Compare each row with other rows of matrix - r

I am looking for an efficient solution for the following problem:
b <- matrix(c(0,0,0,1,1,0), nrow = 2, byrow = T)
weight <- c(1,1)
times <- 5
abc <- do.call(rbind, replicate(times, b, simplify=FALSE))
weight <- rep.int(weight,times)
sum1 <- as.numeric(rep.int(NA,nrow(abc)))
##Rprof()
for(j in 1:nrow(abc)){
a <- abc[j,]
sum1[j] <- sum(weight[rowSums(t(a == t(abc)) + 0) == ncol(abc)])
}
##Rprof(NULL)
##summaryRprof()
Is there a faster way to do this? Rprof shows that rowSums(), t(), == and + are quite slow. If nrows is 20,000 it takes like 21 seconds.
Thanks for helping!
Edit: I have a matrix abc and a vector weight with length equal to nrow(abc). The first value of weight corresponds to the first row of matrix abc and so on... Now, I would like to determine which rows of matrix abc are equal. Then, I want to remember the position of those rows in order to sum up the corresponding weights which have the same position. The appropriate sum I wanna store for each row.

Here is a way that looks valid and fast:
ff <- function(mat, weights)
{
rs <- apply(mat, 1, paste, collapse = ";")
unlist(lapply(unique(rs),
function(x)
sum(weights[match(rs, x, 0) > 0])))[match(rs, unique(rs))]
}
ff(abc, weight)
# [1] 5 5 5 5 5 5 5 5 5 5
And comparing with your function:
ffOP <- function(mat, weights)
{
sum1 <- as.numeric(rep.int(NA,nrow(mat)))
for(j in 1:nrow(mat)) {
a <- mat[j,]
sum1[j] <- sum(weights[rowSums(t(a == t(mat)) + 0) == ncol(mat)])
}
sum1
}
ffOP(abc, weight)
# [1] 5 5 5 5 5 5 5 5 5 5
library(microbenchmark)
m = do.call(rbind, replicate(1e3, matrix(0:11, 3, 4), simplify = F))
set.seed(101); w = runif(1e3*3)
all.equal(ffOP(m, w), ff(m, w))
#[1] TRUE
microbenchmark(ffOP(m, w), ff(m, w), times = 10)
#Unit: milliseconds
# expr min lq median uq max neval
# ffOP(m, w) 969.83968 986.47941 996.68563 1015.53552 1051.23847 10
# ff(m, w) 20.42426 20.64002 21.36508 21.97182 22.59127 10
For the record, I, also, implemented your approach in C and here are the benchmarkings:
#> microbenchmark(ffOP(m, w), ff(m, w), ffC(m, w), times = 10)
#Unit: milliseconds
# expr min lq median uq max neval
# ffOP(m, w) 957.66691 967.09429 991.35232 1000.53070 1016.74100 10
# ff(m, w) 20.60243 20.85578 21.70578 22.13434 23.04924 10
# ffC(m, w) 36.24618 36.40940 37.18927 37.39877 38.83358 10

Related

Optimizing speed of nearest search function in R [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
I'm trying to make this function faster (ideally with RcppAmadillo or some other alternative). myfun takes a matrix, mat, that can get quite large, but is always two columns. myfun finds the closest rows for each row in the matrix that are +1 or -1 away in absolute value from each row
As an example below, the first row of mat is 3,3. Therefore, myfun will output a list with rows 2 and 3 being closest to row 1, but not row 5, which is +2 away.
library(microbenchmark)
dim(mat)
[1] 1000 2
head(mat)
x y
[1,] 3 3
[2,] 3 4
[3,] 3 2
[4,] 7 3
[5,] 4 4
[6,] 10 1
output
[[1]]
[1] 2 3
[[2]]
[1] 1
[[3]]
[1] 1
[[4]]
integer(0)
[[5]]
integer(0)
[[6]]
integer(0)
microbenchmark( myfun(mat), times = 100) #mat of 1000 rows
# Unit: milliseconds
# expr min lq mean median uq max neval
# myfun(mat) 89.30126 90.28618 95.50418 90.91281 91.50875 180.1505 100
microbenchmark( myfun(mat), times = 100) #mat of 10,000 rows
# Unit: seconds
# expr min lq mean median uq max neval
# myfun(layout.old) 5.912633 5.912633 5.912633 5.912633 5.912633 5.912633 1
This is what myfun looks like
myfun = function(x){
doo <- function(j) {
j.mat <- matrix(rep(j, length = length(x)), ncol = ncol(x), byrow = TRUE)
j.abs <- abs(j.mat - x)
return(which(rowSums(j.abs) == 1))
}
return(apply(x, 1, doo))
}
Below, I have a base R solution that is much faster than myfun provided by the OP.
myDistOne <- function(m) {
v1 <- m[,1L]; v2 <- m[,2L]
rs <- rowSums(m)
lapply(seq_along(rs), function(x) {
t1 <- which(abs(rs[x] - rs) == 1)
t2 <- t1[which(abs(v1[x] - v1[t1]) <= 1)]
t2[which(abs(v2[x] - v2[t2]) <= 1)]
})
}
Here are some benchmarks:
library(microbenchmark)
set.seed(9711)
m1 <- matrix(sample(50, 2000, replace = TRUE), ncol = 2) ## 1,000 rows
microbenchmark(myfun(m1), myDistOne(m1))
Unit: milliseconds
expr min lq mean median uq max neval cld
myfun(m1) 78.61637 78.61637 80.47931 80.47931 82.34225 82.34225 2 b
myDistOne(m1) 27.34810 27.34810 28.18758 28.18758 29.02707 29.02707 2 a
identical(myfun(m1), myDistOne(m1))
[1] TRUE
m2 <- matrix(sample(200, 20000, replace = TRUE), ncol = 2) ## 10,000 rows
microbenchmark(myfun(m2), myDistOne(m2))
Unit: seconds
expr min lq mean median uq max neval cld
myfun(m2) 5.219318 5.533835 5.758671 5.714263 5.914672 7.290701 100 b
myDistOne(m2) 1.230721 1.366208 1.433403 1.419413 1.473783 1.879530 100 a
identical(myfun(m2), myDistOne(m2))
[1] TRUE
Here is a very large example:
m3 <- matrix(sample(1000, 100000, replace = TRUE), ncol = 2) ## 50,000 rows
system.time(testJoe <- myDistOne(m3))
user system elapsed
26.963 10.988 37.973
system.time(testUser <- myfun(m3))
user system elapsed
148.444 33.297 182.639
identical(testJoe, testUser)
[1] TRUE
I'm sure there is a faster solution. Maybe by sorting the rowSums upfront and working from there could see an improvement (it could also get very messy).
Update
As I predicted, working from a sorted rowSums is much faster (and uglier!)
myDistOneFast <- function(m) {
v1 <- m[,1L]; v2 <- m[,2L]
origrs <- rowSums(m)
mySort <- order(origrs)
rs <- origrs[mySort]
myDiff <- c(0L, diff(rs))
brks <- which(myDiff > 0L)
lenB <- length(brks)
n <- nrow(m)
myL <- vector("list", length = n)
findRows <- function(v, s, r, u1, u2) {
lapply(v, function(x) {
sx <- s[x]
tv1 <- s[r]
tv2 <- tv1[which(abs(u1[sx] - u1[tv1]) <= 1)]
tv2[which(abs(u2[sx] - u2[tv2]) <= 1)]
})
}
t1 <- brks[1L]; t2 <- brks[2L]
## setting first index in myL
myL[mySort[1L:(t1-1L)]] <- findRows(1L:(t1-1L), mySort, t1:(t2-1L), v1, v2)
k <- t0 <- 1L
while (k < (lenB-1L)) {
t1 <- brks[k]; t2 <- brks[k+1L]; t3 <- brks[k+2L]
vec <- t1:(t2-1L)
if (myDiff[t1] == 1L) {
if (myDiff[t2] == 1L) {
myL[mySort[vec]] <- findRows(vec, mySort, c(t0:(t1-1L), t2:(t3-1L)), v1, v2)
} else {
myL[mySort[vec]] <- findRows(vec, mySort, t0:(t1-1L), v1, v2)
}
} else if (myDiff[t2] == 1L) {
myL[mySort[vec]] <- findRows(vec, mySort, t2:(t3-1L), v1, v2)
}
if (myDiff[t2] > 1L) {
if (myDiff[t3] > 1L) {
k <- k+2L; t0 <- t2
} else {
k <- k+1L; t0 <- t1
}
} else {k <- k+1L; t0 <- t1}
}
## setting second to last index in myL
if (k == lenB-1L) {
t1 <- brks[k]; t2 <- brks[k+1L]; t3 <- n+1L; vec <- t1:(t2-1L)
if (myDiff[t1] == 1L) {
if (myDiff[t2] == 1L) {
myL[mySort[vec]] <- findRows(vec, mySort, c(t0:(t1-1L), t2:(t3-1L)), v1, v2)
} else {
myL[mySort[vec]] <- findRows(vec, mySort, t0:(t1-1L), v1, v2)
}
} else if (myDiff[t2] == 1L) {
myL[mySort[vec]] <- findRows(vec, mySort, t2:(t3-1L), v1, v2)
}
k <- k+1L; t0 <- t1
}
t1 <- brks[k]; vec <- t1:n
if (myDiff[t1] == 1L) {
myL[mySort[vec]] <- findRows(vec, mySort, t0:(t1-1L), v1, v2)
}
myL
}
The results are not even close. myDistOneFast is over 100x faster than the OP's original myfun on very large matrices and also scales well. Below are some benchmarks:
microbenchmark(OP = myfun(m1), Joe = myDistOne(m1), JoeFast = myDistOneFast(m1))
Unit: milliseconds
expr min lq mean median uq max neval
OP 57.60683 59.51508 62.91059 60.63064 61.87141 109.39386 100
Joe 22.00127 23.11457 24.35363 23.87073 24.87484 58.98532 100
JoeFast 11.27834 11.99201 12.59896 12.43352 13.08253 15.35676 100
microbenchmark(OP = myfun(m2), Joe = myDistOne(m2), JoeFast = myDistOneFast(m2))
Unit: milliseconds
expr min lq mean median uq max neval
OP 4461.8201 4527.5780 4592.0409 4573.8673 4633.9278 4867.5244 100
Joe 1287.0222 1316.5586 1339.3653 1331.2534 1352.3134 1524.2521 100
JoeFast 128.4243 134.0409 138.7518 136.3929 141.3046 172.2499 100
system.time(testJoeFast <- myDistOneFast(m3))
user system elapsed
0.68 0.00 0.69 ### myfun took over 100s!!!
To test equality, we have to sort each vector of indices. We also can't use identical for comparison as myL is initialized as an empty list, thus some of the indices contain NULL values (these correspond to integer(0) in the result from myfun and myDistOne).
testJoeFast <- lapply(testJoeFast, sort)
all(sapply(1:50000, function(x) all(testJoe[[x]]==testJoeFast[[x]])))
[1] TRUE
unlist(testJoe[which(sapply(testJoeFast, is.null))])
integer(0)
Here is an example with 500,000 rows:
set.seed(42)
m4 <- matrix(sample(2000, 1000000, replace = TRUE), ncol = 2)
system.time(myDistOneFast(m4))
user system elapsed
10.84 0.06 10.94
Here is an overview of how the algorithm works:
Calculate rowSums
Order the rowSums (i.e. returns the indices from the original vector of the sorted vector)
Call diff
Mark each non-zero instance
Determine which indices in small range satisfy the OP's request
Use the ordered vector calculated in 2 to determine original index
This is much faster than comparing one rowSum to all of the rowSum every time.

Count number of occurrences of vector in list

I have a list of vectors of variable length, for example:
q <- list(c(1,3,5), c(2,4), c(1,3,5), c(2,5), c(7), c(2,5))
I need to count the number of occurrences for each of the vectors in the list, for example (any other suitable datastructure acceptable):
list(list(c(1,3,5), 2), list(c(2,4), 1), list(c(2,5), 2), list(c(7), 1))
Is there an efficient way to do this? The actual list has tens of thousands of items so quadratic behaviour is not feasible.
match and unique accept and handle "list"s too (?match warns for being slow on "list"s). So, with:
match(q, unique(q))
#[1] 1 2 1 3 4 3
each element is mapped to a single integer. Then:
tabulate(match(q, unique(q)))
#[1] 2 1 2 1
And find a structure to present the results:
as.data.frame(cbind(vec = unique(q), n = tabulate(match(q, unique(q)))))
# vec n
#1 1, 3, 5 2
#2 2, 4 1
#3 2, 5 2
#4 7 1
Alternatively to match(x, unique(x)) approach, we could map each element to a single value with deparseing:
table(sapply(q, deparse))
#
# 7 c(1, 3, 5) c(2, 4) c(2, 5)
# 1 2 1 2
Also, since this is a case with unique integers, and assuming in a small range, we could map each element to a single integer after transforming each element to a binary representation:
n = max(unlist(q))
pow2 = 2 ^ (0:(n - 1))
sapply(q, function(x) tabulate(x, nbins = n)) # 'binary' form
sapply(q, function(x) sum(tabulate(x, nbins = n) * pow2))
#[1] 21 10 21 18 64 18
and then tabulate as before.
And just to compare the above alternatives:
f1 = function(x)
{
ux = unique(x)
i = match(x, ux)
cbind(vec = ux, n = tabulate(i))
}
f2 = function(x)
{
xc = sapply(x, deparse)
i = match(xc, unique(xc))
cbind(vec = x[!duplicated(i)], n = tabulate(i))
}
f3 = function(x)
{
n = max(unlist(x))
pow2 = 2 ^ (0:(n - 1))
v = sapply(x, function(X) sum(tabulate(X, nbins = n) * pow2))
i = match(v, unique(v))
cbind(vec = x[!duplicated(v)], n = tabulate(i))
}
q2 = rep_len(q, 1e3)
all.equal(f1(q2), f2(q2))
#[1] TRUE
all.equal(f2(q2), f3(q2))
#[1] TRUE
microbenchmark::microbenchmark(f1(q2), f2(q2), f3(q2))
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# f1(q2) 7.980041 8.161524 10.525946 8.291678 8.848133 178.96333 100 b
# f2(q2) 24.407143 24.964991 27.311056 25.514834 27.538643 45.25388 100 c
# f3(q2) 3.951567 4.127482 4.688778 4.261985 4.518463 10.25980 100 a
Another interesting alternative is based on ordering. R > 3.3.0 has a grouping function, built off data.table, which, along with the ordering, provides some attributes for further manipulation:
Make all elements of equal length and "transpose" (probably the most slow operation in this case, though I'm not sure how else to feed grouping):
n = max(lengths(q))
qq = .mapply(c, lapply(q, "[", seq_len(n)), NULL)
Use ordering to group similar elements mapped to integers:
gr = do.call(grouping, qq)
e = attr(gr, "ends")
i = rep(seq_along(e), c(e[1], diff(e)))[order(gr)]
i
#[1] 1 2 1 3 4 3
then, tabulate as before.
To continue the comparisons:
f4 = function(x)
{
n = max(lengths(x))
x2 = .mapply(c, lapply(x, "[", seq_len(n)), NULL)
gr = do.call(grouping, x2)
e = attr(gr, "ends")
i = rep(seq_along(e), c(e[1], diff(e)))[order(gr)]
cbind(vec = x[!duplicated(i)], n = tabulate(i))
}
all.equal(f3(q2), f4(q2))
#[1] TRUE
microbenchmark::microbenchmark(f1(q2), f2(q2), f3(q2), f4(q2))
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# f1(q2) 7.956377 8.048250 8.792181 8.131771 8.270101 21.944331 100 b
# f2(q2) 24.228966 24.618728 28.043548 25.031807 26.188219 195.456203 100 c
# f3(q2) 3.963746 4.103295 4.801138 4.179508 4.360991 35.105431 100 a
# f4(q2) 2.874151 2.985512 3.219568 3.066248 3.186657 7.763236 100 a
In this comparison q's elements are of small length to accomodate for f3, but f3 (because of large exponentiation) and f4 (because of mapply) will suffer, in performance, if "list"s of larger elements are used.
One way is to paste each vector , unlist and tabulate, i.e.
table(unlist(lapply(q, paste, collapse = ',')))
#1,3,5 2,4 2,5 7
# 2 1 2 1

Find elements in vector in R

A matrix I have has exactly 2 rows and n columns example
c(0,0,0,0,1,0,2,0,1,0,1,1,1,0,2)->a1
c(0,2,0,0,0,0,2,1,1,0,0,0,0,2,0)->a2
rbind(a1,a2)->matr
for a specific column ( in this example 9 with 1 in both rows) I do need to find to the left and to the right the first instance of 2/0 or 0/2 - in this example to the left is 2 and the other is 14)
The elements of every row can either be 0,1,2 - nothing else . Is there a way to do that operation on large matrixes (with 2 rows) fast? I need to to it 600k times so speed might be a consideration
library(compiler)
myfun <- cmpfun(function(m, cl) {
li <- ri <- cl
nc <- ncol(m)
repeat {
li <- li - 1
if(li == 0 || ((m[1, li] != 1) && (m[1, li] + m[2, li] == 2))) {
l <- li
break
}
}
repeat {
ri <- ri + 1
if(ri == nc || ((m[1, ri] != 1) && (m[1, ri] + m[2, ri] == 2))) {
r <- ri
break
}
}
c(l, r)
})
and, after taking into account #Martin Morgan's observations,
set.seed(1)
N <- 1000000
test <- rbind(sample(0:2, N, replace = TRUE),
sample(0:2, N, replace = TRUE))
library(microbenchmark)
microbenchmark(myfun(test, N / 2), fun(test, N / 2), foo(test, N / 2),
AWebb(test, N / 2), RHertel(test, N / 2))
# Unit: microseconds
expr min lq mean median uq max neval cld
# myfun(test, N/2) 4.658 20.033 2.237153e+01 22.536 26.022 85.567 100 a
# fun(test, N/2) 36685.750 47842.185 9.762663e+04 65571.546 120321.921 365958.316 100 b
# foo(test, N/2) 2622845.039 3009735.216 3.244457e+06 3185893.218 3369894.754 5170015.109 100 d
# AWebb(test, N/2) 121504.084 142926.590 1.990204e+05 193864.670 209918.770 489765.471 100 c
# RHertel(test, N/2) 65998.733 76805.465 1.187384e+05 86089.980 144793.416 385880.056 100 b
set.seed(123)
test <- rbind(sample(0:2, N, replace = TRUE, prob = c(5, 90, 5)),
sample(0:2, N, replace = TRUE, prob = c(5, 90, 5)))
microbenchmark(myfun(test, N / 2), fun(test, N / 2), foo(test, N / 2),
AWebb(test, N / 2), RHertel(test, N / 2))
# Unit: microseconds
# expr min lq mean median uq max neval cld
# myfun(test, N/2) 81.805 103.732 121.9619 106.459 122.36 307.736 100 a
# fun(test, N/2) 26362.845 34553.968 83582.9801 42325.755 106303.84 403212.369 100 b
# foo(test, N/2) 2598806.742 2952221.561 3244907.3385 3188498.072 3505774.31 4382981.304 100 d
# AWebb(test, N/2) 109446.866 125243.095 199204.1013 176207.024 242577.02 653299.857 100 c
# RHertel(test, N/2) 56045.309 67566.762 125066.9207 79042.886 143996.71 632227.710 100 b
I was slower than #Laterow, but anyhow, this is a similar approach
foo <- function(mtr, targetcol) {
matr1 <- colSums(mtr)
matr2 <- apply(mtr, 2, function(x) x[1]*x[2])
cols <- which(matr1 == 2 & matr2 == 0) - targetcol
left <- cols[cols < 0]
right <- cols[cols > 0]
c(ifelse(length(left) == 0, NA, targetcol + max(left)),
ifelse(length(right) == 0, NA, targetcol + min(right)))
}
foo(matr,9) #2 14
Combine the information by squaring the rows and adding them. The right result should be 4. Then, simply find the first column that is smaller than 9 (rev(which())[1]) and the first column that is larger than 9 (which()[1]).
fun <- function(matr, col){
valid <- which((matr[1,]^2 + matr[2,]^2) == 4)
if (length(valid) == 0) return(c(NA,NA))
left <- valid[rev(which(valid < col))[1]]
right <- valid[which(valid > col)[1]]
c(left,right)
}
fun(matr,9)
# [1] 2 14
fun(matr,1)
# [1] NA 2
fun(matrix(0,nrow=2,ncol=100),9)
# [1] NA NA
Benchmark
set.seed(1)
test <- rbind(sample(0:2,1000000,replace=T),
sample(0:2,1000000,replace=T))
microbenchmark::microbenchmark(fun(test,9))
# Unit: milliseconds
# expr min lq mean median uq max neval
# fun(test, 9) 22.7297 27.21038 30.91314 27.55106 28.08437 51.92393 100
Edit: Thanks to #MatthewLundberg for pointing out a lot of mistakes.
If you are doing this many times, precompute all the locations
loc <- which((a1==2 & a2==0) | (a1==0 & a2==2))
You can then find the first to the left and right with findInterval
i<-findInterval(9,loc);loc[c(i,i+1)]
# [1] 2 14
Note that findInterval is vectorized should you care to specify multiple target columns.
That is an interesting question. Here's how I would address it.
First a vector is defined which contains the product of each column:
a3 <- matr[1,]*matr[2,]
Then we can find the columns with pairs of (0/2) or (2/0) rather easily, since we know that the matrix can only contain the values 0, 1, and 2:
the02s <- which(colSums(matr)==2 & a3==0)
Next we want to find the pairs of (0/2) or (2/0) that are closest to a given column number, on the left and on the right of that column. The column number could be 9, for instance:
thecol <- 9
Now we have basically all we need to find the index (the column number in the matrix) of a combination of (0/2) or (2/0) that is closest to the column thecol. We just need to use the output of findInterval():
pos <- findInterval(thecol,the02s)
pos <- c(pos, pos+1)
pos[pos==0] <- NA # output NA if no column was found on the left
And the result is:
the02s[pos]
# 2 14
So the indices of the closest columns on either side of thecol fulfilling the required condition would be 2 and 14 in this case, and we can confirm that these column numbers both contain one of the relevant combinations:
matr[,14]
#a1 a2
# 0 2
matr[,2]
#a1 a2
# 0 2
Edit: I changed the answer such that NA is returned in the case where no column exists on the left and/or on the right of thecol in the matrix that fulfills the required condition.

which(vector1 < vector2)

Let's make a small example first, that computes in R:
x<- c(1,3,1,4,2)
max(which(x<2))
[1] 3
Now, I would like to do this not just for one value 2, but for many values simultaneously. It should give me something like that:
max(which(x<c(1,2,3,4,5,6)))
[1] NA 3 5 5 5 5
Of course I could run a for loop, but that is very slow:
for(i in c(1,2,3,4,5,6)){
test[i]<-max(which(x<i))
}
Is there a fast way to do this?
Try this:
vapply(1:6, function(i) max(which(x < i)), double(1))
A fully vectorized approach:
x <- c(1,3,1,4,2)
y <- c(1,2,3,4,5,6)
f <- function(x, y) {
xo <- sort(unique(x))
xi <- cummax(1 + length(x) - match(xo, rev(x)))
xi[cut(y, c(xo, Inf))]
}
f(x,y)
# [1] NA 3 5 5 5 5
The advantages of full vectorization really start to kick in when both x and y are relatively long and each contains many distinct values:
x <- sample(1:1e4)
y <- 1:1e4
microbenchmark(nicola(), frank(), beauvel(), davida(), hallo(), josho(),times=5)
Unit: milliseconds
expr min lq mean median uq max neval cld
nicola() 4927.45918 4980.67901 5031.84199 4991.38240 5052.6861 5207.00330 5 d
frank() 513.05769 513.33547 552.29335 517.65783 540.9536 676.46221 5 b
beauvel() 1091.93823 1114.84647 1167.10033 1121.58251 1161.3828 1345.75158 5 c
davida() 562.71123 575.75352 585.83873 590.90048 597.0284 602.80002 5 b
hallo() 559.11618 574.60667 614.62914 624.19570 641.9639 673.26328 5 b
josho() 36.22829 36.57181 37.37892 37.52677 37.6373 38.93044 5 a
Are you looking for this?
y<-1:6
max.col(outer(y,x,">"),ties.method="last")*NA^(y<=min(x))
#[1] NA 3 5 5 5 5
Find the max index of each value seen in x:
xvals <- unique(x)
xmaxindx <- length(x) - match(xvals,rev(x)) + 1L
Rearrange
xvals <- xvals[order(xmaxindx,decreasing=TRUE)]
xmaxindx <- xmaxindx[order(xmaxindx,decreasing=TRUE)]
# 2 4 1 3
# 5 4 3 2
Select from those:
xmaxindx[vapply(1:6,function(z){
ok <- xvals < z
if(length(ok)) which(ok)[1] else NA_integer_
},integer(1))]
# <NA> 1 2 2 2 2
# NA 3 5 5 5 5
It handily reports the values (in the first row) along with the indices (second row).
The sapply way is simpler and probably not slower:
xmaxindx[sapply(1:6,function(z) which(xvals < z)[1])]
Benchmarks. The OP's case is not fully described, but here are some benchmarks anyway:
# setup
nicola <- function() max.col(outer(y,x,">"),ties.method="last")*NA^(y<=min(x))
frank <- function(){
xvals <- unique(x)
xmaxindx <- length(x) - match(xvals,rev(x)) + 1L
xvals <- xvals[order(xmaxindx,decreasing=TRUE)]
xmaxindx <- xmaxindx[order(xmaxindx,decreasing=TRUE)]
xmaxindx[vapply(y,function(z){
ok <- xvals < z
if(length(ok)) which(ok)[1] else NA_integer_
},integer(1))]
}
beauvel <- function()
Vectorize(function(u) ifelse(length(which(x<u))==0,NA,max(which(x<u))))(y)
davida <- function() vapply(y, function(i) c(max(which(x < i)),NA)[1], double(1))
hallo <- function(){
test <- vector("integer",length(y))
for(i in y){
test[i]<-max(which(x<i))
}
test
}
josho <- function(){
xo <- sort(unique(x))
xi <- cummax(1L + length(x) - match(xo, rev(x)))
xi[cut(y, c(xo, Inf))]
}
require(microbenchmark)
(#MrHallo's and #DavidArenburg's throw a bunch of warnings the way I have them written now, but that could be fixed.) Here are some results:
> x <- sample(1:4,1e6,replace=TRUE)
> y <- 1:6
> microbenchmark(nicola(),frank(),beauvel(),davida(),hallo(),josho(),times=10)
Unit: milliseconds
expr min lq mean median uq max neval
nicola() 76.17992 78.01171 99.75596 98.43919 120.81776 127.63058 10
frank() 25.27245 25.44666 36.41508 28.44055 45.32306 73.66652 10
beauvel() 47.70081 59.47828 67.44918 68.93808 74.12869 95.20936 10
davida() 26.52582 26.55827 33.93855 30.00990 35.55436 57.24119 10
hallo() 26.58186 26.63984 32.68850 28.68163 33.54364 50.49190 10
josho() 25.69634 26.28724 37.95341 30.50828 47.90526 68.30376 10
There were 20 warnings (use warnings() to see them)
>
>
> x <- sample(1:80,1e6,replace=TRUE)
> y <- 1:60
> microbenchmark(nicola(),frank(),beauvel(),davida(),hallo(),josho(),times=10)
Unit: milliseconds
expr min lq mean median uq max neval
nicola() 2341.96795 2395.68816 2446.60612 2481.14602 2496.77128 2504.8117 10
frank() 25.67026 25.81119 42.80353 30.41979 53.19950 123.7467 10
beauvel() 665.26904 686.63822 728.48755 734.04857 753.69499 784.7280 10
davida() 326.79072 359.22803 390.66077 397.50163 420.66266 456.8318 10
hallo() 330.10586 349.40995 380.33538 389.71356 397.76407 443.0808 10
josho() 26.06863 30.76836 35.04775 31.05701 38.84259 57.3946 10
There were 20 warnings (use warnings() to see them)
>
>
> x <- sample(sample(1e5,1e1),1e6,replace=TRUE)
> y <- sample(1e5,1e4)
> microbenchmark(frank(),josho(),times=10)
Unit: milliseconds
expr min lq mean median uq max neval
frank() 69.41371 74.53816 94.41251 89.53743 107.6402 134.01839 10
josho() 35.70584 37.37200 56.42519 54.13120 63.3452 90.42475 10
Of course, comparisons might come out differently for the OP's true case.
You can use Vectorize:
func = Vectorize(function(u) ifelse(length(which(x<u))==0,NA,max(which(x<u))))
> func(1:6)
#[1] NA 3 5 5 5 5

Speeding up a function: checking NA count before computing mean

The function below calculates the mean of a vector. However, it first checks the proportion of NA's present in the vector
and if above a given threshold, returns NA instead of the mean.
My issue is that my current implementation is rather innefficient. It takes more than 7x longer than simply running mean(vec, na.rm=TRUE)
I tried an alternate method using na.omit, but that is even slower.
Given the size of my data, executing the single lapply is taking over 40 minutes.
Any suggestions on how to accomplish the same task more quickly?
UPDATE - RE: #thelatemail 's solution and #Arun's comment:
I am executing this function over several hundred groups, each group of varying size. The sample data (originally) provided in this question was provided as a neat data frame simply for ease of creating artificial data.
Alternate sample data to avoid the confusion
# Sample Data
# ------------
set.seed(1)
# slightly different sizes for each group
N1 <- 5e3
N2 <- N1 + as.integer(rnorm(1, 0, 100))
# One group has only a moderate amount of NA's
SAMP1 <- rnorm(N1)
SAMP1[sample(N1, .25 * N1, FALSE)] <- NA # add in NA's
# Another group has many NA's
SAMP2 <- rnorm(N2)
SAMP2[sample(N2, .95 * N2, FALSE)] <- NA # add in large number of NA's
# put them all in a list
SAMP.NEW <- list(SAMP1, SAMP2)
# keep it clean
rm(SAMP1, SAMP2)
# Execute
# -------
lapply(SAMP.NEW, meanIfThresh)
Original Sample Data, function etc
# Sample Data
# ------------
set.seed(1)
rows <- 20000 # actual data has more than 7M rows
cols <- 1000
SAMP <- replicate(cols, rnorm(rows))
SAMP[sample(length(SAMP), .25 * length(SAMP), FALSE)] <- NA # add in NA's
# Select 5 random rows, and have them be 90% NA
tooSparse <- sample(rows, 5)
for (r in tooSparse)
SAMP[r, sample(cols, cols * .9, FALSE)] <- NA
# Function
# ------------
meanIfThresh <- function(vec, thresh=12/15) {
# Calculates the mean of vec, however,
# if the number of non-NA values of vec is less than thresh, returns NA
# thresh : represents how much data must be PRSENT.
# ie, if thresh is 80%, then there must be at least
len <- length(vec)
if( (sum(is.na(vec)) / len) > thresh)
return(NA_real_)
# if the proportion of NA's is greater than the threshold, return NA
# example: if I'm looking at 14 days, and I have 12 NA's,
# my proportion is 85.7 % = (12 / 14)
# default thesh is 80.0 % = (12 / 15)
# Thus, 12 NAs in a group of 14 would be rejected
# else, calculate the mean, removing NA's
return(mean(vec, na.rm=TRUE))
}
# Execute
# -----------------
apply(SAMP, 1, meanIfThresh)
# Compare with `mean`
#----------------
plain <- apply(SAMP, 1, mean, na.rm=TRUE)
modified <- apply(SAMP, 1, meanIfThresh)
# obviously different
identical(plain, modified)
plain[tooSparse]
modified[tooSparse]
microbenchmark( "meanIfThresh" = apply(SAMP, 1, meanIfThresh)
, "mean (regular)" = apply(SAMP, 1, mean, na.rm=TRUE)
, times = 15L)
# With the actual data, the penalty is sevenfold
# Unit: seconds
# expr min lq median uq max neval
# meanIfThresh 1.658600 1.677472 1.690460 1.751913 2.110871 15
# mean (regular) 1.422478 1.485320 1.503468 1.532175 1.547450 15
Couldn't you just replace the high NA rows' mean values afterwards like so?:
# changed `result <- apply(SAMP,1,mean,na.rm=TRUE)`
result <- rowMeans(SAMP, na.rm=TRUE)
NArows <- rowSums(is.na(SAMP))/ncol(SAMP) > 0.8
result[NArows] <- NA
Some benchmarking:
Ricardo <- function(vec, thresh=12/15) {
len <- length(vec)
if( (sum(is.na(vec)) / len) > thresh)
return(NA_real_)
return(mean(vec, na.rm=TRUE))
}
DanielFischer <- function(vec, thresh=12/15) {
len <- length(vec)
nas <- is.na(vec)
Nna <- sum(nas)
if( (Nna / len) > thresh)
return(NA_real_)
return(sum(vec[!nas])/(len-Nna))
}
thelatemail <- function(mat) {
result <- rowMeans(mat, na.rm=TRUE)
NArows <- rowSums(is.na(mat))/ncol(mat) > 0.8
result[NArows] <- NA
result
}
require(microbenchmark)
microbenchmark(m1 <- apply(SAMP, 1, Ricardo),
m2 <- apply(SAMP, 1, DanielFischer),
m3 <- thelatemail(SAMP), times = 5L)
Unit: milliseconds
expr min lq median uq max neval
m1 <- apply(SAMP, 1, Ricardo) 2923.7260 2944.2599 3066.8204 3090.8127 3105.4283 5
m2 <- apply(SAMP, 1, DanielFischer) 2643.4883 2683.1034 2755.7032 2799.5155 3089.6015 5
m3 <- latemail(SAMP) 337.1862 340.6339 371.6148 376.5517 383.4436 5
all.equal(m1, m2) # TRUE
all.equal(m1, m3) # TRUE
Is it so that you have to go twice through your vector vec in your function? If you can store your NA first, maybe it could speed up your calculations a bit:
meanIfThresh2 <- function(vec, thresh=12/15) {
len <- length(vec)
nas <- is.na(vec)
Nna <- sum(nas)
if( (Nna / len) > thresh)
return(NA_real_)
return(sum(vec[!nas])/(len-Nna))
}
EDIT: I performed the similar benchmarking, to see the effect on this change:
> microbenchmark( "meanIfThresh" = apply(SAMP, 1, meanIfThresh)
+ , "meanIfThresh2" = apply(SAMP, 1, meanIfThresh2)
+ , "mean (regular)" = apply(SAMP, 1, mean, na.rm=TRUE)
+ , times = 15L)
Unit: seconds
expr min lq median uq max neval
meanIfThresh 2.009858 2.156104 2.158372 2.166092 2.192493 15
meanIfThresh2 1.825470 1.828273 1.829424 1.834407 1.872028 15
mean (regular) 1.868568 1.882526 1.889852 1.893564 1.907495 15

Resources