Solve system of implicit ODE with Scilab - math

I'm modelling an overhead crane and obtained the following equations:
I'm noob when it comes to Scilab and so far I only simullated (using ODE) linear systems with no more than two degrees of freedom, which are simple systems that I can easily convert to am matrix and integrate it using ODE.
But this system in particular I have no clue how to simulate it, not because of the sin and cos functions, but because of the fact that I don't know how to put it in a state space matrix.
I've looked for a few tutorials (listed bellow) but I didn't understand any of those, can somebody tell me how I do it, or at least point where I could learn it?
http://www.openeering.com/sites/default/files/Nonlinear_Systems_Scilab.pdf
http://www.math.univ-metz.fr/~sallet/ODE_Scilab.pdf
Thank you, and sorry about my english

The usual form means writing in terms of first order derivatives. So you'll have relations where the 2nd derivative terms will be written as:
x'' = d(x')/fx
Substitute these into the equations you have. You'll end up with eight simultaneous ODEs to solve instead of four, with appropriate initial conditions.

Although this ODE system is implicit, you can solve it with a classical (explicit) ODE solver by reformulating it this way: if you define X=(x,L,theta,q)^T then your system can be reformulated using matrix algebra as A(X,X') * X" = B(X,X'). Please note that the first order form of this system is
d/dt(X,X') = ( X', A(X,X')^(-1)*B(X,X') )
Suppose now that you have defined two Scilab functions A and B which actually compute their values w.r.t. to the values of Xand X'
function out = A(X,Xprime)
x=X(1)
L=X(2)
theta=X(3)
qa=X(4)
xd=XPrime(1)
Ld=XPrime(2)
thetad=XPrime(3)
qa=XPrime(4);
...
end
function out = B(X,Xprime)
...
end
then the right hand side of the system of 8 ODEs, as it can be given to the ode function of Scilab can be coded as follows
function dstate_dt = rhs(t,state)
X = state(1:4);
Xprime = state(5:8);
out = [ Xprime
A(X,Xprime) \ B(X,Xprime)]
end
Writing the code of A() and B() according to the given equations is the only remaining (but quite easy) task.

Related

How can OpenMDAO be used to solve a linear system of equations without inverting the A matrix?

I have a system of equations that is in the form:
Ax = b
Where A and b are a mixture of known states and state rates derived from earlier components and x is a vector of four yet unknown state rates. I've used Matlab to linearise the problem, all I need to do now is to create some components to find x. However, the inverse of A is large in terms of the number of variables in each index, so I can't just turn these into a straightforward linear equation. Could someone suggest a route to go?
I don't fully understand what you mean by "the inverse of A is large in terms of the number of variables in each index", however I think mean that the inverse of A is to larger and dense to compute and store in memory.
OpenMDAO or not, When you run into this situation you are forced to use an iterative linear solver such as gmres. So that is broadly the approach that is needed here too.
OpenMDAO does have a LinearSystemComponent that you can use as a rough blueprint here. However, it does compute a factorization and store it which is not what you want. Regardless, it gives you the blueprint for how to represent a linear system as an implicit component in OpenMDAO.
Broadly, you have to think of defining a linear residual:
R = Ax-b = 0
Your component will have two inputs A and b, and and one output x.
The two key methods here are apply_nonlinear and solve_nonlinear. I realize that the word nonlinear in the method names is confusing. OpenMDAO assumes that the analysis is nonlinear. In your case it happens to be linear, but you use the nonlinear methods all the same.
I will assume that, although you can't compute/store [A] inverse you can compute/store A (perhaps in a sparse format). In that case you might pass the sparse data array of [A] as the input and fill the sparse matrix as needed from that.
the apply_nonlinear method would look like this:
def apply_nonlinear(self, inputs, outputs, residuals):
"""
R = Ax - b.
Parameters
----------
inputs : Vector
unscaled, dimensional input variables read via inputs[key]
outputs : Vector
unscaled, dimensional output variables read via outputs[key]
residuals : Vector
unscaled, dimensional residuals written to via residuals[key]
"""
residuals['x'] = inputs['A'].dot(outputs['x']) - inputs['b']
The key to your question is really the solve_nonlinear method. It would look something like this (using scipy gmres):
def solve_nonlinear(self, inputs, outputs):
"""
Use numpy to solve Ax=b for x.
Parameters
----------
inputs : Vector
unscaled, dimensional input variables read via inputs[key]
outputs : Vector
unscaled, dimensional output variables read via outputs[key]
"""
x, exitCode = gmres(inputs['A'], inputs['b'])
outputs['x'] = x

Recursive arc-length reparameterization of an arbitrary curve

I have a 3D parametric curve defined as P(t) = [x(t), y(t), z(t)].
I'm looking for a function to reparametrize this curve in terms of arc-length. I'm using OpenSCAD, which is a declarative language with no variables (constants only), so the solution needs to work recursively (and with no variables aside from global constants and function arguments).
More precisely, I need to write a function Q(s) that gives the point on P that is (approximately) distance s along the arc from the point where t=0. I already have functions for numeric integration and derivation that can be incorporated into the answer.
Any suggestions would be greatly appreciated!
p.s It's not possible to pass functions as a parameter in OpenSCAD, I usually get around this by just using global declarations.
The length of an arc sigma between parameter values t=0 and t=T can be computed by solving the following integral:
sigma(T) = Integral[ sqrt[ x'(t)^2 + y'(t)^2 + z'(t)^2 ],{t,0,T}]
If you want to parametrize your curve with the arc-length, you have to invert this formula. This is unfortunately rather difficult from a mathematics point of view. The simplest method is to implement a simple bisection method as a numeric solver. The computation method quickly becomes heavy so reusing previous results is ideal. The secant method is also useful as the derivative of sigma(t) is already known and equals
sigma'(t) = sqrt[ x'(t)^2 + y'(t)^2 + z'(t)^2]
Maybe not really the most helpful answer, but I hope it gives you some ideas. I cannot help you with the OpenSCad implementation.

How to call LAPACK code (cpbtrf) in Julia

I'm currently trying to translate my existing Python code into Julia, and I need to compute a Cholesky Decomposition of a banded, complex matrix. The correct LAPACK routine is cpbtrf (the one currently called by SciPy), and I'm struggling to get it to work in Julia.
I'm not sure what extra details to give, I'm pretty new to Julia and I'm sure I'm doing something stupid. The LAPACK call returns a 1 in the info variable, indicating that something isn't positive definite, but I know it is (SciPy happily decomposes the same matrix).
BlasInt = Base.LinAlg.BlasInt
chk = Base.LinAlg.chkstride1
function cholesky_banded!(ab::StridedMatrix{Complex128}, uplo::Char, n::Integer, kd::Integer)
chk(ab)
ldab = size(ab,1)
info = Ref{BlasInt}()
ccall((:cpbtrf_,Base.liblapack_name),Void,(Ptr{UInt8},Ptr{BlasInt},Ptr{BlasInt},
Ptr{Complex128},Ptr{BlasInt},Ptr{BlasInt}),&uplo,&n,&kd,ab,&ldab,info)
ab, info[]
end
mat = zeros(Complex128,2,3)
mat[1,1:end] = 2
mat[2,1:end-1] = -1
cholesky_banded!(mat,'L',3,1)
edit: Just to clarify, this is a skeleton example. The code I'm writing deals with matrices of order 10^5 or bigger, and can need penta-, hexa-, hepta-diagonal matrices and so on. I need a banded-specific algorithm.
It's all correct except for the LAPACK subroutine. You are using 128 bit complex numbers so you should use :zpbtrf_ instead of :cpbtrf_.

How to plot implicit equations

What is the usual method or algorithm used to plot implicit equations of 2 variables?
I am talking about equations such as,
sin(x*y)*y = 20
x*x - y*y = 1
Etc.
Does anyone know how Maple or Matlab do this? My target language is C#.
Many thanks!
One way to do this is to sample the function on a regular, 2D grid. Then you can run an algorithm like marching squares on the resulting 2D grid to draw iso-contours.
In a related question, someone also linked to the gnuplot source code. It's fairly complex, but might be worth going through. You can find it here: http://www.gnuplot.info/
Iterate the value of x across the range you want to plot. For each fixed value of x, solve the equation numerically using a method such as interval bisection or the Newton-Raphson method (for which you can calculate the derivative using implicit differentiation, or perhaps differentiate numerically). This will give you the corresponding value of y for a given x. In most cases, you won't need too many iterations to get a very precise result, and it's very efficient anyway.
Note that you will need to transform the equation into the form f(x) = 0, though this is always trivial. The nice thing about this method is that it works just as well the other way round (i.e. taking a fixed range of y and computing x per value).
There're multiple methods. The easiest algorithm I could find is descripted here:
https://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1986b-implicit-fns.pdf and describes what Noldorin has described you.
The most complex one, and seems to be the one that can actually solve a lot of special cases is described here:
https://academic.oup.com/comjnl/article/33/5/402/480353
i think,
in matlab you give array as input for x.
then for every x, it calculates y.
then draws line from x0,y0 to x1, y1
then draws line from x1,y1 to x2, y2
...
...

MATLAB: Using ODE solvers?

This is a really basic question but this is the first time I've used MATLAB and I'm stuck.
I need to simulate a simple series RC network using 3 different numerical integration techniques. I think I understand how to use the ode solvers, but I have no idea how to enter the differential equation of the system. Do I need to do it via an m-file?
It's just a simple RC circuit in the form:
RC dy(t)/dt + y(t) = u(t)
with zero initial conditions. I have the values for R, C the step length and the simulation time but I don't know how to use MATLAB particularly well.
Any help is much appreciated!
You are going to need a function file that takes t and y as input and gives dy as output. It would be its own file with the following header.
function dy = rigid(t,y)
Save it as rigid.m on the MATLAB path.
From there you would put in your differential equation. You now have a function. Here is a simple one:
function dy = rigid(t,y)
dy = sin(t);
From the command line or a script, you need to drive this function through ODE45
[T,Y] = ode45(#rigid,[0 2*pi],[0]);
This will give you your function (rigid.m) running from time 0 through time 2*pi with an initial y of zero.
Plot this:
plot(T,Y)
More of the MATLAB documentation is here:
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ode23tb.html
The Official Matlab Crash Course (PDF warning) has a section on solving ODEs, as well as a lot of other resources I found useful when starting Matlab.

Resources