Related
I'm having trouble understanding the math behind this function. I would like to hear the logic behind the formulas (especially what is this tangential and radial factor) written here to create points which later (when it send the vec3 array to a function) form a circle in OpenGL.
void doTesselate(const Arc& arc, int slices, std::vector<glm::vec3>& vertices)
{
double dang = (arc.endAngle() - arc.startAngle()) * Deg2Rad;
double radius = arc.radius();
double angIncr = dang / slices;
double tangetial_factor = tan(angIncr);
double radial_factor = 1 - cos(angIncr);
double startAngle = arc.startAngle() * Deg2Rad;
const glm::vec3& center = arc.center();
double x = center.x - radius * cos(startAngle);
double y = center.y - radius * sin(startAngle);
++slices;
for (int ii = 0; ii < slices; ii++) {
vertices.push_back(glm::vec3(x, y, center.z));
double tx = center.y - y;
double ty = x - center.x;
x += tx * tangetial_factor;
y += ty * tangetial_factor;
double rx = center.x - x;
double ry = center.y - y;
x += rx * radial_factor;
y += ry * radial_factor;
}
}
The idea is the following:
Starting from the current point, you go a bit in tangential direction and then back towards the center.
The vector (tx, ty) is the tangent at the current point with length equal to the radius. In order to get to the new angle, you have to move tan(angle) * radius along the tangent. radius is already incorporated in the tangent vector and tan(angle) is the tangetial_factor (you get that directly from tangent's definition).
After that, (rx, ry) is the vector towards the center. This vector has the length l:
cos(angle) = radius / l
l = radius / cos(angle)
We need to find a multiple m of this vector, such that the corrected point lies on the circle with the given radius again. If we just inspect the lengths, then we want to find:
target distance = current distance - m * length of (rx, ry)
radius = radius / cos(angle) - m * radius / cos(angle)
1 = (1 - m) / cos(angle)
cos(angle) = 1 - m
1 - cos(angle) = m
And this multiple is exactly the radial_factor (the amount which you need to move towards the center to get onto the circle).
I'm using some stuff I've put together from various methods around the internet to make this work yet my bullets fly off in seemingly random directions. I've tried throwing negative signs in front of stuff and switching up the trig but to no avail. I've tried using the rotation of the player's arm because that accurately points to the user's mouse but that failed to give me any more accuracy.
I've tried to determine if the bullets follow a pattern like how I needed to invert the Y variable for my arm, but I cannot find a pattern here.
local x, y = objects.PlayerArm:GetPos()
local bullet = createBullet( x + objects.Player:GetWide(), y )
local mX, mY = gui.MouseX(), gui.MouseY()
local shootAngle = math.atan2((mY - y), (mX - x))
shootAngle = math.deg( math.Clamp(shootAngle, -90, 90) )
--shootAngle = objects.PlayerArm.Rotation
bullet.VelocityX = math.cos(shootAngle) * 5
bullet.VelocityY = math.sin(shootAngle) * 5
--bullet.Rotation = shootAngle
print("Angle", shootAngle, "Velocity X and Y", bullet.VelocityX, bullet.VelocityY)
Here is some of what was printed in console each time I shot a bullet.
Angle 47.920721521 Velocity X and Y -3.4948799788437 -3.5757256513158
Angle 24.928474135461 Velocity X and Y 4.8960495864893 -1.0142477244922
Angle 16.837472625676 Velocity X and Y -2.1355174970471 -4.5210137159497
Angle 10.684912400003 Velocity X and Y -1.5284445365972 -4.7606572338855
Angle -1.029154804306 Velocity X and Y 2.5777162320797 -4.2843178018061
Angle -11.63363399894 Velocity X and Y 2.978190104641 4.0162648942293
Angle -22.671343621981 Velocity X and Y -3.8872502993046 3.1447233758403
http://i.gyazo.com/e8ed605098a91bd450b10fda7d484975.png
As #iamnotmaynard suspected, Lua uses C's math library and so all the trig functions use radians instead of degrees. It is best to store all angles in radians and just print them in degrees for a more friendly format. Otherwise you have a lot of conversions to and from radians every time an angle is used. Below is the code updated to only use radians and print in degrees.
local mX, mY = gui.MouseX(), gui.MouseY()
local shootAngle = math.atan2((mY - y), (mX - x))
shootAngle = math.max(-math.pi/2, math.min(shootAngle, math.pi/2))
bullet.VelocityX = math.cos(shootAngle) * 5
bullet.VelocityY = math.sin(shootAngle) * 5
print("Angle (radians)", shootAngle, "(degrees)", math.deg(shootAngle),
"Velocity X and Y", bullet.VelocityX, bullet.VelocityY)
However to compute velocity in the x and y directions angles are not necessary at all. The function below computes VelocityX and VelocityY using only the displacements and makes sure that the velocity is only in the lower right and upper right quadrants as well.
function shoot(x, y, dirx, diry, vel)
local dx = math.max(dirx - x, 0)
local dy = diry - y
local sdist = dx * dx + dy * dy
if sdist > 0 then
local m = vel / math.sqrt(sdist)
return dx * m, dy * m
end
end
bullet.VelocityX, bullet.VeclocityY = shoot(x, y, gui.MouseX(), gui.MouseY(), 5)
I have a square bitmap of a circle and I want to compute the normals of all the pixels in that circle as if it were a sphere of radius 1:
The sphere/circle is centered in the bitmap.
What is the equation for this?
Don't know much about how people program 3D stuff, so I'll just give the pure math and hope it's useful.
Sphere of radius 1, centered on origin, is the set of points satisfying:
x2 + y2 + z2 = 1
We want the 3D coordinates of a point on the sphere where x and y are known. So, just solve for z:
z = Âħsqrt(1 - x2 - y2).
Now, let us consider a unit vector pointing outward from the sphere. It's a unit sphere, so we can just use the vector from the origin to (x, y, z), which is, of course, <x, y, z>.
Now we want the equation of a plane tangent to the sphere at (x, y, z), but this will be using its own x, y, and z variables, so instead I'll make it tangent to the sphere at (x0, y0, z0). This is simply:
x0x + y0y + z0z = 1
Hope this helps.
(OP):
you mean something like:
const int R = 31, SZ = power_of_two(R*2);
std::vector<vec4_t> p;
for(int y=0; y<SZ; y++) {
for(int x=0; x<SZ; x++) {
const float rx = (float)(x-R)/R, ry = (float)(y-R)/R;
if(rx*rx+ry*ry > 1) { // outside sphere
p.push_back(vec4_t(0,0,0,0));
} else {
vec3_t normal(rx,sqrt(1.-rx*rx-ry*ry),ry);
p.push_back(vec4_t(normal,1));
}
}
}
It does make a nice spherical shading-like shading if I treat the normals as colours and blit it; is it right?
(TZ)
Sorry, I'm not familiar with those aspects of C++. Haven't used the language very much, nor recently.
This formula is often used for "fake-envmapping" effect.
double x = 2.0 * pixel_x / bitmap_size - 1.0;
double y = 2.0 * pixel_y / bitmap_size - 1.0;
double r2 = x*x + y*y;
if (r2 < 1)
{
// Inside the circle
double z = sqrt(1 - r2);
.. here the normal is (x, y, z) ...
}
Obviously you're limited to assuming all the points are on one half of the sphere or similar, because of the missing dimension. Past that, it's pretty simple.
The middle of the circle has a normal facing precisely in or out, perpendicular to the plane the circle is drawn on.
Each point on the edge of the circle is facing away from the middle, and thus you can calculate the normal for that.
For any point between the middle and the edge, you use the distance from the middle, and some simple trig (which eludes me at the moment). A lerp is roughly accurate at some points, but not quite what you need, since it's a curve. Simple curve though, and you know the beginning and end values, so figuring them out should only take a simple equation.
I think I get what you're trying to do: generate a grid of depth data for an image. Sort of like ray-tracing a sphere.
In that case, you want a Ray-Sphere Intersection test:
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm
Your rays will be simple perpendicular rays, based off your U/V coordinates (times two, since your sphere has a diameter of 2). This will give you the front-facing points on the sphere.
From there, calculate normals as below (point - origin, the radius is already 1 unit).
Ripped off from the link above:
You have to combine two equations:
Ray: R(t) = R0 + t * Rd , t > 0 with R0 = [X0, Y0, Z0] and Rd = [Xd, Yd, Zd]
Sphere: S = the set of points[xs, ys, zs], where (xs - xc)2 + (ys - yc)2 + (zs - zc)2 = Sr2
To do this, calculate your ray (x * pixel / width, y * pixel / width, z: 1), then:
A = Xd^2 + Yd^2 + Zd^2
B = 2 * (Xd * (X0 - Xc) + Yd * (Y0 - Yc) + Zd * (Z0 - Zc))
C = (X0 - Xc)^2 + (Y0 - Yc)^2 + (Z0 - Zc)^2 - Sr^2
Plug into quadratic equation:
t0, t1 = (- B + (B^2 - 4*C)^1/2) / 2
Check discriminant (B^2 - 4*C), and if real root, the intersection is:
Ri = [xi, yi, zi] = [x0 + xd * ti , y0 + yd * ti, z0 + zd * ti]
And the surface normal is:
SN = [(xi - xc)/Sr, (yi - yc)/Sr, (zi - zc)/Sr]
Boiling it all down:
So, since we're talking unit values, and rays that point straight at Z (no x or y component), we can boil down these equations greatly:
Ray:
X0 = 2 * pixelX / width
Y0 = 2 * pixelY / height
Z0 = 0
Xd = 0
Yd = 0
Zd = 1
Sphere:
Xc = 1
Yc = 1
Zc = 1
Factors:
A = 1 (unit ray)
B
= 2 * (0 + 0 + (0 - 1))
= -2 (no x/y component)
C
= (X0 - 1) ^ 2 + (Y0 - 1) ^ 2 + (0 - 1) ^ 2 - 1
= (X0 - 1) ^ 2 + (Y0 - 1) ^ 2
Discriminant
= (-2) ^ 2 - 4 * 1 * C
= 4 - 4 * C
From here:
If discriminant < 0:
Z = ?, Normal = ?
Else:
t = (2 + (discriminant) ^ 1 / 2) / 2
If t < 0 (hopefully never or always the case)
t = -t
Then:
Z: t
Nx: Xi - 1
Ny: Yi - 1
Nz: t - 1
Boiled farther still:
Intuitively it looks like C (X^2 + Y^2) and the square-root are the most prominent figures here. If I had a better recollection of my math (in particular, transformations on exponents of sums), then I'd bet I could derive this down to what Tom Zych gave you. Since I can't, I'll just leave it as above.
BOUNTY STATUS UPDATE:
I discovered how to map a linear lens, from destination coordinates to source coordinates.
How do you calculate the radial distance from the centre to go from fisheye to rectilinear?
1). I actually struggle to reverse it, and to map source coordinates to destination coordinates. What is the inverse, in code in the style of the converting functions I posted?
2). I also see that my undistortion is imperfect on some lenses - presumably those that are not strictly linear. What is the equivalent to-and-from source-and-destination coordinates for those lenses? Again, more code than just mathematical formulae please...
Question as originally stated:
I have some points that describe positions in a picture taken with a fisheye lens.
I want to convert these points to rectilinear coordinates. I want to undistort the image.
I've found this description of how to generate a fisheye effect, but not how to reverse it.
There's also a blog post that describes how to use tools to do it; these pictures are from that:
(1) : SOURCE Original photo link
Input : Original image with fish-eye distortion to fix.
(2) : DESTINATION Original photo link
Output : Corrected image (technically also with perspective correction, but that's a separate step).
How do you calculate the radial distance from the centre to go from fisheye to rectilinear?
My function stub looks like this:
Point correct_fisheye(const Point& p,const Size& img) {
// to polar
const Point centre = {img.width/2,img.height/2};
const Point rel = {p.x-centre.x,p.y-centre.y};
const double theta = atan2(rel.y,rel.x);
double R = sqrt((rel.x*rel.x)+(rel.y*rel.y));
// fisheye undistortion in here please
//... change R ...
// back to rectangular
const Point ret = Point(centre.x+R*cos(theta),centre.y+R*sin(theta));
fprintf(stderr,"(%d,%d) in (%d,%d) = %f,%f = (%d,%d)\n",p.x,p.y,img.width,img.height,theta,R,ret.x,ret.y);
return ret;
}
Alternatively, I could somehow convert the image from fisheye to rectilinear before finding the points, but I'm completely befuddled by the OpenCV documentation. Is there a straightforward way to do it in OpenCV, and does it perform well enough to do it to a live video feed?
The description you mention states that the projection by a pin-hole camera (one that does not introduce lens distortion) is modeled by
R_u = f*tan(theta)
and the projection by common fisheye lens cameras (that is, distorted) is modeled by
R_d = 2*f*sin(theta/2)
You already know R_d and theta and if you knew the camera's focal length (represented by f) then correcting the image would amount to computing R_u in terms of R_d and theta. In other words,
R_u = f*tan(2*asin(R_d/(2*f)))
is the formula you're looking for. Estimating the focal length f can be solved by calibrating the camera or other means such as letting the user provide feedback on how well the image is corrected or using knowledge from the original scene.
In order to solve the same problem using OpenCV, you would have to obtain the camera's intrinsic parameters and lens distortion coefficients. See, for example, Chapter 11 of Learning OpenCV (don't forget to check the correction). Then you can use a program such as this one (written with the Python bindings for OpenCV) in order to reverse lens distortion:
#!/usr/bin/python
# ./undistort 0_0000.jpg 1367.451167 1367.451167 0 0 -0.246065 0.193617 -0.002004 -0.002056
import sys
import cv
def main(argv):
if len(argv) < 10:
print 'Usage: %s input-file fx fy cx cy k1 k2 p1 p2 output-file' % argv[0]
sys.exit(-1)
src = argv[1]
fx, fy, cx, cy, k1, k2, p1, p2, output = argv[2:]
intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
cv.Zero(intrinsics)
intrinsics[0, 0] = float(fx)
intrinsics[1, 1] = float(fy)
intrinsics[2, 2] = 1.0
intrinsics[0, 2] = float(cx)
intrinsics[1, 2] = float(cy)
dist_coeffs = cv.CreateMat(1, 4, cv.CV_64FC1)
cv.Zero(dist_coeffs)
dist_coeffs[0, 0] = float(k1)
dist_coeffs[0, 1] = float(k2)
dist_coeffs[0, 2] = float(p1)
dist_coeffs[0, 3] = float(p2)
src = cv.LoadImage(src)
dst = cv.CreateImage(cv.GetSize(src), src.depth, src.nChannels)
mapx = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
mapy = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
cv.InitUndistortMap(intrinsics, dist_coeffs, mapx, mapy)
cv.Remap(src, dst, mapx, mapy, cv.CV_INTER_LINEAR + cv.CV_WARP_FILL_OUTLIERS, cv.ScalarAll(0))
# cv.Undistort2(src, dst, intrinsics, dist_coeffs)
cv.SaveImage(output, dst)
if __name__ == '__main__':
main(sys.argv)
Also note that OpenCV uses a very different lens distortion model to the one in the web page you linked to.
(Original poster, providing an alternative)
The following function maps destination (rectilinear) coordinates to source (fisheye-distorted) coordinates. (I'd appreciate help in reversing it)
I got to this point through trial-and-error: I don't fundamentally grasp why this code is working, explanations and improved accuracy appreciated!
def dist(x,y):
return sqrt(x*x+y*y)
def correct_fisheye(src_size,dest_size,dx,dy,factor):
""" returns a tuple of source coordinates (sx,sy)
(note: values can be out of range)"""
# convert dx,dy to relative coordinates
rx, ry = dx-(dest_size[0]/2), dy-(dest_size[1]/2)
# calc theta
r = dist(rx,ry)/(dist(src_size[0],src_size[1])/factor)
if 0==r:
theta = 1.0
else:
theta = atan(r)/r
# back to absolute coordinates
sx, sy = (src_size[0]/2)+theta*rx, (src_size[1]/2)+theta*ry
# done
return (int(round(sx)),int(round(sy)))
When used with a factor of 3.0, it successfully undistorts the images used as examples (I made no attempt at quality interpolation):
Dead link
(And this is from the blog post, for comparison:)
If you think your formulas are exact, you can comput an exact formula with trig, like so:
Rin = 2 f sin(w/2) -> sin(w/2)= Rin/2f
Rout= f tan(w) -> tan(w)= Rout/f
(Rin/2f)^2 = [sin(w/2)]^2 = (1 - cos(w))/2 -> cos(w) = 1 - 2(Rin/2f)^2
(Rout/f)^2 = [tan(w)]^2 = 1/[cos(w)]^2 - 1
-> (Rout/f)^2 = 1/(1-2[Rin/2f]^2)^2 - 1
However, as #jmbr says, the actual camera distortion will depend on the lens and the zoom. Rather than rely on a fixed formula, you might want to try a polynomial expansion:
Rout = Rin*(1 + A*Rin^2 + B*Rin^4 + ...)
By tweaking first A, then higher-order coefficients, you can compute any reasonable local function (the form of the expansion takes advantage of the symmetry of the problem). In particular, it should be possible to compute initial coefficients to approximate the theoretical function above.
Also, for good results, you will need to use an interpolation filter to generate your corrected image. As long as the distortion is not too great, you can use the kind of filter you would use to rescale the image linearly without much problem.
Edit: as per your request, the equivalent scaling factor for the above formula:
(Rout/f)^2 = 1/(1-2[Rin/2f]^2)^2 - 1
-> Rout/f = [Rin/f] * sqrt(1-[Rin/f]^2/4)/(1-[Rin/f]^2/2)
If you plot the above formula alongside tan(Rin/f), you can see that they are very similar in shape. Basically, distortion from the tangent becomes severe before sin(w) becomes much different from w.
The inverse formula should be something like:
Rin/f = [Rout/f] / sqrt( sqrt(([Rout/f]^2+1) * (sqrt([Rout/f]^2+1) + 1) / 2 )
I blindly implemented the formulas from here, so I cannot guarantee it would do what you need.
Use auto_zoom to get the value for the zoom parameter.
def dist(x,y):
return sqrt(x*x+y*y)
def fisheye_to_rectilinear(src_size,dest_size,sx,sy,crop_factor,zoom):
""" returns a tuple of dest coordinates (dx,dy)
(note: values can be out of range)
crop_factor is ratio of sphere diameter to diagonal of the source image"""
# convert sx,sy to relative coordinates
rx, ry = sx-(src_size[0]/2), sy-(src_size[1]/2)
r = dist(rx,ry)
# focal distance = radius of the sphere
pi = 3.1415926535
f = dist(src_size[0],src_size[1])*factor/pi
# calc theta 1) linear mapping (older Nikon)
theta = r / f
# calc theta 2) nonlinear mapping
# theta = asin ( r / ( 2 * f ) ) * 2
# calc new radius
nr = tan(theta) * zoom
# back to absolute coordinates
dx, dy = (dest_size[0]/2)+rx/r*nr, (dest_size[1]/2)+ry/r*nr
# done
return (int(round(dx)),int(round(dy)))
def fisheye_auto_zoom(src_size,dest_size,crop_factor):
""" calculate zoom such that left edge of source image matches left edge of dest image """
# Try to see what happens with zoom=1
dx, dy = fisheye_to_rectilinear(src_size, dest_size, 0, src_size[1]/2, crop_factor, 1)
# Calculate zoom so the result is what we wanted
obtained_r = dest_size[0]/2 - dx
required_r = dest_size[0]/2
zoom = required_r / obtained_r
return zoom
I took what JMBR did and basically reversed it. He took the radius of the distorted image (Rd, that is, the distance in pixels from the center of the image) and found a formula for Ru, the radius of the undistorted image.
You want to go the other way. For each pixel in the undistorted (processed image), you want to know what the corresponding pixel is in the distorted image.
In other words, given (xu, yu) --> (xd, yd). You then replace each pixel in the undistorted image with its corresponding pixel from the distorted image.
Starting where JMBR did, I do the reverse, finding Rd as a function of Ru. I get:
Rd = f * sqrt(2) * sqrt( 1 - 1/sqrt(r^2 +1))
where f is the focal length in pixels (I'll explain later), and r = Ru/f.
The focal length for my camera was 2.5 mm. The size of each pixel on my CCD was 6 um square. f was therefore 2500/6 = 417 pixels. This can be found by trial and error.
Finding Rd allows you to find the corresponding pixel in the distorted image using polar coordinates.
The angle of each pixel from the center point is the same:
theta = arctan( (yu-yc)/(xu-xc) ) where xc, yc are the center points.
Then,
xd = Rd * cos(theta) + xc
yd = Rd * sin(theta) + yc
Make sure you know which quadrant you are in.
Here is the C# code I used
public class Analyzer
{
private ArrayList mFisheyeCorrect;
private int mFELimit = 1500;
private double mScaleFESize = 0.9;
public Analyzer()
{
//A lookup table so we don't have to calculate Rdistorted over and over
//The values will be multiplied by focal length in pixels to
//get the Rdistorted
mFisheyeCorrect = new ArrayList(mFELimit);
//i corresponds to Rundist/focalLengthInPixels * 1000 (to get integers)
for (int i = 0; i < mFELimit; i++)
{
double result = Math.Sqrt(1 - 1 / Math.Sqrt(1.0 + (double)i * i / 1000000.0)) * 1.4142136;
mFisheyeCorrect.Add(result);
}
}
public Bitmap RemoveFisheye(ref Bitmap aImage, double aFocalLinPixels)
{
Bitmap correctedImage = new Bitmap(aImage.Width, aImage.Height);
//The center points of the image
double xc = aImage.Width / 2.0;
double yc = aImage.Height / 2.0;
Boolean xpos, ypos;
//Move through the pixels in the corrected image;
//set to corresponding pixels in distorted image
for (int i = 0; i < correctedImage.Width; i++)
{
for (int j = 0; j < correctedImage.Height; j++)
{
//which quadrant are we in?
xpos = i > xc;
ypos = j > yc;
//Find the distance from the center
double xdif = i-xc;
double ydif = j-yc;
//The distance squared
double Rusquare = xdif * xdif + ydif * ydif;
//the angle from the center
double theta = Math.Atan2(ydif, xdif);
//find index for lookup table
int index = (int)(Math.Sqrt(Rusquare) / aFocalLinPixels * 1000);
if (index >= mFELimit) index = mFELimit - 1;
//calculated Rdistorted
double Rd = aFocalLinPixels * (double)mFisheyeCorrect[index]
/mScaleFESize;
//calculate x and y distances
double xdelta = Math.Abs(Rd*Math.Cos(theta));
double ydelta = Math.Abs(Rd * Math.Sin(theta));
//convert to pixel coordinates
int xd = (int)(xc + (xpos ? xdelta : -xdelta));
int yd = (int)(yc + (ypos ? ydelta : -ydelta));
xd = Math.Max(0, Math.Min(xd, aImage.Width-1));
yd = Math.Max(0, Math.Min(yd, aImage.Height-1));
//set the corrected pixel value from the distorted image
correctedImage.SetPixel(i, j, aImage.GetPixel(xd, yd));
}
}
return correctedImage;
}
}
I found this pdf file and I have proved that the maths are correct (except for the line vd = *xd**fv+v0 which should say vd = **yd**+fv+v0).
http://perception.inrialpes.fr/CAVA_Dataset/Site/files/Calibration_OpenCV.pdf
It does not use all of the latest co-efficients that OpenCV has available but I am sure that it could be adapted fairly easily.
double k1 = cameraIntrinsic.distortion[0];
double k2 = cameraIntrinsic.distortion[1];
double p1 = cameraIntrinsic.distortion[2];
double p2 = cameraIntrinsic.distortion[3];
double k3 = cameraIntrinsic.distortion[4];
double fu = cameraIntrinsic.focalLength[0];
double fv = cameraIntrinsic.focalLength[1];
double u0 = cameraIntrinsic.principalPoint[0];
double v0 = cameraIntrinsic.principalPoint[1];
double u, v;
u = thisPoint->x; // the undistorted point
v = thisPoint->y;
double x = ( u - u0 )/fu;
double y = ( v - v0 )/fv;
double r2 = (x*x) + (y*y);
double r4 = r2*r2;
double cDist = 1 + (k1*r2) + (k2*r4);
double xr = x*cDist;
double yr = y*cDist;
double a1 = 2*x*y;
double a2 = r2 + (2*(x*x));
double a3 = r2 + (2*(y*y));
double dx = (a1*p1) + (a2*p2);
double dy = (a3*p1) + (a1*p2);
double xd = xr + dx;
double yd = yr + dy;
double ud = (xd*fu) + u0;
double vd = (yd*fv) + v0;
thisPoint->x = ud; // the distorted point
thisPoint->y = vd;
This can be solved as an optimization problem. Simply draw on curves in images that are supposed to be straight lines. Store the contour points for each of those curves. Now we can solve the fish eye matrix as a minimization problem. Minimize the curve in points and that will give us a fisheye matrix. It works.
It can be done manually by adjusting the fish eye matrix using trackbars! Here is a fish eye GUI code using OpenCV for manual calibration.
I have two vectors u and v. Is there a way of finding a quaternion representing the rotation from u to v?
Quaternion q;
vector a = crossproduct(v1, v2);
q.xyz = a;
q.w = sqrt((v1.Length ^ 2) * (v2.Length ^ 2)) + dotproduct(v1, v2);
Don't forget to normalize q.
Richard is right about there not being a unique rotation, but the above should give the "shortest arc," which is probably what you need.
Half-Way Vector Solution
I came up with the solution that I believe Imbrondir was trying to present (albeit with a minor mistake, which was probably why sinisterchipmunk had trouble verifying it).
Given that we can construct a quaternion representing a rotation around an axis like so:
q.w == cos(angle / 2)
q.x == sin(angle / 2) * axis.x
q.y == sin(angle / 2) * axis.y
q.z == sin(angle / 2) * axis.z
And that the dot and cross product of two normalized vectors are:
dot == cos(theta)
cross.x == sin(theta) * perpendicular.x
cross.y == sin(theta) * perpendicular.y
cross.z == sin(theta) * perpendicular.z
Seeing as a rotation from u to v can be achieved by rotating by theta (the angle between the vectors) around the perpendicular vector, it looks as though we can directly construct a quaternion representing such a rotation from the results of the dot and cross products; however, as it stands, theta = angle / 2, which means that doing so would result in twice the desired rotation.
One solution is to compute a vector half-way between u and v, and use the dot and cross product of u and the half-way vector to construct a quaternion representing a rotation of twice the angle between u and the half-way vector, which takes us all the way to v!
There is a special case, where u == -v and a unique half-way vector becomes impossible to calculate. This is expected, given the infinitely many "shortest arc" rotations which can take us from u to v, and we must simply rotate by 180 degrees around any vector orthogonal to u (or v) as our special-case solution. This is done by taking the normalized cross product of u with any other vector not parallel to u.
Pseudo code follows (obviously, in reality the special case would have to account for floating point inaccuracies -- probably by checking the dot products against some threshold rather than an absolute value).
Also note that there is no special case when u == v (the identity quaternion is produced -- check and see for yourself).
// N.B. the arguments are _not_ axis and angle, but rather the
// raw scalar-vector components.
Quaternion(float w, Vector3 xyz);
Quaternion get_rotation_between(Vector3 u, Vector3 v)
{
// It is important that the inputs are of equal length when
// calculating the half-way vector.
u = normalized(u);
v = normalized(v);
// Unfortunately, we have to check for when u == -v, as u + v
// in this case will be (0, 0, 0), which cannot be normalized.
if (u == -v)
{
// 180 degree rotation around any orthogonal vector
return Quaternion(0, normalized(orthogonal(u)));
}
Vector3 half = normalized(u + v);
return Quaternion(dot(u, half), cross(u, half));
}
The orthogonal function returns any vector orthogonal to the given vector. This implementation uses the cross product with the most orthogonal basis vector.
Vector3 orthogonal(Vector3 v)
{
float x = abs(v.x);
float y = abs(v.y);
float z = abs(v.z);
Vector3 other = x < y ? (x < z ? X_AXIS : Z_AXIS) : (y < z ? Y_AXIS : Z_AXIS);
return cross(v, other);
}
Half-Way Quaternion Solution
This is actually the solution presented in the accepted answer, and it seems to be marginally faster than the half-way vector solution (~20% faster by my measurements, though don't take my word for it). I'm adding it here in case others like myself are interested in an explanation.
Essentially, instead of calculating a quaternion using a half-way vector, you can calculate the quaternion which results in twice the required rotation (as detailed in the other solution), and find the quaternion half-way between that and zero degrees.
As I explained before, the quaternion for double the required rotation is:
q.w == dot(u, v)
q.xyz == cross(u, v)
And the quaternion for zero rotation is:
q.w == 1
q.xyz == (0, 0, 0)
Calculating the half-way quaternion is simply a matter of summing the quaternions and normalizing the result, just like with vectors. However, as is also the case with vectors, the quaternions must have the same magnitude, otherwise the result will be skewed towards the quaternion with the larger magnitude.
A quaternion constructed from the dot and cross product of two vectors will have the same magnitude as those products: length(u) * length(v). Rather than dividing all four components by this factor, we can instead scale up the identity quaternion. And if you were wondering why the accepted answer seemingly complicates matters by using sqrt(length(u) ^ 2 * length(v) ^ 2), it's because the squared length of a vector is quicker to calculate than the length, so we can save one sqrt calculation. The result is:
q.w = dot(u, v) + sqrt(length_2(u) * length_2(v))
q.xyz = cross(u, v)
And then normalize the result. Pseudo code follows:
Quaternion get_rotation_between(Vector3 u, Vector3 v)
{
float k_cos_theta = dot(u, v);
float k = sqrt(length_2(u) * length_2(v));
if (k_cos_theta / k == -1)
{
// 180 degree rotation around any orthogonal vector
return Quaternion(0, normalized(orthogonal(u)));
}
return normalized(Quaternion(k_cos_theta + k, cross(u, v)));
}
The problem as stated is not well-defined: there is not a unique rotation for a given pair of vectors. Consider the case, for example, where u = <1, 0, 0> and v = <0, 1, 0>. One rotation from u to v would be a pi / 2 rotation around the z-axis. Another rotation from u to v would be a pi rotation around the vector <1, 1, 0>.
I'm not much good on Quaternion. However I struggled for hours on this, and could not make Polaris878 solution work. I've tried pre-normalizing v1 and v2. Normalizing q. Normalizing q.xyz. Yet still I don't get it. The result still didn't give me the right result.
In the end though I found a solution that did. If it helps anyone else, here's my working (python) code:
def diffVectors(v1, v2):
""" Get rotation Quaternion between 2 vectors """
v1.normalize(), v2.normalize()
v = v1+v2
v.normalize()
angle = v.dot(v2)
axis = v.cross(v2)
return Quaternion( angle, *axis )
A special case must be made if v1 and v2 are paralell like v1 == v2 or v1 == -v2 (with some tolerance), where I believe the solutions should be Quaternion(1, 0,0,0) (no rotation) or Quaternion(0, *v1) (180 degree rotation)
Why not represent the vector using pure quaternions? It's better if you normalize them first perhaps.
q1 = (0 ux uy uz)'
q2 = (0 vx vy vz)'
q1 qrot = q2
Pre-multiply with q1-1
qrot = q1-1 q2
where q1-1 = q1conj / qnorm
This is can be thought of as "left division".
Right division, which is not what you want is:
qrot,right = q2-1 q1
From algorithm point of view , the fastest solution looks in pseudocode
Quaternion shortest_arc(const vector3& v1, const vector3& v2 )
{
// input vectors NOT unit
Quaternion q( cross(v1, v2), dot(v1, v2) );
// reducing to half angle
q.w += q.magnitude(); // 4 multiplication instead of 6 and more numerical stable
// handling close to 180 degree case
//... code skipped
return q.normalized(); // normalize if you need UNIT quaternion
}
Be sure that you need unit quaternions (usualy, it is required for interpolation).
NOTE:
Nonunit quaternions can be used with some operations faster than unit.
Some of the answers don't seem to consider possibility that cross product could be 0. Below snippet uses angle-axis representation:
//v1, v2 are assumed to be normalized
Vector3 axis = v1.cross(v2);
if (axis == Vector3::Zero())
axis = up();
else
axis = axis.normalized();
return toQuaternion(axis, ang);
The toQuaternion can be implemented as follows:
static Quaternion toQuaternion(const Vector3& axis, float angle)
{
auto s = std::sin(angle / 2);
auto u = axis.normalized();
return Quaternion(std::cos(angle / 2), u.x() * s, u.y() * s, u.z() * s);
}
If you are using Eigen library, you can also just do:
Quaternion::FromTwoVectors(from, to)
Working just with normalized quaternions, we can express Joseph Thompson's answer in the follwing terms.
Let q_v = (0, u_x, v_y, v_z) and q_w = (0, v_x, v_y, v_z) and consider
q = q_v * q_w = (-u dot v, u x v).
So representing q as q(q_0, q_1, q_2, q_3) we have
q_r = (1 - q_0, q_1, q_2, q_3).normalize()
According to the derivation of the quaternion rotation between two angles, one can rotate a vector u to vector v with
function fromVectors(u, v) {
d = dot(u, v)
w = cross(u, v)
return Quaternion(d + sqrt(d * d + dot(w, w)), w).normalize()
}
If it is known that the vectors u to vector v are unit vectors, the function reduces to
function fromUnitVectors(u, v) {
return Quaternion(1 + dot(u, v), cross(u, v)).normalize()
}
Depending on your use-case, handling the cases when the dot product is 1 (parallel vectors) and -1 (vectors pointing in opposite directions) may be needed.
The Generalized Solution
function align(Q, u, v)
U = quat(0, ux, uy, uz)
V = quat(0, vx, vy, vz)
return normalize(length(U*V)*Q - V*Q*U)
To find the quaternion of smallest rotation which rotate u to v, use
align(quat(1, 0, 0, 0), u, v)
Why This Generalization?
R is the quaternion closest to Q which will rotate u to v. More importantly, R is the quaternion closest to Q whose local u direction points in same direction as v.
This can be used to give you all possible rotations which rotate from u to v, depending on the choice of Q. If you want the minimal rotation from u to v, as the other solutions give, use Q = quat(1, 0, 0, 0).
Most commonly, I find that the real operation you want to do is a general alignment of one axis with another.
// If you find yourself often doing something like
quatFromTo(toWorldSpace(Q, localFrom), worldTo)*Q
// you should instead consider doing
align(Q, localFrom, worldTo)
Example
Say you want the quaternion Y which only represents Q's yaw, the pure rotation about the y axis. We can compute Y with the following.
Y = align(quat(Qw, Qx, Qy, Qz), vec(0, 1, 0), vec(0, 1, 0))
// simplifies to
Y = normalize(quat(Qw, 0, Qy, 0))
Alignment as a 4x4 Projection Matrix
If you want to perform the same alignment operation repeatedly, because this operation is the same as the projection of a quaternion onto a 2D plane embedded in 4D space, we can represent this operation as the multiplication with 4x4 projection matrix, A*Q.
I = mat4(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1)
A = I - leftQ(V)*rightQ(U)/length(U*V)
// which expands to
A = mat4(
1 + ux*vx + uy*vy + uz*vz, uy*vz - uz*vy, uz*vx - ux*vz, ux*vy - uy*vx,
uy*vz - uz*vy, 1 + ux*vx - uy*vy - uz*vz, uy*vx + ux*vy, uz*vx + ux*vz,
uz*vx - ux*vz, uy*vx + ux*vy, 1 - ux*vx + uy*vy - uz*vz, uz*vy + uy*vz,
ux*vy - uy*vx, uz*vx + ux*vz, uz*vy + uy*vz, 1 - ux*vx - uy*vy + uz*vz)
// A can be applied to Q with the usual matrix-vector multiplication
R = normalize(A*Q)
//LeftQ is a 4x4 matrix which represents the multiplication on the left
//RightQ is a 4x4 matrix which represents the multiplication on the Right
LeftQ(w, x, y, z) = mat4(
w, -x, -y, -z,
x, w, -z, y,
y, z, w, -x,
z, -y, x, w)
RightQ(w, x, y, z) = mat4(
w, -x, -y, -z,
x, w, z, -y,
y, -z, w, x,
z, y, -x, w)