)
if( (Nna / len) > thresh)
return(NA_real_)
return(sum(vec[!nas])/(len-Nna))
}
thelatemail <- function(mat) {
result <- rowMeans(mat, na.rm=TRUE)
NArows <- rowSums(is.na(mat))/ncol(mat) > 0.8
result[NArows] <- NA
result
}
require(microbenchmark)
microbenchmark(m1 <- apply(SAMP, 1, Ricardo),
m2 <- apply(SAMP, 1, DanielFischer),
m3 <- thelatemail(SAMP), times = 5L)
Unit: milliseconds
expr min lq median uq max neval
m1 <- apply(SAMP, 1, Ricardo) 2923.7260 2944.2599 3066.8204 3090.8127 3105.4283 5
m2 <- apply(SAMP, 1, DanielFischer) 2643.4883 2683.1034 2755.7032 2799.5155 3089.6015 5
m3 <- latemail(SAMP) 337.1862 340.6339 371.6148 376.5517 383.4436 5
all.equal(m1, m2) # TRUE
all.equal(m1, m3) # TRUE
Is it so that you have to go twice through your vector vec in your function? If you can store your NA first, maybe it could speed up your calculations a bit:
meanIfThresh2 <- function(vec, thresh=12/15) {
len <- length(vec)
nas <- is.na(vec)
Nna <- sum(nas)
if( (Nna / len) > thresh)
return(NA_real_)
return(sum(vec[!nas])/(len-Nna))
}
EDIT: I performed the similar benchmarking, to see the effect on this change:
> microbenchmark( "meanIfThresh" = apply(SAMP, 1, meanIfThresh)
+ , "meanIfThresh2" = apply(SAMP, 1, meanIfThresh2)
+ , "mean (regular)" = apply(SAMP, 1, mean, na.rm=TRUE)
+ , times = 15L)
Unit: seconds
expr min lq median uq max neval
meanIfThresh 2.009858 2.156104 2.158372 2.166092 2.192493 15
meanIfThresh2 1.825470 1.828273 1.829424 1.834407 1.872028 15
mean (regular) 1.868568 1.882526 1.889852 1.893564 1.907495 15

Resources