Removing "NUL" characters (within R) - r

I've got a strange text file with a bunch of NUL characters in it (actually about 10 such files), and I'd like to programmatically replace them from within R. Here is a link to one of the files.
With the aid of this question I've finally figured out a better-than-ad-hoc way of going into each file and find-and-replacing the nuisance characters. It turns out that each pair of them should correspond to one space ([NUL][NUL]->) to maintain the intended line width of the file (which is crucial for reading these as fixed-width further down the road).
However, for robustness' sake, I prefer a more automable approach to the solution, ideally (for organization's sake) something I could add at the beginning of an R script I'm writing to clean up the files. This question looked promising but the accepted answer is insufficient - readLines throws an error whenever I try to use it on these files (unless I activate skipNul).
Is there any way to get the lines of this file into R so I could use gsub or whatever else to fix this issue without resorting to external programs?

You want to read the file as binary then you can substitute the NULs, e.g. to replace them by spaces:
r = readBin("00staff.dat", raw(), file.info("00staff.dat")$size)
r[r==as.raw(0)] = as.raw(0x20) ## replace with 0x20 = <space>
writeBin(r, "00staff.txt")
str(readLines("00staff.txt"))
# chr [1:155432] "000540952Anderson Shelley J FW1949 2000R000000000000119460007620 3 0007000704002097907KGKG1616"| __truncated__ ...
You could also substitute the NULs with a really rare character (such as "\01") and work on the string in place, e.g., let's say if you want to replace two NULs ("\00\00") with one space:
r = readBin("00staff.dat", raw(), file.info("00staff.dat")$size)
r[r==as.raw(0)] = as.raw(1)
a = gsub("\01\01", " ", rawToChar(r), fixed=TRUE)
s = strsplit(a, "\n", TRUE)[[1]]
str(s)
# chr [1:155432] "000540952Anderson Shelley J FW1949 2000R000000000000119460007620 3 0007000704002097907KGKG1616"| __truncated__

Related

Loading CSV with fread stops because of to large string

This is the command I'm using :
dallData <- fread("data.csv", showProgress = TRUE, colClasses = c(rep("NULL", 2), "character", rep("NULL", 37)))
but I get this error when trying to load it: R character strings are limited to 2^31-1 bytes|
Anyway to skip those values ?
Here's a strategy that may work or at least narrow down the possible sources of error. It assumes you have enough working memory to hold the data and that your separators are really commas. If you actually have tabs as separators then you will need to modify accordingly. The plan is to read using readLines which will basically ignore the quotes that are probably mismatched. Then figure out which line or lines are at fault using count.fields, table, and which.
input <- readLines("data.csv") # ignores quotes
counts.def <- count.fields(textConnection(input),
sep=",") # defaults quotes are both ' and "
table(counts.def) # might show a variety of line counts.
# Second try with just double-quotes
counts.dbl <- count.fields(textConnection(input),
sep=",", quote="\"") # just dbl-quotes
table(counts.dbl) # if all the same, then all you do is change the quotes argument
Depending on the results you may need to edit cerain lines which can be identified using which(counts.def < 40) assuming most of them are 40 as your input efforts suggest is the expected number of fields per line.
(If the tag for [ram] means you are limited and getting warnings or using virtual memory which slows things down horribly, then you should restart your OS, and only load R before trying again. R needs contiguous block of memory and Windoze isn't very good at memory management.)
Here's a small test case to work with:
input <- readLines(textConnection(
"v1,v2,v3,v4,v5,v6
text, text, text, text, text, text
text, text, O'Malley, text,text,text
junk,junk, more junk, \"text\", tex\"t, nothing
3,4,5,6,7,8")

R Dataframe from a Text file with 2 Byts Separator

if you can help with converting a big text:
sample of the text :
X1"II"ID_Sitze.x"II"Produktionsdatum.x"II"Herstellernummer.x"II"Werksnummer.x"II"Fehlerhaft.x"II"Fehlerhaft_Datum.x"II"Fehlerhaft_Fahrleistung.x"II"ID_Sitze.y"II"Produktionsdatum.y"II"Herstellernummer.y"II"Werksnummer.y"II"Fehlerhaft.y"II"Fehlerhaft_Datum.y"II"Fehlerhaft_Fahrleistung.y""1"II1II"K2LE1-109-1091-2"II2008-11-12II"109"II1091II1II2010-10-18II37080IINAIINAIINAIINAIINAIINAIINA"2"II2II"K2LE1-109-1091-1"II2008-11-12II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"3"II3II"K2LE1-109-1091-12"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"4"II4II"K2LE1-109-1091-5"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"5"II5II"K2LE1-109-1091-40"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"6"II6II"K2LE1-109-1091-15"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"7"II7II"K2LE1-109-1091-31"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"8"II8II"K2LE1-109-1091-6"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"9"II9II"K2LE1-109-1091-8"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"10"II10II"K2LE1-109-1091-25"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"11"II11II"K2LE1-109-1091-24"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"12"II12II"K2LE1-109-1091-36"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"13"II13II"K2LE1-109-1091-33"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"14"II14II"K2LE1-109-1091-42"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"15"II15II"K2LE1-109-1091-14"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"16"II16II"K2LE1-109-1091-21"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"17"II17II"K2LE1-109-1091-43"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"18"II18II"K2LE1-109-1091-44"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA"19"II19II"K2LE1-109-1091-19"II2008-11-13II"109"II1091II1II2010-10-19II37
with separator "II" to a Dataframe.
i have used :
df_BSt7<-readLines("Komponente_K2LE1.txt")
df_BST7<-str_replace_all(df_BSt7,"II",",")
df_BST7<-read.table(df_BST7,sep = ",")
head(df_BST7)
but I am always getting an Error
could not allocate memory (206 Mb) in C function 'R_AllocStringBuffer'
and when i call head() I am getting
'"X1","ID_Sitze.x","Produktionsdatum.x","Herstellernummer.x","Werksnummer.x","Fehlerhaft.x","Fehlerhaft_Datum.x","Fehlerhaft_Fahrleistung.x","ID_Sitze.y","Produktionsdatum.y","Herstellernummer.y","Werksnummer.y","Fehlerhaft.y","Fehlerhaft_Datum.y","Fehlerhaft_Fahrleistung.y""1",1,"K2LE1-109-1091-2",2008-11-12,"109",1091,1,2010-10-18,37080,NA,NA,NA,NA,NA,NA,NA"2",2,"K2LE1-109-1091-1",2008-11-12,"109",1091,0,NA,0,NA,NA,NA,NA,NA,NA,NA"3",3,"K2LE1-109-1091-12",2008-11-13,"109",1091,0,NA,0,NA,NA,NA,NA,NA,NA,NA"4",4,"K2LE1-109-1091-5",2008-11-13,"109",1091,0,NA,0,NA,NA,NA,NA,NA,NA,NA"5",5,"K2LE1-109-1091-40",2008-11-13,"109",1091,0,NA,0,NA,NA,NA,NA,NA,NA,NA"6",6,"K2LE1-109-1091-15",2008-11-13,"109",1091,0,NA,0,NA,NA,NA,NA,NA,NA,NA"7",7,"K2LE1-109-1091-31",2008-11-13,"109",1091,0,NA,0,NA,NA,NA,NA,NA,NA,NA"8",8,"K2LE1-109-1091-6",2008-11-13,"109",1091,0,NA,0,NA,NA,NA,NA,NA,NA,NA"9",9,"K2LE1-109-1091-8",2008-11-13,"109",1091,0,NA,0,NA,NA,NA,NA,NA,NA,NA"10",10,"K2LE1-109-109 [... abgeschnitten]
So, there are several possible problems, some might be specific to your examples.
Clean example data
First, let's take a look at your example data. In what you provide, there are no newlines, everything is on a single line. Is that the case in the original "Komponente_K2LE1.txt" file? If yes, we might need some more work to find where to add newlines (see below).
The first column name, X1, only has a quote on the right. It can't work without the quote on the left: "X1"IIID_Sitze.
The saved dataframe has 16 columns, I expect because there is a row number at the beginning of each row which is not in the header. So we can add an additional column header to have 16 of them:
"row_nb"II"X1"II"ID_Sitze.x"II"Produktionsdatum.x"II"Herstellernummer.x"II"Werksnummer.x"II"Fehlerhaft.x"II"Fehlerhaft_Datum.x"II"
Then we have a small problem with line 19 which is truncated, I assume it comes from your copy/paste and that's not a problem with the full file. So let's forget about it for now. So I have this text:
raw_lines <- '"row_nb"II"X1"II"ID_Sitze.x"II"Produktionsdatum.x"II"Herstellernummer.x"II"Werksnummer.x"II"Fehlerhaft.x"II"Fehlerhaft_Datum.x"II"Fehlerhaft_Fahrleistung.x"II"ID_Sitze.y"II"Produktionsdatum.y"II"Herstellernummer.y"II"Werksnummer.y"II"Fehlerhaft.y"II"Fehlerhaft_Datum.y"II"Fehlerhaft_Fahrleistung.y"
"1"II1II"K2LE1-109-1091-2"II2008-11-12II"109"II1091II1II2010-10-18II37080IINAIINAIINAIINAIINAIINAIINA
"2"II2II"K2LE1-109-1091-1"II2008-11-12II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"3"II3II"K2LE1-109-1091-12"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"4"II4II"K2LE1-109-1091-5"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"5"II5II"K2LE1-109-1091-40"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"6"II6II"K2LE1-109-1091-15"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"7"II7II"K2LE1-109-1091-31"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"8"II8II"K2LE1-109-1091-6"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"9"II9II"K2LE1-109-1091-8"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"10"II10II"K2LE1-109-1091-25"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"11"II11II"K2LE1-109-1091-24"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"12"II12II"K2LE1-109-1091-36"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"13"II13II"K2LE1-109-1091-33"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"14"II14II"K2LE1-109-1091-42"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"15"II15II"K2LE1-109-1091-14"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"16"II16II"K2LE1-109-1091-21"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"17"II17II"K2LE1-109-1091-43"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA
"18"II18II"K2LE1-109-1091-44"II2008-11-13II"109"II1091II0IINAII0IINAIINAIINAIINAIINAIINAIINA'
Now you are replacing "II" with "," and reading it with read.table(), which is perfectly correct, except that read.table() would assume you're giving a file name and throw an error as it can't open that connection (that file). To make it work you need this:
df_BST7<-str_replace_all(raw_lines,'II',",")
df_BST7 <- read.table(text = df_BST7,sep = ",")
So now that does run on my computer.
Side note, since you're already using the tidyverse, you could as well use that equivalent code instead:
df_BST7 <- str_replace_all(raw_lines,'II',",")
df_BST7 <- read_csv(df_BST7)
which could help with something later
The error message
Now the error message you get suggests it's a memory problem. I see 2 possibilities: the table is so big it can't fit in your computer's memory, or indeed your whole input table is on a single line, so that makes a very long line, which won't fit in memory.
Whole table too big
I don't think it's the problem here, but just in case, check how big the file on the disk is, and how much memory is free on your computer, and whether you could free up enough memory by just closing a few programs. Possibly you could save your modified text to disk and delete it from R's memory with rm(df_BSt7), then load it directly from disk into df_BST7. Since the raw text fits in memory, that should work. If memory is a challenge, you can replace read_csv() with read_csv_chunked() and process one chunk at a time.
All on one line
I think this is the most likely. Again, there are two possibilities.
Missing carriage return
Actually line breaks can be described in 2 ways, Unix-like systems (MacOS and GNU/Linux) use the symbol newline (\n), whereas Windows uses a pair of carriage return and newline (\r\n). I'm not sure how this could create problems inside R, but if your file was generated on a Unix-like system and you're trying to read it on Windows that's an explanation. Then the goal would become to replace \n with \r\n.
No line breaks at all
If there is absolutely no line break, neither \r nor \n, then we need to guess where they are. On a Unix system you could try awk or sed, but there are ways to do it in R. The following code should work, except the last column will need some cleaning up afterwards:
raw_lines2 <- str_remove_all(raw_lines2, "\r")
all_fields <- raw_lines2 %>%
str_split("II") %>%
unlist()
nb_lines <- (length(all_fields) - 1)/15
reconstruct_lines <- map_chr(0:(nb_lines-1), ~ paste(all_fields[(2+15*.):(16+15*.)], collapse = ",")) %>%
paste(collapse = "\n")
cat(reconstruct_lines)

How to modify i in an R loop?

I have several large R objects saved as .RData files: "this.RData", "that.RData", "andTheOther.RData" and so on. I don't have enough memory, so I want to load each in a loop, extract some rows, and unload it. However, once I load(i), I need to strip the ".RData" part of (i) before I can do anything with objects "this", "that", "andTheOther". I want to do the opposite of what is described in How to iterate over file names in a R script? How can I do that? Thx
Edit: I omitted to mention the files are not in the working directory and have a filepath as well. I came across Getting filename without extension in R and file_path_sans_ext takes out the extension but the rest of the path is still there.
Do you mean something like this?
i <- c("/path/to/this.RDat", "/another/path/to/that.RDat")
f <- gsub(".*/([^/]+)", "\\1", i)
f1 <- gsub("\\.RDat", "", f)
f1
[1] "this" "that"
On windows' paths you have to use "\\" instead of "/"
Edit: Explanation. Technically, these are called "regular
expressions" (regexps), not "patterns".
. any character
.* arbitrary number (including 0) of any kind of characters
.*/ arbitrary number of any kind of characters, followed by a
/
[^/] any character but not /
[^/]+ arbitrary number (1 or more) of any kind of characters,
but not /
( and ) enclose groups. You can use the groups when
replacing as \\1, \\2 etc.
So, look for any kind of character, followed by /, followed by
anything but not the path separator. Replace this with the "anything
but not separator".
There are many good tutorials for regexps, just look for it.
A simple way to do this using would be to extract the base name from the filepaths with base::basename() and then remove the file extension with tools::file_path_sans_ext().
paths_to_files <- c("./path/to/this.RData", "./another/path/to/that.RData")
tools::file_path_sans_ext(
basename(
paths_to_files
)
)
## Returns:
## [1] "this" "that"

un-quote an R string?

TL;DR
I have a snippet of text
str <- '"foo\\dar embedded \\\"quote\\\""'
# cat(str, '\n') # gives
# "foo\dar embedded \"quote\""
# i.e. as if the above had been written to a CSV with quoting turned on.
I want to end up with the string:
str <- 'foo\\dar embedded "quote"'
# cat(str, '\n') # gives
# foo\dar embedded "quote"
essentially removing one "layer" of quoting. How may I do this?
(Initial attempt -- eval(parse(text=str)), which works unless you have something like \\dar, where you get the error "\d is an unrecognized escape in character string ...").
Gory details (optional)
The reason my strings are quoted once-too-many times is I kludged some data processing -- I wrote str (well, a dataframe in my case) to a table with quoting enabled, but forgot that many of the columns in my dataframe had embedded newlines with embedded quotes (i.e. forgot to escape/remove them).
It turns out that when I read.table a file with multiple columns in the same row that have embedded newlines and embedded quotes (or something like that), the function fails (fair enough).
I had since closed my R session so my only access to my data was through my munged CSV. So I wrote some spaghetti code to simply readLines my CSV and split everything up to reconstruct my dataframe again. However, since all my character columns were quoted in the CSV, I have a few columns in my restored dataframe that are still quoted that I want to unquote.
Messy, I know. I'll remember to save an original version of the data next time (save, saveRDS).
For those interested, the header row and three rows of my CSV are shown below (all the characters are ASCII)
"quote";"id";"date";"author";"context"
"< mwk> I tried to fix the bug I mentioned, but I accidentally ascended the character I started for testing... hoped she'd die soon and I could get to coding, but alas I was wrong";"< mwk> I tried to fix the bug I mentioned, but I accidentally ascended the character I started for testing... hoped she'd die soon and I could get to coding, but alas I was wrong";"February 28, 2013";"nhqdb";"nhqdb"
"< intx14> \"A gush of water hits the air elemental on the central core!\"
< intx14> What is this, a weather forecast?";"< intx14> \"A gush of water hits the air elemental on the central core!\"
< intx14> What is this, a weather forecast?";"February 28, 2013";"nhqdb";"nhqdb"
"< bcode> n - a spherical amulet. You are lucky! Full moon tonight.
< bcode> That must be a sign - I'll put it on! What could possibly go wrong...
< oracle\devnull> DIED : bcode2 (Wiz-Elf-Mal-Cha) 0 points, killed by strangulation on pcs1.nethack.devnull.net";"< bcode> n - a spherical amulet. You are lucky! Full moon tonight.
< bcode> That must be a sign - I'll put it on! What could possibly go wrong...
< oracle\devnull> DIED : bcode2 (Wiz-Elf-Mal-Cha) 0 points, killed by strangulation on pcs1.nethack.devnull.net";"February 28, 2013";"nhqdb";"nhqdb"
The first two columns of each row are the same, being the quote (the first row has no embedded newlines in the quote; the second and third do). Separator is ';'.
> read.table('test.csv', sep=';', header=T)
Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
line 1 did not have 5 elements
# same for with ,allowEscape=T
Use regular expressions:
str <- gsub('^"|"$', '', gsub('\\\"', '"', str, fixed = TRUE))
[EDIT 3: the OP has posted three separate versions of this - two of them irreproducible, interspersed with complaining. Due to this timewasting behavior and several people downvoting, I'm leaving the original answer to version 2 of the question.]
EDIT 1: My solution to the second version of the OP's question was this:
txt <- read.csv('escaped.csv', header=T, allowEscapes=T, sep=';')
EDIT 2: We now get a third version. Finally some reproducible code after 36 minutes asking and waiting. Due to the behavior of the OP and other posters I'm not inclined to waste more time on this. I'm going to complain about both of your behavior on MSO. Downvote yourselves silly.
ORIGINAL:
gsub is the ugly way.
Use read.csv(..., allowEscapes=TRUE, quote=..., encoding=...) arguments. See the manpage, section on Encoding
If you want actual code, you need to give us a full line or two of your CSV file.
See also SO: "How to detect the right encoding for read.csv?"
Quoting the relevant part of your question:
The reason my strings are quoted once-too-many times is I kludged some
data processing -- I wrote str (well, a dataframe in my case) to a
table with quoting enabled, but forgot that many of the columns in my
dataframe had embedded newlines within quotes (i.e. forgot to
escape/remove them).
It turns out that when I read.table a file with multiple columns in
the same row that have embedded newlines within quotes, the function
fails (fair enough).

Copy to without quotes

I have a large dataset in dbf file and would like to export it to the csv type file.
Thanks to SO already managed to do it smoothly.
However, when I try to import it into R (the environment I work) it combines some characters together, making some rows much longer than they should be, consequently breaking the whole database. In the end, whenever I import the exported csv file I get only half of the db.
Think the main problem is with quotes in string characters, but specifying quote="" in R didn't help (and it helps usually).
I've search for any question on how to deal with quotes when exporting in visual foxpro, but couldn't find the answer. Wanted to test this but my computer catches error stating that I don't have enough memory to complete my operation (probably due to the large db).
Any helps will be highly appreciated. I'm stuck with this problem on exporting from the dbf into R for long enough, searched everything I could and desperately looking for a simple solution on how to import large dbf to my R environment without any bugs.
(In R: Checked whether have problems with imported file and indeed most of columns have much longer nchars than there should be, while the number of rows halved. Read the db with read.csv("file.csv", quote="") -> didn't help. Reading with data.table::fread() returns error
Expected sep (',') but '0' ends field 88 on line 77980:
But according to verbose=T this function reads right number of rows (read.csv imports only about 1,5 mln rows)
Count of eol after first data row: 2811729 Subtracted 1 for last eol
and any trailing empty lines, leaving 2811728 data rows
When exporting to TYPE DELIMITED You have some control on the VFP side as to how the export formats the output file.
To change the field separator from quotes to say a pipe character you can do:
copy to myfile.csv type delimited with "|"
so that will produce something like:
|A001|,|Company 1 Ltd.|,|"Moorfields"|
You can also change the separator from a comma to another character:
copy to myfile.csv type delimited with "|" with character "#"
giving
|A001|#|Company 1 Ltd.|#|"Moorfields"|
That may help in parsing on the R side.
There are three ways to delimit a string in VFP - using the normal single and double quote characters. So to strip quotes out of character fields myfield1 and myfield2 in your DBF file you could do this in the Command Window:
close all
use myfile
copy to mybackupfile
select myfile
replace all myfield1 with chrtran(myfield1,["'],"")
replace all myfield2 with chrtran(myfield2,["'],"")
and repeat for other fields and tables.
You might have to write code to do the export, rather than simply using the COPY TO ... DELIMITED command.
SELECT thedbf
mfld_cnt = AFIELDS(mflds)
fh = FOPEN(m.filename, 1)
SCAN
FOR aa = 1 TO mfld_cnt
mcurfld = 'thedbf.' + mflds[aa, 1]
mvalue = &mcurfld
** Or you can use:
mvalue = EVAL(mcurfld)
** manipulate the contents of mvalue, possibly based on the field type
DO CASE
CASE mflds[aa, 2] = 'D'
mvalue = DTOC(mvalue)
CASE mflds[aa, 2] $ 'CM'
** Replace characters that are giving you problems in R
mvalue = STRTRAN(mvalue, ["], '')
OTHERWISE
** Etc.
ENDCASE
= FWRITE(fh, mvalue)
IF aa # mfld_cnt
= FWRITE(fh, [,])
ENDIF
ENDFOR
= FWRITE(fh, CHR(13) + CHR(10))
ENDSCAN
= FCLOSE(fh)
Note that I'm using [ ] characters to delimit strings that include commas and quotation marks. That helps readability.
*create a comma delimited file with no quotes around the character fields
copy to TYPE DELIMITED WITH "" (2 double quotes)

Resources