confidence interval around predicted value from complex inverse function - r

I'm trying to get a 95% confidence interval around some predicted values, but am not capable of achieving this.
Basically, I estimated a growth curve like this:
set.seed(123)
dat=data.frame(size=rnorm(50,10,3),age=rnorm(50,5,2))
S <- function(t,ts,C,K) ((C*K)/(2*pi))*sin(2*pi*(t-ts))
sommers <- function(t,Linf,K,t0,ts,C)
Linf*(1-exp(-K*(t-t0)-S(t,ts,C,K)+S(t0,ts,C,K)))
model <- nls(size~sommers(age,Linf,K,t0,ts,C),data=dat,
start=list(Linf=10,K=4.7,t0=2.2,C=0.9,ts=0.1))
I have independent size measurements, for which I would like to predict the age. Therefore, the inverse of the function, which is not very straightforward, I calculated like this:
model.out=coef(model)
S.out <- function(t)
((model.out[[4]]*model.out[[2]])/(2*pi))*sin(2*pi*(t-model.out[[5]]))
sommers.out <- function(t)
model.out[[1]]*(1-exp(-model.out[[2]]*(t-model.out[[3]])-S.out(t)+S.out(model.out[[3]])))
inverse = function (f, lower = -100, upper = 100) {
function (y) uniroot((function (x) f(x) - y), lower = lower, upper = upper)[1]
}
sommers.inverse = inverse(sommers.out, 0, 25)
x= sommers.inverse(10) #this works with my complete dataset, but not with this fake one
Although this works fine, I need to know the confidence interval (95%) around this estimate (x). For linear models there is for example "predict(... confidence=)". I could also bootstrap the function somehow to get the quantiles associated with the parameters (didn't find how), to then use the extremes of those to calculate the maximum and minimum values predictable. But that doesn't really look like the good way of doing this....
Any help would be greatly appreciated.
EDIT after answer:
So this worked (explained in the book of Ben Bolker, see answer):
vmat = mvrnorm(1000, mu = coef(mfit), Sigma = vcov(mfit))
dist = numeric(1000)
for (i in 1:1000) {dist[i] = sommers_inverse(9.938,vmat[i,])}
quantile(dist, c(0.025, 0.975))
On the rather bad fake data I gave, this works of course rather horrible. But on the real data (which I have a problem recreating), this is ok!

Unless I'm mistaken, you're going to have to use either regular (parametric) bootstrapping or a method called either "population predictive intervals" (e.g., see section 5 of chapter 7 of Bolker 2008), which assumes that the sampling distributions of your parameters are multivariate Normal. However, I think you may have bigger problems, unless I've somehow messed up your model in adapting it ...
Generate data (note that random data may actually bad for testing your model - see below ...)
set.seed(123)
dat <- data.frame(size=rnorm(50,10,3),age=rnorm(50,5,2))
S <- function(t,ts,C,K) ((C*K)/(2*pi))*sin(2*pi*(t-ts))
sommers <- function(t,Linf,K,t0,ts,C)
Linf*(1-exp(-K*(t-t0)-S(t,ts,C,K)+S(t0,ts,C,K)))
Plot the data and the initial curve estimate:
plot(size~age,data=dat,ylim=c(0,16))
agevec <- seq(0,10,length=1001)
lines(agevec,sommers(agevec,Linf=10,K=4.7,t0=2.2,ts=0.1,C=0.9))
I had trouble with nls so I used minpack.lm::nls.lm, which is slightly more robust. (There are other options here, e.g. calculating the derivatives and providing the gradient function, or using AD Model Builder or Template Model Builder, or using the nls2 package.)
For nls.lm we need a function that returns the residuals:
sommers_fn <- function(par,dat) {
with(c(as.list(par),dat),size-sommers(age,Linf,K,t0,ts,C))
}
library(minpack.lm)
mfit <- nls.lm(fn=sommers_fn,
par=list(Linf=10,K=4.7,t0=2.2,C=0.9,ts=0.1),
dat=dat)
coef(mfit)
## Linf K t0 C ts
## 10.6540185 0.3466328 2.1675244 136.7164179 0.3627371
Here's our problem:
plot(size~age,data=dat,ylim=c(0,16))
lines(agevec,sommers(agevec,Linf=10,K=4.7,t0=2.2,ts=0.1,C=0.9))
with(as.list(coef(mfit)), {
lines(agevec,sommers(agevec,Linf,K,t0,ts,C),col=2)
abline(v=t0,lty=2)
abline(h=c(0,Linf),lty=2)
})
With this kind of fit, the results of the inverse function are going to be extremely unstable, as the inverse function is many-to-one, with the number of inverse values depending sensitively on the parameter values ...
sommers_pred <- function(x,pars) {
with(as.list(pars),sommers(x,Linf,K,t0,ts,C))
}
sommers_pred(6,coef(mfit)) ## s(6)=9.93
sommers_inverse <- function (y, pars, lower = -100, upper = 100) {
uniroot(function(x) sommers_pred(x,pars) -y, c(lower, upper))$root
}
sommers_inverse(9.938, coef(mfit)) ## 0.28
If I pick my interval very carefully I can get back the correct answer ...
sommers_inverse(9.938, coef(mfit), 5.5, 6.2)
Maybe your model will be better behaved with more realistic data. I hope so ...

Related

Estimating PDF with monotonically declining density at tails

tldr: I am numerically estimating a PDF from simulated data and I need the density to monotonically decrease outside of the 'main' density region (as x-> infinity). What I have yields a close to zero density, but which does not monotonically decrease.
Detailed Problem
I am estimating a simulated maximum likelihood model, which requires me to numerically evaluate the probability distribution function of some random variable (the probability of which cannot be analytically derived) at some (observed) value x. The goal is to maximize the log-likelihood of these densities, which requires them to not have spurious local maxima.
Since I do not have an analytic likelihood function I numerically simulate the random variable by drawing the random component from some known distribution function, and apply some non-linear transformation to it. I save the results of this simulation in a dataset named simulated_stats.
I then use density() to approximate the PDF and approxfun() to evaluate the PDF at x:
#some example simulation
Simulated_stats_ <- runif(n=500, 10,15)+ rnorm(n=500,mean = 15,sd = 3)
#approximation for x
approxfun(density(simulated_stats))(x)
This works well within the range of simulated simulated_stats, see image:
Example PDF. The problem is I need to be able to evaluate the PDF far from the range of simulated data.
So in the image above, I would need to evaluate the PDF at, say, x=50:
approxfun(density(simulated_stats))(50)
> [1] NA
So instead I use the from and to arguments in the density function, which correctly approximate near 0 tails, such
approxfun(
density(Simulated_stats, from = 0, to = max(Simulated_stats)*10)
)(50)
[1] 1.924343e-18
Which is great, under one condition - I need the density to go to zero the further out from the range x is. That is, if I evaluated at x=51 the result must be strictly smaller. (Otherwise, my estimator may find local maxima far from the 'true' region, since the likelihood function is not monotonic very far from the 'main' density mass, i.e. the extrapolated region).
To test this I evaluated the approximated PDF at fixed intervals, took logs, and plotted. The result is discouraging: far from the main density mass the probability 'jumps' up and down. Always very close to zero, but NOT monotonically decreasing.
a <- sapply(X = seq(from = 0, to = 100, by = 0.5), FUN = function(x){approxfun(
density(Simulated_stats_,from = 0, to = max(Simulated_stats_)*10)
)(x)})
aa <- cbind( seq(from = 0, to = 100, by = 0.5), a)
plot(aa[,1],log(aa[,2]))
Result:
Non-monotonic log density far from density mass
My question
Does this happen because of the kernel estimation in density() or is it inaccuracies in approxfun()? (or something else?)
What alternative methods can I use that will deliver a monotonically declining PDF far from the simulated density mass?
Or - how can I manually change the approximated PDF to monotonically decline the further I am from the density mass? I would happily stick some linear trend that goes to zero...
Thanks!
One possibility is to estimate the CDF using a beta regression model; numerical estimate of the derivative of this model could then be used to estimate the pdf at any point. Here's an example of what I was thinking. I'm not sure if it helps you at all.
Import libraries
library(mgcv)
library(data.table)
library(ggplot2)
Generate your data
set.seed(123)
Simulated_stats_ <- runif(n=5000, 10,15)+ rnorm(n=500,mean = 15,sd = 3)
Function to estimate CDF using gam beta regression model
get_mod <- function(ss,p = seq(0.02, 0.98, 0.02)) {
qp = quantile(ss, probs=p)
betamod = mgcv::gam(p~s(qp, bs="cs"), family=mgcv::betar())
return(betamod)
}
betamod <- get_mod(Simulated_stats_)
Very basic estimate of PDF at val given model that estimates CDF
est_pdf <- function(val, betamod, tol=0.001) {
xvals = c(val,val+tol)
yvals = predict(betamod,newdata=data.frame(qp = xvals), type="response")
as.numeric((yvals[1] - yvals[2])/(xvals[1] - xvals[2]))
}
Lets check if monotonically increasing below min of Simulated_stats
test_x = seq(0,min(Simulated_stats_), length.out=1000)
pdf = sapply(test_x, est_pdf, betamod=betamod)
all(pdf == cummax(pdf))
[1] TRUE
Lets check if monotonically decreasing above max of Simulated_stats
test_x = seq(max(Simulated_stats_), 60, length.out=1000)
pdf = sapply(test_x, est_pdf, betamod=betamod)
all(pdf == cummin(pdf))
[1] TRUE
Additional thoughts 3/5/22
As discussed in comments, using the betamod to predict might slow down the estimator. While this could be resolved to a great extent by writing your own predict function directly, there is another possible shortcut.
Generate estimates from the betamod over the range of X, including the extremes
k <- sapply(seq(0,max(Simulated_stats_)*10, length.out=5000), est_pdf, betamod=betamod)
Use the approach above that you were initially using, i.e. a linear interpolation across the density, but rather than doing this over the density outcome, instead do over k (i.e. over the above estimates from the beta model)
lin_int = approxfun(x=seq(0,max(Simulated_stats_)*10, length.out=5000),y=k)
You can use the lin_int() function for prediction in the estimator, and it will be lighting fast. Note that it produces virtually the same value for a given x
c(est_pdf(38,betamod), lin_int(38))
[1] 0.001245894 0.001245968
and it is very fast
microbenchmark::microbenchmark(
list = alist("betamod" = est_pdf(38, betamod),"lin_int" = lint(38)),times=100
)
Unit: microseconds
expr min lq mean median uq max neval
betamod 1157.0 1170.20 1223.304 1188.25 1211.05 2799.8 100
lin_int 1.7 2.25 3.503 4.35 4.50 10.5 100
Finally, lets check the same plot you did before, but using lin_int() instead of approxfun(density(....))
a <- sapply(X = seq(from = 0, to = 100, by = 0.5), lin_int)
aa <- cbind( seq(from = 0, to = 100, by = 0.5), a)
plot(aa[,1],log(aa[,2]))

Sample from a custom likelihood function

I have the following likelihood function which I used in a rather complex model (in practice on a log scale):
library(plyr)
dcustom=function(x,sd,L,R){
R. = (log(R) - log(x))/sd
L. = (log(L) - log(x))/sd
ll = pnorm(R.) - pnorm(L.)
return(ll)
}
df=data.frame(Range=seq(100,500),sd=rep(0.1,401),L=200,U=400)
df=mutate(df, Likelihood = dcustom(Range, sd,L,U))
with(df,plot(Range,Likelihood,type='l'))
abline(v=200)
abline(v=400)
In this function, the sd is predetermined and L and R are "observations" (very much like the endpoints of a uniform distribution), so all 3 of them are given. The above function provides a large likelihood (1) if the model estimate x (derived parameter) is in between the L-R range, a smooth likelihood decrease (between 0 and 1) near the bounds (of which the sharpness is dependent on the sd), and 0 if it is too much outside.
This function works very well to obtain estimates of x, but now I would like to do the inverse: draw a random x from the above function. If I would do this many times, I would generate a histogram that follows the shape of the curve plotted above.
The ultimate goal is to do this in C++, but I think it would be easier for me if I could first figure out how to do this in R.
There's some useful information online that helps me start (http://matlabtricks.com/post-44/generate-random-numbers-with-a-given-distribution, https://stats.stackexchange.com/questions/88697/sample-from-a-custom-continuous-distribution-in-r) but I'm still not entirely sure how to do it and how to code it.
I presume (not sure at all!) the steps are:
transform likelihood function into probability distribution
calculate the cumulative distribution function
inverse transform sampling
Is this correct and if so, how do I code this? Thank you.
One idea might be to use the Metropolis Hasting Algorithm to obtain a sample from the distribution given all the other parameters and your likelihood.
# metropolis hasting algorithm
set.seed(2018)
n_sample <- 100000
posterior_sample <- rep(NA, n_sample)
x <- 300 # starting value: I chose 300 based on your likelihood plot
for (i in 1:n_sample){
lik <- dcustom(x = x, sd = 0.1, L = 200, R =400)
# propose a value for x (you can adjust the stepsize with the sd)
x.proposed <- x + rnorm(1, 0, sd = 20)
lik.proposed <- dcustom(x = x.proposed, sd = 0.1, L = 200, R = 400)
r <- lik.proposed/lik # this is the acceptance ratio
# accept new value with probablity of ratio
if (runif(1) < r) {
x <- x.proposed
posterior_sample[i] <- x
}
}
# plotting the density
approximate_distr <- na.omit(posterior_sample)
d <- density(approximate_distr)
plot(d, main = "Sample from distribution")
abline(v=200)
abline(v=400)
# If you now want to sample just a few values (for example, 5) you could use
sample(approximate_distr,5)
#[1] 281.7310 371.2317 378.0504 342.5199 412.3302

Fit distribution to given frequency values in R

I have frequency values changing with the time (x axis units), as presented on the picture below. After some normalization these values may be seen as data points of a density function for some distribution.
Q: Assuming that these frequency points are from Weibull distribution T, how can I fit best Weibull density function to the points so as to infer the distribution T parameters from it?
sample <- c(7787,3056,2359,1759,1819,1189,1077,1080,985,622,648,518,
611,1037,727,489,432,371,1125,69,595,624)
plot(1:length(sample), sample, type = "l")
points(1:length(sample), sample)
Update.
To prevent from being misunderstood, I would like to add little more explanation. By saying I have frequency values changing with the time (x axis units) I mean I have data which says that I have:
7787 realizations of value 1
3056 realizations of value 2
2359 realizations of value 3 ... etc.
Some way towards my goal (incorrect one, as I think) would be to create a set of these realizations:
# Loop to simulate values
set.values <- c()
for(i in 1:length(sample)){
set.values <<- c(set.values, rep(i, times = sample[i]))
}
hist(set.values)
lines(1:length(sample), sample)
points(1:length(sample), sample)
and use fitdistr on the set.values:
f2 <- fitdistr(set.values, 'weibull')
f2
Why I think it is incorrect way and why I am looking for a better solution in R?
in the distribution fitting approach presented above it is assumed that set.values is a complete set of my realisations from the distribution T
in my original question I know the points from the first part of the density curve - I do not know its tail and I want to estimate the tail (and the whole density function)
Here is a better attempt, like before it uses optim to find the best value constrained to a set of values in a box (defined by the lower and upper vectors in the optim call). Notice it scales x and y as part of the optimization in addition to the Weibull distribution shape parameter, so we have 3 parameters to optimize over.
Unfortunately when using all the points it pretty much always finds something on the edges of the constraining box which indicates to me that maybe Weibull is maybe not a good fit for all of the data. The problem is the two points - they ares just too large. You see the attempted fit to all data in the first plot.
If I drop those first two points and just fit the rest, we get a much better fit. You see this in the second plot. I think this is a good fit, it is in any case a local minimum in the interior of the constraining box.
library(optimx)
sample <- c(60953,7787,3056,2359,1759,1819,1189,1077,1080,985,622,648,518,
611,1037,727,489,432,371,1125,69,595,624)
t.sample <- 0:22
s.fit <- sample[3:23]
t.fit <- t.sample[3:23]
wx <- function(param) {
res <- param[2]*dweibull(t.fit*param[3],shape=param[1])
return(res)
}
minwx <- function(param){
v <- s.fit-wx(param)
sqrt(sum(v*v))
}
p0 <- c(1,200,1/20)
paramopt <- optim(p0,minwx,gr=NULL,lower=c(0.1,100,0.01),upper=c(1.1,5000,1))
popt <- paramopt$par
popt
rms <- paramopt$value
tit <- sprintf("Weibull - Shape:%.3f xscale:%.1f yscale:%.5f rms:%.1f",popt[1],popt[2],popt[3],rms)
plot(t.sample[2:23], sample[2:23], type = "p",col="darkred")
lines(t.fit, wx(popt),col="blue")
title(main=tit)
You can directly calculate the maximum likelihood parameters, as described here.
# Defining the error of the implicit function
k.diff <- function(k, vec){
x2 <- seq(length(vec))
abs(k^-1+weighted.mean(log(x2), w = sample)-weighted.mean(log(x2),
w = x2^k*sample))
}
# Setting the error to "quite zero", fulfilling the equation
k <- optimize(k.diff, vec=sample, interval=c(0.1,5), tol=10^-7)$min
# Calculate lambda, given k
l <- weighted.mean(seq(length(sample))^k, w = sample)
# Plot
plot(density(rep(seq(length(sample)),sample)))
x <- 1:25
lines(x, dweibull(x, shape=k, scale= l))
Assuming the data are from a Weibull distribution, you can get an estimate of the shape and scale parameter like this:
sample <- c(7787,3056,2359,1759,1819,1189,1077,1080,985,622,648,518,
611,1037,727,489,432,371,1125,69,595,624)
f<-fitdistr(sample, 'weibull')
f
If you are not sure whether it is distributed Weibull, I would recommend using the ks.test. This tests whether your data is from a hypothesised distribution. Given your knowledge of the nature of the data, you could test for a few selected distributions and see which one works best.
For your example this would look like this:
ks = ks.test(sample, "pweibull", shape=f$estimate[1], scale=f$estimate[2])
ks
The p-value is insignificant, hence you do not reject the hypothesis that the data is from a Weibull distribution.
Update: The histograms of either the Weibull or exponential look like a good match to your data. I think the exponential distribution gives you a better fit. Pareto distribution is another option.
f<-fitdistr(sample, 'weibull')
z<-rweibull(10000, shape= f$estimate[1],scale= f$estimate[2])
hist(z)
f<-fitdistr(sample, 'exponential')
z = rexp(10000, f$estimate[1])
hist(z)

Errors running Maximum Likelihood Estimation on a three parameter Weibull cdf

I am working with the cumulative emergence of flies over time (taken at irregular intervals) over many summers (though first I am just trying to make one year work). The cumulative emergence follows a sigmoid pattern and I want to create a maximum likelihood estimation of a 3-parameter Weibull cumulative distribution function. The three-parameter models I've been trying to use in the fitdistrplus package keep giving me an error. I think this must have something to do with how my data is structured, but I cannot figure it out. Obviously I want it to read each point as an x (degree days) and a y (emergence) value, but it seems to be unable to read two columns. The main error I'm getting says "Non-numeric argument to mathematical function" or (with slightly different code) "data must be a numeric vector of length greater than 1". Below is my code including added columns in the df_dd_em dataframe for cumulative emergence and percent emergence in case that is useful.
degree_days <- c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94)
emergence <- c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0)
cum_em <- cumsum(emergence)
df_dd_em <- data.frame (degree_days, emergence, cum_em)
df_dd_em$percent <- ave(df_dd_em$emergence, FUN = function(df_dd_em) 100*(df_dd_em)/46)
df_dd_em$cum_per <- ave(df_dd_em$cum_em, FUN = function(df_dd_em) 100*(df_dd_em)/46)
x <- pweibull(df_dd_em[c(1,3)],shape=5)
dframe2.mle <- fitdist(x, "weibull",method='mle')
Here's my best guess at what you're after:
Set up data:
dd <- data.frame(degree_days=c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94),
emergence=c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0))
dd <- transform(dd,cum_em=cumsum(emergence))
We're actually going to fit to an "interval-censored" distribution (i.e. probability of emergence between successive degree day observations: this version assumes that the first observation refers to observations before the first degree-day observation, you could change it to refer to observations after the last observation).
library(bbmle)
## y*log(p) allowing for 0/0 occurrences:
y_log_p <- function(y,p) ifelse(y==0 & p==0,0,y*log(p))
NLLfun <- function(scale,shape,x=dd$degree_days,y=dd$emergence) {
prob <- pmax(diff(pweibull(c(-Inf,x), ## or (c(x,Inf))
shape=shape,scale=scale)),1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
library(bbmle)
I should probably have used something more systematic like the method of moments (i.e. matching the mean and variance of a Weibull distribution with the mean and variance of the data), but I just hacked around a bit to find plausible starting values:
## preliminary look (method of moments would be better)
scvec <- 10^(seq(0,4,length=101))
plot(scvec,sapply(scvec,NLLfun,shape=1))
It's important to use parscale to let R know that the parameters are on very different scales:
startvals <- list(scale=1000,shape=1)
m1 <- mle2(NLLfun,start=startvals,
control=list(parscale=unlist(startvals)))
Now try with a three-parameter Weibull (as originally requested) -- requires only a slight modification of what we already have:
library(FAdist)
NLLfun2 <- function(scale,shape,thres,
x=dd$degree_days,y=dd$emergence) {
prob <- pmax(diff(pweibull3(c(-Inf,x),shape=shape,scale=scale,thres)),
1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
startvals2 <- list(scale=1000,shape=1,thres=100)
m2 <- mle2(NLLfun2,start=startvals2,
control=list(parscale=unlist(startvals2)))
Looks like the three-parameter fit is much better:
library(emdbook)
AICtab(m1,m2)
## dAIC df
## m2 0.0 3
## m1 21.7 2
And here's the graphical summary:
with(dd,plot(cum_em~degree_days,cex=3))
with(as.list(coef(m1)),curve(sum(dd$emergence)*
pweibull(x,shape=shape,scale=scale),col=2,
add=TRUE))
with(as.list(coef(m2)),curve(sum(dd$emergence)*
pweibull3(x,shape=shape,
scale=scale,thres=thres),col=4,
add=TRUE))
(could also do this more elegantly with ggplot2 ...)
These don't seem like spectacularly good fits, but they're sane. (You could in principle do a chi-squared goodness-of-fit test based on the expected number of emergences per interval, and accounting for the fact that you've fitted a three-parameter model, although the values might be a bit low ...)
Confidence intervals on the fit are a bit of a nuisance; your choices are (1) bootstrapping; (2) parametric bootstrapping (resample parameters assuming a multivariate normal distribution of the data); (3) delta method.
Using bbmle::mle2 makes it easy to do things like get profile confidence intervals:
confint(m1)
## 2.5 % 97.5 %
## scale 1576.685652 1777.437283
## shape 4.223867 6.318481
dd <- data.frame(degree_days=c(998.08,1039.66,1111.29,1165.89,1236.53,1293.71,
1347.66,1387.76,1445.47,1493.44,1553.23,1601.97,
1670.28,1737.29,1791.94,1849.20,1920.91,1967.25,
2036.64,2091.85,2152.89,2199.13,2199.13,2263.09,
2297.94,2352.39,2384.03,2442.44,2541.28,2663.90,
2707.36,2773.82,2816.39,2863.94),
emergence=c(0,0,0,1,1,0,2,3,17,10,0,0,0,2,0,3,0,0,1,5,0,0,0,0,
0,0,0,0,1,0,0,0,0,0))
dd$cum_em <- cumsum(dd$emergence)
dd$percent <- ave(dd$emergence, FUN = function(dd) 100*(dd)/46)
dd$cum_per <- ave(dd$cum_em, FUN = function(dd) 100*(dd)/46)
dd <- transform(dd)
#start 3 parameter model
library(FAdist)
## y*log(p) allowing for 0/0 occurrences:
y_log_p <- function(y,p) ifelse(y==0 & p==0,0,y*log(p))
NLLfun2 <- function(scale,shape,thres,
x=dd$degree_days,y=dd$percent) {
prob <- pmax(diff(pweibull3(c(-Inf,x),shape=shape,scale=scale,thres)),
1e-6)
## multinomial probability
-sum(y_log_p(y,prob))
}
startvals2 <- list(scale=1000,shape=1,thres=100)
m2 <- mle2(NLLfun2,start=startvals2,
control=list(parscale=unlist(startvals2)))
summary(m2)
#graphical summary
windows(5,5)
with(dd,plot(cum_per~degree_days,cex=3))
with(as.list(coef(m2)),curve(sum(dd$percent)*
pweibull3(x,shape=shape,
scale=scale,thres=thres),col=4,
add=TRUE))

R: Robust fitting of data points to a Gaussian function

I need to do some robust data-fitting operation.
I have bunch of (x,y) data, that I want to fit to a Gaussian (aka normal) function.
The point is, I want to remove the ouliers. As one can see on the sample plot below, there is another distribution of data thats pollutting my data on the right, and I don't want to take it into account to do the fitting (i.e. to find \sigma, \mu and the overall scale parameter).
R seems to be the right tool for the job, I found some packages (robust, robustbase, MASS for example) that are related to robust fitting.
However, they assume the user already has a strong knowledge of R, which is not my case, and the documentation is only provided as a sort of reference manual, no tutorial or equivalent. My statistical background is rather low, I attempted to read reference material on fitting with R, but it didn't really help (and I'm not even sure thats the right way to go).
But I have the feeling that this is actually a quite simple operation.
I have checked this related question (and the linked ones), however they take as input a single vector of values, and I have a vector of pairs, so I don't see how to transpose.
Any help on how to do this would be appreciated.
Fitting a Gaussian curve to the data, the principle is to minimise the sum of squares difference between the fitted curve and the data, so we define f our objective function and run optim on it:
fitG =
function(x,y,mu,sig,scale){
f = function(p){
d = p[3]*dnorm(x,mean=p[1],sd=p[2])
sum((d-y)^2)
}
optim(c(mu,sig,scale),f)
}
Now, extend this to two Gaussians:
fit2G <- function(x,y,mu1,sig1,scale1,mu2,sig2,scale2,...){
f = function(p){
d = p[3]*dnorm(x,mean=p[1],sd=p[2]) + p[6]*dnorm(x,mean=p[4],sd=p[5])
sum((d-y)^2)
}
optim(c(mu1,sig1,scale1,mu2,sig2,scale2),f,...)
}
Fit with initial params from the first fit, and an eyeballed guess of the second peak. Need to increase the max iterations:
> fit2P = fit2G(data$V3,data$V6,6,.6,.02,8.3,0.10,.002,control=list(maxit=10000))
Warning messages:
1: In dnorm(x, mean = p[1], sd = p[2]) : NaNs produced
2: In dnorm(x, mean = p[4], sd = p[5]) : NaNs produced
3: In dnorm(x, mean = p[4], sd = p[5]) : NaNs produced
> fit2P
$par
[1] 6.035610393 0.653149616 0.023744876 8.317215066 0.107767881 0.002055287
What does this all look like?
> plot(data$V3,data$V6)
> p = fit2P$par
> lines(data$V3,p[3]*dnorm(data$V3,p[1],p[2]))
> lines(data$V3,p[6]*dnorm(data$V3,p[4],p[5]),col=2)
However I would be wary about statistical inference about your function parameters...
The warning messages produced are probably due to the sd parameter going negative. You can fix this and also get a quicker convergence by using L-BFGS-B and setting a lower bound:
> fit2P = fit2G(data$V3,data$V6,6,.6,.02,8.3,0.10,.002,control=list(maxit=10000),method="L-BFGS-B",lower=c(0,0,0,0,0,0))
> fit2P
$par
[1] 6.03564202 0.65302676 0.02374196 8.31424025 0.11117534 0.00208724
As pointed out, sensitivity to initial values is always a problem with curve fitting things like this.
Fitting a Gaussian:
# your data
set.seed(0)
data <- c(rnorm(100,0,1), 10, 11)
# find & remove outliers
outliers <- boxplot(data)$out
data <- setdiff(data, outliers)
# fitting a Gaussian
mu <- mean(data)
sigma <- sd(data)
# testing the fit, check the p-value
reference.data <- rnorm(length(data), mu, sigma)
ks.test(reference.data, data)

Resources