Why are there 2 methods for getindex? - julia

In the source code, I see 2 methods are implemented for getindex.
# T[x...] constructs Array{T,1}
function getindex(T::Type, vals...)
a = Array(T,length(vals))
#inbounds for i = 1:length(vals)
a[i] = vals[i]
end
return a
end
function getindex(::Type{Any}, vals::ANY...)
a = Array(Any,length(vals))
#inbounds for i = 1:length(vals)
a[i] = vals[i]
end
return a
end
Why is the second one required? I have read the performance-tips, but in this case type of a is stable: always T.

These are both getindex methods that are used for creating arrays through syntax such as e.g.
Int[1,4,9]
(first method) and
Any[1,4.0,"9"]
(second method). The second one is not strictly required, but is an optimization to cut down on compiler time and resources.
The type signature ::ANY (as opposed to ::Any) instructs the compiler not to specialize on the actual types of those arguments, which makes sense in this case since there would be no performance gain. It makes sense to have this special case in place since arrays will likely be constructed with the Any[...] syntax using a wide range of type combinations.

Related

Type declaration in Julia for function argument that can be both array and scalar

What type should I specify in Julia for function arguments that can be either scalars or arrays? For instance, in the function below x and y could be e.g. Float64 or Array{Float64}.
function myfun(x, y)
return x .+ y
end
Is there an appropriate type declaration for such variables? Or should I just refrain from declaring the type there (or writing functions that are that generic)?
You can safely refrain from specifying types. This will not have an impact on performance of your code.
However, if you want to explicitly specify the type restriction you provided do (this is mostly useful to make sure your function is called with proper arguments and fail fast if it is not):
function myfun(x::Union{Float64, Array{Float64}},
y::Union{Float64, Array{Float64}})
return x .+ y
end
However, most likely you will rather want the following signature:
function myfun(x::Union{AbstractFloat, AbstractArray{<:AbstractFloat}},
y::Union{AbstractFloat, AbstractArray{<:AbstractFloat}})
return x .+ y
end
which says you accept any scalar float or any array of floats (not necessarily only Float64 and Array). This is more flexible, as e.g. you can accept views then or other floats (BigFloat or Float32) if you prefer to switch precision of your computations. Such a signature clearly signals your users what types of inputs you expect them to pass to myfun while remaining flexible.
I recommend this as being overly restrictive (Union{Float64, Array{Float64}}), while accepted by the compiler, usually leads to problems later when you start using your function with various input types.

Parameters of function in Julia

Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?  This requires, if we want to use it anyway, to go through a very artificial process, by representing these data in the form of a ridiculous single element table.
Ada, which had the same kind of limitation, abandoned it in its 2012 redesign to the great satisfaction of its users. A small keyword (like out in Ada) could very well indicate that the possibility of keeping the modifications of a parameter at the output is required.
From my experience in Julia it is useful to understand the difference between a value and a binding.
Values
Each value in Julia has a concrete type and location in memory. Value can be mutable or immutable. In particular when you define your own composite type you can decide if objects of this type should be mutable (mutable struct) or immutable (struct).
Of course Julia has in-built types and some of them are mutable (e.g. arrays) and other are immutable (e.g. numbers, strings). Of course there are design trade-offs between them. From my perspective two major benefits of immutable values are:
if a compiler works with immutable values it can perform many optimizations to speed up code;
a user is can be sure that passing an immutable to a function will not change it and such encapsulation can simplify code analysis.
However, in particular, if you want to wrap an immutable value in a mutable wrapper a standard way to do it is to use Ref like this:
julia> x = Ref(1)
Base.RefValue{Int64}(1)
julia> x[]
1
julia> x[] = 10
10
julia> x
Base.RefValue{Int64}(10)
julia> x[]
10
You can pass such values to a function and modify them inside. Of course Ref introduces a different type so method implementation has to be a bit different.
Variables
A variable is a name bound to a value. In general, except for some special cases like:
rebinding a variable from module A in module B;
redefining some constants, e.g. trying to reassign a function name with a non-function value;
rebinding a variable that has a specified type of allowed values with a value that cannot be converted to this type;
you can rebind a variable to point to any value you wish. Rebinding is performed most of the time using = or some special constructs (like in for, let or catch statements).
Now - getting to the point - function is passed a value not a binding. You can modify a binding of a function parameter (in other words: you can rebind a value that a parameter is pointing to), but this parameter is a fresh variable whose scope lies inside a function.
If, for instance, we wanted a call like:
x = 10
f(x)
change a binding of variable x it is impossible because f does not even know of existence of x. It only gets passed its value. In particular - as I have noted above - adding such a functionality would break the rule that module A cannot rebind variables form module B, as f might be defined in a module different than where x is defined.
What to do
Actually it is easy enough to work without this feature from my experience:
What I typically do is simply return a value from a function that I assign to a variable. In Julia it is very easy because of tuple unpacking syntax like e.g. x,y,z = f(x,y,z), where f can be defined e.g. as f(x,y,z) = 2x,3y,4z;
You can use macros which get expanded before code execution and thus can have an effect modifying a binding of a variable, e.g. macro plusone(x) return esc(:($x = $x+1)) end and now writing y=100; #plusone(y) will change the binding of y;
Finally you can use Ref as discussed above (or any other mutable wrapper - as you have noted in your question).
"Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?" asked by Schemer
Your question is wrong because you assume the wrong things.
Parameters are variables
When you pass things to a function, often those things are values and not variables.
for example:
function double(x::Int64)
2 * x
end
Now what happens when you call it using
double(4)
What is the point of the function modifying it's parameter x , it's pointless. Furthermore the function has no idea how it is called.
Furthermore, Julia is built for speed.
A function that modifies its parameter will be hard to optimise because it causes side effects. A side effect is when a procedure/function changes objects/things outside of it's scope.
If a function does not modifies a variable that is part of its calling parameter then you can be safe knowing.
the variable will not have its value changed
the result of the function can be optimised to a constant
not calling the function will not break the program's behaviour
Those above three factors are what makes FUNCTIONAL language fast and NON FUNCTIONAL language slow.
Furthermore when you move into Parallel programming or Multi Threaded programming, you absolutely DO NOT WANT a variable having it's value changed without you (The programmer) knowing about it.
"How would you implement with your proposed macro, the function F(x) which returns a boolean value and modifies c by c:= c + 1. F can be used in the following piece of Ada code : c:= 0; While F(c) Loop ... End Loop;" asked by Schemer
I would write
function F(x)
boolean_result = perform_some_logic()
return (boolean_result,x+1)
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end
"Unfortunately no, because, and I should have said that, c has to take again the value 0 when F return the value False (c increases as long the Loop lives and return to 0 when it dies). " said Schemer
Then I would write
function F(x)
boolean_result = perform_some_logic()
if boolean_result == true
return (true,x+1)
else
return (false,0)
end
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end

dealing with types in kwargs in Julia

How can I use kwargs in a Julia function and declare their types for speed?
function f(x::Float64; kwargs...)
kwargs = Dict(kwargs)
if haskey(kwargs, :c)
c::Float64 = kwargs[:c]
else
c::Float64 = 1.0
end
return x^2 + c
end
f(0.0, c=10.0)
yields:
ERROR: LoadError: syntax: multiple type declarations for "c"
Of course I can define the function as f(x::Float64, c::Float64=1.0) to achieve the result, but I have MANY optional arguments with default values to pass, so I'd prefer to use kwargs.
Thanks.
Related post
As noted in another answer, this really only matters if you're going to have a type instability. If you do, the answer is to layer your functions. Have a top layer which does type checking and all sorts of setup, and then call a function which uses dispatch to be fast. For example,
function f(x::Float64; kwargs...)
kwargs = Dict(kwargs)
if haskey(kwargs, :c)
c = kwargs[:c]
else
c = 1.0
end
return _f(x,c)
end
_f(x,c) = x^2 + c
If most of your time is spent in the inner function, then this will be faster (it might not be for very simple functions). This allows for very general usage too, where you have have a keyword argument be by default nothing and do and if nothing ... which could setup a complicated default, and not have to worry about the type stability since it will be shielded from the inner function.
This kind of high-level type-checking wrapper above a performance sensitive inner function is used a lot in DifferentialEquations.jl. Check out the high-level wrapper for the SDE solvers which led to nice speedups by insuring type stability (the inner function is sde_solve) (or check out the solve for ODEProblem, it's much more complex since it handles conversions to different pacakges but it's the same idea).
A simpler answer for small examples like yours may be possible after this PR merges.
To fix some confusion, here's a declaration form:
function f(x::Float64; kwargs...)
local c::Float64 # Ensures the type of `c` will be `Float64`
kwargs = Dict(kwargs)
if haskey(kwargs, :c)
c = float(kwargs[:c])
else
c = 1.0
end
return x^2 + c
end
This will force anything that saves to c to convert to a Float64 or error, resulting in a type-stability, but is not as general of a solution. What form you use really depends on what you're doing.
Lastly, there's also the type assert, as #TotalVerb showed:
function f(x::Float64; c::Float64=1.0, kwargs...)
return x^2 + c
end
That's clean, or you could assert in the function:
function f(x::Float64; kwargs...)
kwargs = Dict(kwargs)
if haskey(kwargs, :c)
c = float(kwargs[:c])::Float64
else
c = 1.0
end
return x^2 + c
end
which will cause convertions only on the lines where the assertion occurs (i.e. the #TotalVerb form won't dispatch, so you can't make another function with c::Int, and it will only assert (convert) when the keyword arg is first read in).
Summary
The first solution will dispatch to be type stable in _f no matter what type the user makes c, and so if _f is a long calculation, this will get pretty much optimal performance, but for really quick calls it will have dispatch overhead.
The second solution will fix any type stability by forcing anything you set c to be a Float64 (it will try to convert, and if it can't, error). Thus this gets speed by forcing type stability, or erroring.
The assert in the keyword spot (#TotalVerb's answer) is the cleanest, but won't auto-convert later (so you could get a type-instability. But if you don't accidentally convert it later, then you have type stability, types can be inferred, and so you'll get optimal performance) and you can't extend it to cases where the function has c passed in as other types (no dispatch).
The last solution is pretty much the same as 3, except not as nice. I wouldn't recommend it. If you're doing something complicated with asserts, you likely are designing something wrong or really want to do something like the first (dispatch in a longer function call which is type stable).
But note that dispatch with version 3 may be fixed in the near future, which would allow you to have a different function with c::Float64 and c::Int (if necessary). Hopefully your solution is in here somewhere.
Note that declaring types does not give you increased performance; you may wish to relax the type constraints on x and c for your code to be more generic. Anyway, this is probably what you want:
function f(x::Float64; c::Float64=1.0, kwargs...)
return x^2 + c
end
See the keyword arguments section of the manual.

How to declare array type that can have int and floats

I am a newbie to Julia and still trying to figure out everything.
I want to restrict input variable type to array that can contain int and floats.
I would really appreciate any help.
function foo(array::??)
As I mentioned in the comment, you don't want to mix them for performance reasons. However, if your array can be either Floats or Ints, but you don't know which it will be, then the best approach is to make it dispatch on the parametric type:
function foo{T<:Number,N}(array::Array{T,N})
This will make it compile a separate function for arrays of each number type (only when needed), and since the type will be known for the compiler, it will run an optimized version of the function whether you give it foo([0.1,0.3,0.4]), foo([1 2 3]), foo([1//2 3//4]), etc.
Updated syntax in Julia 0.6+
function foo(array::Array{T,N}) where {T<:Number,N}
For more generality, you can use Array{Union{Int64,Float64},N} as a type. This will allow Floats and Ints, and you can use its constructor like
arr = Array{Union{Int64,Float64},2}(4,4) # The 2 is the dimension, (4,4) is the size
and you can allow dispatching onto weird things like this as well by doing
function foo{T,N}(array::Array{T,N})
i.e. just remove the restriction on T. However, since the compiler cannot know in advance whether any element of the array is an Int or a Float, it cannot optimize it very well. So in general you should not do this...
But let me explain one way you can work with this and still get something with decent performance. It also works by multiple dispatch. Essentially, if you encase your inner loops with a function call which is a strictly typed dispatch, then when doing all of the hard calculations it can know exactly what type it is and optimize the code anyways. This is best explained by an example. Let's say we want to do:
function foo{T,N}(array::Array{T,N})
for i in eachindex(array)
val = array[i]
# do algorithm X on val
end
end
You can check using #code_warntype that val will not compile as an Int64 or Float64 because it won't know until runtime what type it will be for each i. If you check #code_llvm (or #code_native for the assembly) you see that there is a really long code that is generated in order to handle this. What we can instead do is define
function inner_foo{T<:Number}(val::T)
# Do algorithm X on val
end
and then instead define foo as
function foo2{T,N}(array::Array{T,N})
for i in eachindex(array)
inner_foo(array[i])
end
end
While this looks the same to you, it is very different to the compiler. Note that inner_foo(array[i]) dispatches a specially-compiled function for whatever number type it sees, so in foo2 algorithm X is calculated efficiently, and the only non-efficient part is the wrapping above inner_foo (so if all your time is spent in inner_foo, you will get basically maximal performance).
This is why Julia is built around multiple-dispatch: it's a design which allows you to push things out to optimized functions whenever possible. Julia is fast because of it. Use it.
This should be a comment to Chris' answer, but I don't have enough points to comment.
As Chris points out, using function barriers can be quite useful to generate optimal code. However be aware that dynamic dispatch has some overhead. This may or may not be important depending on the complexity of the inner function.
function foo1{T,N}(array::Array{T,N})
s = 0.0
for i in eachindex(array)
val = array[i]
s += val*val
end
s
end
function foo2{T,N}(array::Array{T,N})
s = 0.0
for i in eachindex(array)
s += inner_foo(array[i])
end
s
end
function foo3{T,N}(array::Array{T,N})
s = 0.0
for i in eachindex(array)
val = array[i]
if isa(val, Float64)
s += inner_foo(val::Float64)
else
s += inner_foo(val::Int64)
end
end
s
end
function inner_foo{T<:Number}(val::T)
val*val
end
For A = Array{Union{Int64,Float64},N}, foo2 doesn't provide much speedup over foo1 since benefit of the optimised inner_foo is countered by the cost of dynamic dispatch.
foo3 is much faster (~7 times) and could be used if possible types are limited and known ahead of time (as in above example where elements are either Int64 or Float64)
See https://groups.google.com/forum/#!topic/julia-users/OBs0fmNmjCU for further discussion.

Can I use a subtype of a function parameter in the function definition?

I would like to use a subtype of a function parameter in my function definition. Is this possible? For example, I would like to write something like:
g{T1, T2<:T1}(x::T1, y::T2) = x + y
So that g will be defined for any x::T1 and any y that is a subtype of T1. Obviously, if I knew, for example, that T1 would always be Number, then I could write g{T<:Number}(x::Number, y::T) = x + y and this would work fine. But this question is for cases where T1 is not known until run-time.
Read on if you're wondering why I would want to do this:
A full description of what I'm trying to do would be a bit cumbersome, but what follows is a simplified example.
I have a parameterised type, and a simple method defined over that type:
type MyVectorType{T}
x::Vector{T}
end
f1!{T}(m::MyVectorType{T}, xNew::T) = (m.x[1] = xNew)
I also have another type, with an abstract super-type defined as follows
abstract MyAbstract
type MyType <: MyAbstract ; end
I create an instance of MyVectorType with vector element type set to MyAbstract using:
m1 = MyVectorType(Array(MyAbstract, 1))
I now want to place an instance of MyType in MyVectorType. I can do this, since MyType <: MyAbstract. However, I can't do this with f1!, since the function definition means that xNew must be of type T, and T will be MyAbstract, not MyType.
The two solutions I can think of to this problem are:
f2!(m::MyVectorType, xNew) = (m.x[1] = xNew)
f3!{T1, T2}(m::MyVectorType{T1}, xNew::T2) = T2 <: T1 ? (m.x[1] = xNew) : error("Oh dear!")
The first is essentially a duck-typing solution. The second performs the appropriate error check in the first step.
Which is preferred? Or is there a third, better solution I am not aware of?
The ability to define a function g{T, S<:T}(::Vector{T}, ::S) has been referred to as "triangular dispatch" as an analogy to diagonal dispatch: f{T}(::Vector{T}, ::T). (Imagine a table with a type hierarchy labelling the rows and columns, arranged such that the super types are to the top and left. The rows represent the element type of the first argument, and the columns the type of the second. Diagonal dispatch will only match the cells along the diagonal of the table, whereas triangular dispatch matches the diagonal and everything below it, forming a triangle.)
This simply isn't implemented yet. It's a complicated problem, especially once you start considering the scoping of T and S outside of function definitions and in the context of invariance. See issue #3766 and #6984 for more details.
So, practically, in this case, I think duck-typing is just fine. You're relying upon the implementation of myVectorType to do the error checking when it assigns its elements, which it should be doing in any case.
The solution in base julia for setting elements of an array is something like this:
f!{T}(A::Vector{T}, x::T) = (A[1] = x)
f!{T}(A::Vector{T}, x) = f!(A, convert(T, x))
Note that it doesn't worry about the type hierarchy or the subtype "triangle." It just tries to convert x to T… which is a no-op if x::S, S<:T. And convert will throw an error if it cannot do the conversion or doesn't know how.
UPDATE: This is now implemented on the latest development version (0.6-dev)! In this case I think I'd still recommend using convert like I originally answered, but you can now define restrictions within the static method parameters in a left-to-right manner.
julia> f!{T1, T2<:T1}(A::Vector{T1}, x::T2) = "success!"
julia> f!(Any[1,2,3], 4.)
"success!"
julia> f!(Integer[1,2,3], 4.)
ERROR: MethodError: no method matching f!(::Array{Integer,1}, ::Float64)
Closest candidates are:
f!{T1,T2<:T1}(::Array{T1,1}, ::T2<:T1) at REPL[1]:1
julia> f!([1.,2.,3.], 4.)
"success!"

Resources