predict.lm with arbitrary coefficients r - r

I'm trying to predict an lm object using predict.lm. However, I would like to use manually inserted coefficients.
To do this I tried:
model$coefficients <- coeff
(where "coeff" is a vector of correct coefficients)
which would indeed modify the coefficients as I want. Nevertheless, when I execute
predict.lm(model, new.data)
I just get predictions calculated with the "old" parameters. Is there a way I could force predict.lm to use the new ones?
Post Scriptum: I need to do this to fit a bin-smooth (also called regressogram).
In addition, when I predict "by hand" (i.e. using matrix multiplication) the results are fine, hence I'm quite sure that the problem lies in the predict.lm not recognizing my new coefficients.
Thanks in advance for the help!

Hacking the $coefficients element does indeed seem to work. Can you show what doesn't work for you?
dd <- data.frame(x=1:5,y=1:5)
m1 <- lm(y~x,dd)
m1$coefficients <- c(-2,1)
m1
## Call:
## lm(formula = y ~ x, data = dd)
##
## Coefficients:
## [1] -2 1
predict(m1,newdata=data.frame(x=7)) ## 5 = -2+1*7
predict.lm(...) gives the same results.
I would be very careful with this approach, checking each time you do something different with the hacked model.
In general it would be nice if predict and simulate methods took a newparams argument, but they don't in general ...

Related

How to correctly `dput` a fitted linear model (by `lm`) to an ASCII file and recreate it later?

I want to persist a lm object to a file and reload it into another program. I know I can do this by writing/reading a binary file via saveRDS/readRDS, but I'd like to have an ASCII file instead of a binary file. At a more general level, I'd like to know why my idioms for reading in dput output in general is not behaving as I'd expect.
Below are examples of making a simple fit, and successful and unsuccessful recreations of the model:
dat_train <- data.frame(x=1:4, z=c(1, 2.1, 2.9, 4))
fit <- lm(z ~ x, dat_train)
rm(dat_train) # Just to make sure fit is not dependent upon `dat_train existence`
dat_score <- data.frame(x=c(1.5, 3.5))
## This works (of course)
predict(fit, dat_score)
# 1 2
# 1.52 3.48
Saving to binary file works:
## http://stackoverflow.com/questions/5118074/reusing-a-model-built-in-r
saveRDS(fit, "model.RDS")
fit2 <- readRDS("model.RDS")
predict(fit2, dat_score)
# 1 2
# 1.52 3.48
So does this (dput it in the R session not to a file):
fit2 <- eval(dput(fit))
predict(fit2, dat_score)
# 1 2
# 1.52 3.48
But if I persist file to disk, I cannot figure out how to get back into normal shape:
dput(fit, file = "model.R")
fit3 <- source("model.R")$value
# Error in is.data.frame(data): object 'dat_train' not found
predict(fit3, dat_score)
# Error in predict(fit3, dat_score): object 'fit3' not found
Trying to be explicit with the eval does not work either:
## http://stackoverflow.com/questions/9068397/import-text-file-as-single-character-string
dput(fit, file="model.R")
fit4 <- eval(parse(text=paste(readLines("model.R"), collapse=" ")))
# Error in is.data.frame(data): object 'dat_train' not found
predict(fit4, dat_score)
# Error in predict(fit4, dat_score): object 'fit4' not found
In both cases above, I expect fit3 and fit4 to both work, but they don't recompile into a lm object that I can use with predict().
Can anyone advise me on how I can persist a model to a file with a structure(...) ASCII-like structure, and then re-read it back in as a lm object I can use in predict()? And why my current methods are not working?
Step 1:
You need to control de-parsing options:
dput(fit, control = c("quoteExpressions", "showAttributes"), file = "model.R")
You can read more on all possible options in ?.deparseOpts.
The "quoteExpressions" wraps all calls / expressions / languages with quote, so that they are not evaluated when you later re-parse it. Note:
source is doing parsing;
call field in your fitted "lm" object is a call:
fit$call
# lm(formula = z ~ x, data = dat_train)
So, without "quoteExpressions", R will try to evaluate lm call during parsing. And if we evaluate it, it is fitting a linear model, and R will aim to find dat_train, which will not exist in your new R session.
The "showAttributes" is another mandatory option, as "lm" object has class attributes. You certainly don't want to discard all class attributes and only export a plain "list" object, right? Moreover, many elements in a "lm" object, like model (the model frame), qr (the compact QR matrix) and terms (terms info), etc all have attributes. You want to keep them all.
If you don't set control, the default setting with:
control = c("keepNA", "keepInteger", "showAttributes")
will be used. As you can see, there is no "quoteExpressions", so you will get into trouble.
You can also specify "keepInteger" and "keepNA", but I don't see the need for "lm" object.
------
Step 2:
The above step will get source working correctly. You can recover your model:
fit1 <- source("model.R")$value
However, it is not yet ready for generic functions like summary and predict to work. Why?
The critical issue is the terms object in fit1 is not really a "terms" object, but only a formula (it is even not a formula, but only a "language" object without "formula" class!). Just compare fit$terms and fit1$terms, and you will see the difference. Don't be surprised; we've set "quoteExpressions" earlier. While that is definitely helpful to prevent evaluation of call, it has side-effect for terms. So we need to reconstruct terms as best as we can.
Fortunately, it is sufficient to do:
fit1$terms <- terms.formula(fit1$terms)
Though this still does not recover all information in fit$terms (like variable classes are missing), it is readily a valid "terms" object.
Why is a "terms" object critical? Because all generic functions rely on it. You may not need to know more on this, as it is really technical, so I will stop here.
Once this is done, we can successfully use predict (and summary, too):
predict(fit1) ## no `newdata` given, using model frame `fit1$model`
# 1 2 3 4
#1.03 2.01 2.99 3.97
predict(fit1, dat_score) ## with `newdata`
# 1 2
#1.52 3.48
-------
Conclusion remark:
Although I have shown you how to get things work, I don't really recommend you doing this in general. An "lm" object will be pretty large when you fit a model to a large dataset, for example, residuals, fitted.values are long vectors, and qr and model are huge matrices / data frames. So think about this.
This is an important update!
As mentioned in the previous answer, the most challenging bit is to recover $terms as best as we can. The suggested method using terms.formula works for OP's example, but not for the following with bs() and poly():
dat <- data.frame(x1 = runif(20), x2 = runif(20), x3 = runif(20), y = rnorm(20))
library(splines)
fit <- lm(y ~ bs(x1, df = 3) + poly(x2, degree = 3) + x3, data = dat)
rm(dat)
If we follow the previous answer:
dput(fit, control = c("quoteExpressions", "showAttributes"), file = "model.R")
fit1 <- source("model.R")$value
fit1$terms <- terms.formula(fit1$terms)
We will see that summary.lm and anova.lm work correctly, but not predict.lm:
predict(fit1, newdata = data.frame(x1 = 0.5, x2 = 0.5, x3 = 0.5))
Error in bs(x1, df = 3) : could not find function "bs"
This is because ".Environment" attribute of $terms is missing. We need
environment(fit1$terms) <- .GlobalEnv
Now run above predict again we see a different error:
Error in poly(x2, degree = 3) :
'degree' must be less than number of unique points
This is because we are missing "predvars" attributes for safe / correct prediction of bs() and poly().
A remedy is that we need to dput such special attribute additionally:
dput(attr(fit$terms, "predvars"), control = "quoteExpressions", file = "predvars.R")
then read and add it
attr(fit1$terms, "predvars") <- source("predvars.R")$value
Now running predict works correctly.
Note that "dataClass" attribute of $terms is also missing, but this does not seem to cause any problem for any generic functions.

How to specify log link in glmnet?

I'm running an elastic net on a generalized linear model with the glmnet and caret packages in R.
My response variable is cost (where cost > $0) and hence I'd like to specify a Gaussian family with a log link for my GLM. However glmnet doesn't seem to allow me to specify (link="log") as follows:
> lasso_fit <- glmnet(x, y, alpha=1, family="gaussian"(link="log"), lambda.min.ratio=.001)
I've tried different variants, with and without quotations, but no luck. The glmnet documentation doesn't discuss how to include a log link.
Am I missing something? Does family="gaussian" already implicitly assume a log link?
It is a bit confusing, but the family argument in glmnet and glm are quite different. In glm, you can specify a character like "gaussian", or you can specify a function with some arguments, like gaussian(link="log"). In glmnet, you can only specify the family with a character, like "gaussian", and there is no way to automatically set the link through that argument.
The default link for gaussian is the identity function, that is, no transformation at all. But, remember that a link function is just a transformation of your y variable; you can just specify it yourself:
glmnet(x, log(y), family="gaussian")
Also note that the default link for the poisson family is log, but the objective function will change. See the Details under ?glmnet in the first couple of paragraphs.
Your comments have led me to rethink my answer; I have evidence that it is not correct.
As you point out, there is a difference between E[log(Y)] and log(E[Y]). I think what the above code does is to fit E[log(Y)], which is not what you want. Here is some code to generate data and confirm what you noted in the comments:
# Generate data
set.seed(1)
x <- replicate(3,runif(1000))
y <- exp(2*x[,1] + 3*x[,2] + x[,3] + runif(1000))
df <- data.frame(y,x)
# Run the model you *want*
glm(y~., family=gaussian(link="log"), data=df)$coef
# (Intercept) X1 X2 X3
# 0.4977746 2.0449443 3.0812333 0.9451073
# Run the model you *don't want* (in two ways)
glm(log(y)~., family=gaussian(link='identity'), data=df)$coef
# (Intercept) X1 X2 X3
# 0.4726745 2.0395798 3.0167274 0.9957110
lm(log(y)~.,data=df)$coef
# (Intercept) X1 X2 X3
# 0.4726745 2.0395798 3.0167274 0.9957110
# Run the glmnet code that I suggested - getting what you *don't want*.
library(glmnet)
glmnet.model <- glmnet(x,log(y),family="gaussian", thresh=1e-8, lambda=0)
c(glmnet.model$a0, glmnet.model$beta[,1])
# s0 V1 V2 V3
# 0.4726745 2.0395798 3.0167274 0.9957110
I know that this is an old question, but in the current version of glmnet (4.0-2) it is possible to use glm family functions as arguments to "family" instead of a character string, so you could use:
glmnet(x, y, family=gaussian(link="log"))
Note that the package is faster when you use the string arguments.
Reference:
https://glmnet.stanford.edu/articles/glmnetFamily.html

Equal results in K-cross validation of two models - R

I have the following linear models:
gn<- lm(NA.~ I(PC^0.25) + I(((PI)^2)),data=DSET)
gndos<-update(gn,subset=-c(1,2,4,10,11,26,27,100,158))
I run K-cross validation in each model and the results are the same:
library(DAAG)
a<-CVlm(df=DSET,form.lm = gn ,m=5)
t<-CVlm(df=DSET,form.lm = gndos ,m=5)
I would like to know the error in my code.
EDIT:
I show a reproducible example with simulated values. Here's my example:
set.seed(1234)
PC<-rnorm(600,mean=50,sd=4)
PI<-rnorm(600,mean=30,sd=4)
NA. <- 20*PC - 1.725*PI + rnorm(600,sd=1)
zx<-data.frame(NA.,PC,PI)
hn<- lm(NA.~ I(PC^0.25) + I(((PI)^2)),data=zx)
hndos<-update(hn,subset=-c(1,2,4,10,11,26,27,100,158))
library(DAAG)
a<-CVlm(df=zx,form.lm = hn ,m=5)
a<-CVlm(df=zx,form.lm = hndos ,m=5)
So, with this reproducible example, the results of the cross-validations are the same for each model too.
The problem is how CVlm() collects the data used to fit the model. It does this through the form.lm object, but this is not sufficient to reproduce the data used to fit the model. I would consider this a bug, but a deficiency might be more correct.
Because you used subset in the lm() call, the data used to fit that model included 591 observations. But you can't tell this from the formula alone. CVlm() does the following
form <- formula(hndos)
mf <- model.frame(form, zx)
R> nrow(mf)
[1] 600
Ahh, there are 600 observations. What it should have done was simply take
mf <- model.frame(hndos) ## model.frame(form.lm) in their code
R> nrow(mf)
[1] 591
Then the CV results would have been different. The code in CVlm() needs to be a little more nuanced than simply grabbing the formula of an lm() object if that is what is supplied to it. This would also be pretty easy to solve too.

use stepAIC on a list of models

I want to do stepwise regression using AIC on a list of linear models. idea is to use e a list of linear models and then apply stepAIC on each list element. It fails.
I tried to track the problem down. I think I found the problem. However, I don't understand the cause. Try the code to see the difference between three cases:
require(MASS)
n<-30
x1<-rnorm(n, mean=0, sd=1) #create rv x1
x2<-rnorm(n, mean=1, sd=1)
x3<-rnorm(n, mean=2, sd=1)
epsilon<-rnorm(n,mean=0,sd=1) # random error variable
dat<-as.data.frame(cbind(x1,x2,x3,epsilon)) # combine to a data frame
dat$id<-c(rep(1,10),rep(2,10),rep(3,10))
# y is combination from all three x and a random uniform variable
dat$y<-x1+x2+x3+epsilon
# apply lm() only resulting in a list of models
dat.lin.model.lst<-lapply(split(dat,dat$id),function(d) lm(y~x1+x2+x3,data=d))
stepAIC(dat.lin.model.lst[[1]]) # FAIL!!!
# apply function stepAIC(lm())- works
dat.lin.model.stepAIC.lst<-lapply(split(dat,dat$id),function(d) stepAIC(lm(y~x1+x2+x3,data=d)))
# create model for particular group with id==1
k<-which(dat$id==1) # manually select records with id==1
lin.model.id1<-lm(dat$y[k]~dat$x1[k]+dat$x2[k]+dat$x3[k])
stepAIC(lin.model.id1) # check stepAIC - works!
I am pretty sure that stepAIC() needs the original data from data.frame "dat". That is what I was thinking of before. (Hope I am right on that)
But there is no parameter in stepAIC() where I can pass the original data frame. Obviously, for plain models not wrapped in a list it's enough to pass the model. (last three lines in code) So I am wondering:
Q1: How does stepAIC knows where to find the original data "dat" (not only the model data which is passed as parameter)?
Q2: How can I possibly know that there is another parameter in stepAIC() which is not explicitly stated in the help pages? (maybe my English is just too bad to find)
Q3: How can I pass that parameter to stepAIC()?
It must be somewhere in the environment of the apply function and passing on the data. Either lm() or stepAIC() and the pointer/link to the raw data must get lost somewhere. I have not a good understanding what an environment in R does. For me it was kind of isolating local from global variables. But maybe its more complicated. Anyone who can explain that to me in regard to the problem above? Honestly, I dont read much out of the R documentation. Any better understanding would help me.
OLD:
I have data in a dataframe df that can be split into several subgroups. For that purpose I created a groupID called df$id. lm() returns the coefficent as expected for the first subgroup. I want to do a stepwise regression using AIC as criterion for each subgroup separately. I use lmList {lme4} which results in a model for each subgroup (id). But if I use stepAIC{MASS} for the list elements it throws an error. see below.
So the question is: What mistake is in my procedure/syntax? I get results for single models but not the ones created with lmList. Does lmList() store different information on the model than lm() does?
But in the help it states:
class "lmList": A list of objects of class lm with a common model.
>lme4.list.lm<-lmList(formula=Scherkraft.N~Gap.um+Standoff.um+Voidflaeche.px |df$id,data = df)
>lme4.list.lm[[1]]
Call: lm(formula = formula, data = data)
Coefficients:
(Intercept) Gap.um Standoff.um Voidflaeche.px
62.306133 -0.009878 0.026317 -0.015048
>stepAIC(lme4.list.lm[[1]], direction="backward")
#stepAIC on first element on the list of linear models
Start: AIC=295.12
Scherkraft.N ~ Gap.um + Standoff.um + Voidflaeche.px
Df Sum of Sq RSS AIC
- Standoff.um 1 2.81 7187.3 293.14
- Gap.um 1 29.55 7214.0 293.37
<none> 7184.4 295.12
- Voidflaeche.px 1 604.38 7788.8 297.97
Error in terms.formula(formula, data = data) :
'data' argument is of the wrong type
Obviously something does not work with the list. But I have not an idea what it might be.
Since I tried to do the same with the base package which creates the same model (at least the same coefficients). Results are below:
>lin.model<-lm(Scherkraft.N ~ Gap.um + Standoff.um + Voidflaeche.px,df[which(df$id==1),])
# id is in order, so should be the same subgroup as for the first list element in lmList
Coefficients:
(Intercept) Gap.um Standoff.um Voidflaeche.px
62.306133 -0.009878 0.026317 -0.015048
Well, this is what I get returned using stepAIC on my linear.model .
As far as I know the akaike information criterion can be used to estimate which model better balances between fit and generalization given some data.
>stepAIC(lin.model,direction="backward")
Start: AIC=295.12
Scherkraft.N ~ Gap.um + Standoff.um + Voidflaeche.px
Df Sum of Sq RSS AIC
- Standoff.um 1 2.81 7187.3 293.14
- Gap.um 1 29.55 7214.0 293.37
<none> 7184.4 295.12
- Voidflaeche.px 1 604.38 7788.8 297.97
Step: AIC=293.14
Scherkraft.N ~ Gap.um + Voidflaeche.px
Df Sum of Sq RSS AIC
- Gap.um 1 28.51 7215.8 291.38
<none> 7187.3 293.14
- Voidflaeche.px 1 717.63 7904.9 296.85
Step: AIC=291.38
Scherkraft.N ~ Voidflaeche.px
Df Sum of Sq RSS AIC
<none> 7215.8 291.38
- Voidflaeche.px 1 795.46 8011.2 295.65
Call: lm(formula = Scherkraft.N ~ Voidflaeche.px, data = df[which(df$id == 1), ])
Coefficients:
(Intercept) Voidflaeche.px
71.7183 -0.0151
I read from the output I should use the model: Scherkraft.N ~ Voidflaeche.px because this is the minimal AIC. Well, it would be nice if someone could shortly describe the output. My understanding of the stepwise regression (assuming backwards elimination) is all regressors are included in the initial model. Then the least important one is eliminated. The criterion to decide is the AIC. and so forth... Somehow I have problems to get the tables interpreted right. It would be nice if someone could confirm my interpretation. The "-"(minus) stands for the eliminated regressor. On top is the "start" model and in the table table below the RSS and AIC are calculated for possible eliminations. So the first row in the first table says a model Scherkraft.N~Gap.um+Standoff.um+Voidflaeche.px - Standoff.um would result in an AIC 293.14. Choose the one without Standoff.um: Scherkraft.N~Gap.um+Voidflaeche.px
EDIT:
I replaced the lmList{lme4} with dlply() to create the list of models.
Still stepAIC is not coping with the list. It throws another error. Actually, I believe it is a problem with the data stepAIC needs to run through. I was wondering how it calculates the AIC-value for each step just from the model data. I would take the original data to construct the models leaving one regressor out each time. Thereof I would calculate the AIC and compare. So how stepAIC is working if it has not access to the original data. (I cant see a parameter where I pass the original data to stepAIC). Still, I have no clue why it works with a plain model but not with the model wrapped in a list.
>model.list.all <- dlply(df, .id, function(x)
{return(lm(Scherkraft.N~Gap.um+Standoff.um+Voidflaeche.px,data=x)) })
>stepAIC(model.list.all[[1]])
Start: AIC=295.12
Scherkraft.N ~ Gap.um + Standoff.um + Voidflaeche.px
Df Sum of Sq RSS AIC
- Standoff.um 1 2.81 7187.3 293.14
- Gap.um 1 29.55 7214.0 293.37
<none> 7184.4 295.12
- Voidflaeche.px 1 604.38 7788.8 297.97
Error in is.data.frame(data) : object 'x' not found
I'm not sure what may have changed in the versioning to make the debugging so difficult, but one solution would be to use do.call, which evaluates the expressions in the call before executing it. This means that instead of storing just d in the call, so that update and stepAIC need to go find d in order to do their work, it stores a full representation of the data frame itself.
That is, do
do.call("lm", list(y~x1+x2+x3, data=d))
instead of
lm(y~x1+x2+x3, data=d)
You can see what it's trying to do by looking at the call element of the model, perhaps like this:
dat.lin.model.lst <- lapply(split(dat, dat$id), function(d)
do.call("lm", list(y~x1+x2+x3, data=d)) )
dat.lin.model.lst[[1]]$call
It's also possible to make your list of data frames in the global environment and then construct the call so that update and stepAIC look for each data frame in turn, because their environment chains always lead back to the global environment; like this:
dats <- split(dat, dat$id)
dat.lin.model.list <- lapply(seq_along(dats), function(d)
do.call("lm", list(y~x1+x2+x3, data=call("[[", quote(dats),i))) )
To see what's changed, run dat.lin.model.lst[[1]]$call again.
As it seems that stepAIC goes out of loop environment (that is in global environment) to look for the data it needs, I trick it using the assign function:
results <- do.call(rbind, lapply(response, function (i) {
assign("i", response, envir = .GlobalEnv)
mdl <- gls(as.formula(paste0(i,"~",paste(expvar, collapse = "+")), data= parevt, correlation = corARMA(p=1,q=1,form= ~as.integer(Year)), weights= varIdent(~1/Linf_var), method="ML")
mdl <- stepAIC(mdl, direction ="backward")
}))

Predicting with lm object in R - black box paradigm

I have a function that returns an lm object. I want to produce predicted values based on some new data. The new data is a data.frame in the exact format as the data passed to the lm function, except that the response has been removed (since we're predicting, not training). I would expect to execute the following, but get an error:
predict( model , newdata )
"Error in eval(expr, envir, enclos) : object 'ModelResponse' not found"
In my case, ModelResponse was the name of the response column in the data I originally trained on. So just for kicks, I tried to insert NA reponse:
newdata$ModelResponse = NA
predict( model , newdata )
Error in terms.default(object, data = data) : no terms component nor attribute
Highly frustrating! R's notion of models/regression doesn't match mine: 1. I train a model with some data and get a model object. 2. I can score new data from any environment/function/frame/etc. so long as I input data into the model object that "looks like" the data I trained on (i.e. same column names). This is a standard black-box paradigm.
So here are my questions:
1. What concept(s) am I missing here?
2. How do I get my scenario to work?
3. How can I get model object to be portable? str(model) shows me that the model object saved the original data it trained on! So the model object is massive. I want my model to be portable to any function/environment/etc. and only contain the data it needs to score.
In the absence of str() on either the model or the data offered to the model, here's my guess regarding this error message:
predict( model , newdata )
"Error in eval(expr, envir, enclos) : object 'ModelResponse' not found"
I guess that you made a model object named "model" and that your outcome variable (the left-hand-side of the formula( in the original call to lm was named "ModelResponse" and that you then named a column in newdata by the same name. But what you should have done was leave out the "ModelResponse" columns (because that is what you are predicting) and put in the "Model_Predictor1", Model_Predictor2", etc. ... i.e. all the names on the right-hand-side of the formula given to lm()
The coef() function will allow you to extract the information needed to make the model portable.
mod.coef <- coef(model)
mod.coef
Since you expressed interest in the rms/Hmisc package combo Function, here it is using the help-example from ols and comparing the output with an extracted function and the rms Predict method. Note the capitals, since these are designed to work with the package equivalents of lm and glm(..., family="binomial") and coxph, which in rms become ols, lrm, and cph.
> set.seed(1)
> x1 <- runif(200)
> x2 <- sample(0:3, 200, TRUE)
> distance <- (x1 + x2/3 + rnorm(200))^2
> d <- datadist(x1,x2)
> options(datadist="d") # No d -> no summary, plot without giving all details
>
>
> f <- ols(sqrt(distance) ~ rcs(x1,4) + scored(x2), x=TRUE)
>
> Function(f)
function(x1 = 0.50549065,x2 = 1) {0.50497361+1.0737604* x1-
0.79398383*pmax(x1-0.083887788,0)^3+ 1.4392827*pmax(x1-0.38792825,0)^3-
0.38627901*pmax(x1-0.65115162,0)^3-0.25901986*pmax(x1-0.92736774,0)^3+
0.06374433*x2+ 0.60885222*(x2==2)+0.38971577*(x2==3) }
<environment: 0x11b4568e8>
> ols.fun <- Function(f)
> pred1 <- Predict(f, x1=1, x2=3)
> pred1
x1 x2 yhat lower upper
1 1 3 1.862754 1.386107 2.339401
Response variable (y): sqrt(distance)
Limits are 0.95 confidence limits
# The "yhat" is the same as one produces with the extracted function
> ols.fun(x1=1, x2=3)
[1] 1.862754
(I have learned through experience that the restricted cubic-spline fit functions coming from rms need to have spaces and carriage returns added to improve readability. )
Thinking long-term, you should probably take a look at the caret package. Many or most modeling functions work with data frames and matrices, others have a preference, and there may be other variations of their expectations. It's important to quickly get your head around each, but if you want a single wrapper that will simplify life for you, making the intricacies into a "black box", then caret is as close as you can get.
As a disclaimer: I do not use caret, as I don't think modeling should be a be a black box. I've had more than a few emails to maintainers of modeling packages resulting from looking into their code and seeing something amiss. Wrapping that in another layer would not serve my interests. So, in the very long-run, avoid caret and develop an enjoyment for dissecting what's going into and out of the different modeling functions. :)

Resources