I created a plot with several geom_area according to the following code :
library(ggplot2)
set.seed(1)
dat <- data.frame(matrix(rnorm(100, 10, 2), 100, 1))
dat_density <- data.frame(density(dat[, 1])[c("x", "y")])
quant <- quantile(dat[, 1], probs = seq(0, 1, 0.10))
library(RColorBrewer)
color_pal <- brewer.pal(length(quant)-1, "RdYlBu")
dens <- ggplot(data = dat_density, aes(x = x, y = y)) +
geom_line(size = 2)
for(i in 1:(length(color_pal))){
dens <- dens +
geom_area(data = subset(dat_density, x > quant[[i]] & x < quant[[i + 1]]), fill = color_pal[i])
}
dens
How can I add a common legend with each color of the color_pal vector (corresponding to all the 10% area of data) ?
The easiest way is to define the groups in your dataset
dat_density$quant <- cut(dat_density$x, breaks = c(-Inf, quant, Inf))
ggplot(data = dat_density, aes(x = x, y = y, fill = quant)) +
geom_line(size = 2) +
geom_area() +
scale_fill_brewer(palette = "RdYlBu")
Related
I'm trying to implement the log_2(x + 1) transformation in ggplot2 but am running into issues.
Here is an MWE
library(ggplot2)
x <- rexp(100)
y <- rexp(100)
df <- data.frame(x = x, y = y)
p <- ggplot(df, aes(x = x, y = y)) + geom_point(colour = "blue") +
scale_x_continuous(trans = "log2") +
scale_y_continuous(trans = "log2")
print(p)
However, I'm unsure how to best go about transforming the axes, as well as labelling the axes as log_2{x + 1) and log_2(y + 1).
You could use log2_trans from scales with a function to add 1 like this:
library(ggplot2)
library(scales)
x <- rexp(100)
y <- rexp(100)
df <- data.frame(x = x, y = y)
p <- ggplot(df, aes(x = x, y = y)) + geom_point(colour = "blue") +
scale_x_continuous(trans = log2_trans(),
breaks = trans_breaks("log2", function(x) x + 1),
labels = trans_format("log2", math_format(.x + 1))) +
scale_y_continuous(trans = log2_trans(),
breaks = trans_breaks("log2", function(x) x + 1),
labels = trans_format("log2", math_format(.x + 1)))
print(p)
Created on 2022-11-04 with reprex v2.0.2
I am trying to plot lines representing observations from two groups, y1 and y2 in a way that:
the two groups have different line color (marked on legend)
the two groups have different linetype (marked on legend)
the plot has errorbar, and error bar is solid line in both groups
Code generating some data:
## generate data
x.grid <- seq(0, 1, length.out = 6)
y1.func <- function(x) 1/(x+1)
y2.func <- function(x) 2/(x+3)
set.seed(1)
x.vec <- numeric()
y.vec <- numeric()
group.vec <- numeric()
for (x in x.grid){
x.vec <- c(x.vec, rep(x, 2*10))
y.vec <- c(y.vec,
rep(y1.func(x), 10) + rnorm(10, sd = 0.1),
rep(y2.func(x), 10) + rnorm(10, sd = 0.1))
group.vec <- c(group.vec, rep("y1", 10), rep("y2", 10))
}
plt.df <- data.frame(x = x.vec, y = y.vec, group = group.vec)
## summarize data
plt.df.se <- Rmisc::summarySE(plt.df, measurevar = "y", groupvars=c("x", "group"))
Approach 1:
ggplot2::ggplot(plt.df.se,
aes(x = x,
y = y,
color = group,
linetype = group)) +
geom_line(position=pd, size = 0.5) +
geom_errorbar(aes(ymin=y-se, ymax=y+se), width=.05,
position=position_dodge(0.05), linetype = 1)
bad: legend blue not dashed
Approach 2:
ggplot2::ggplot(plt.df.se,
aes(x = x,
y = y,
color = group,
linetype = group)) +
geom_line(position=pd, size = 0.5) +
geom_errorbar(aes(ymin=y-se, ymax=y+se), width=.05,
position=position_dodge(0.05))
bad: blue error bars are dashed (I want them solid)
First off, you only want the linetype aesthetic to apply to your lines, so don't include it in the top-level aesthetic mapping, only in geom_line(). Then use show.legend = FALSE in geom_errorbar() so it won't affect the legends:
ggplot(plt.df.se,
aes(x = x,
y = y,
color = group)) +
geom_line(aes(linetype = group), position=position_dodge(0.05), size = 0.5) +
geom_errorbar(aes(ymin=y-se, ymax=y+se), width=.05,
position=position_dodge(0.05),
show.legend = FALSE)
Result:
I'm trying to create a boxplot using ggplot2 with :
X as a continuous variable
Colors for different groups
Here is an example :
x <- sample(c(1,2,5),300,replace = TRUE)
y <- sapply(x,function(mu) rnorm(1,mean = mu))
color <- sample(c("color 1","color 2"),300,replace = TRUE)
data <- data.frame(x, y, color)
I can either have colors and x as a factor :
ggplot(data = data) + geom_boxplot(aes(x = factor(x),y = y,col = color))
or x as a continuous variable and no colors :
ggplot(data = data) + geom_boxplot(aes(x = x,y = y,group = x))
But not both.
Does somebody know how to do this ?
Thanks
I think you need one more column for group, which is the combination of color and x. For example, how about simply paste()ing them?
set.seed(1)
x <- sample(c(1,2,5),300,replace = TRUE)
y <- sapply(x,function(mu) rnorm(1,mean = mu))
color <- sample(c("color 1","color 2"),300,replace = TRUE)
data <- data.frame(x, y, color)
library(ggplot2)
ggplot(data = data) +
geom_boxplot(aes(x = x, y = y, col = color, group = paste(color, x)))
You can use scales to change the x-axis scale.
library(ggplot2)
library(scales)
x <- sample(c(1,2,5),300,replace = TRUE)
y <- sapply(x,function(mu) rnorm(1,mean = mu))
color <- sample(c("color 1","color 2"),300,replace = TRUE)
data <- data.frame(x, y, color)
ggplot(data = data) + geom_boxplot(aes(x = factor(x),y = y,col = color)) + scale_x_discrete(limit = c('1','2','3','4','5'))
Hack for dynamic limits:
min = min(data$x)
max = max(data$x)
limits <- as.character(seq(min:max))
ggplot(data = data) + geom_boxplot(aes(x = factor(x),y = y,col = color)) + scale_x_discrete(limit = limits)
You could misuse the fill aesthetic:
ggplot(data = data) +
geom_boxplot(aes(x = x, y = y, col = color, fill = factor(x))) +
scale_fill_manual(values = rep(NA, 3), guide = "none")
I am using the ggplot function to plot this kind of graph
image
I want to add the specific value of the x-axis as shown in the picture
this is my code :
quantiles <- quantile(mat,prob = quant)
x <- as.vector(mat)
d <- as.data.frame(x=x)
p <- ggplot(data = d,aes(x=x)) + theme_bw() +
geom_histogram(aes(y = ..density..), binwidth=0.001,color="black",fill="white") +
geom_density(aes(x=x, y = ..density..),fill="blue", alpha=0.5, color = 'black')
x.dens <- density(x)
df.dens <- data.frame(x = x.dens$x, y = x.dens$y)
p <- p + geom_area(data = subset(df.dens, x <= quantiles), aes(x=x,y=y),
fill = 'green', alpha=0.6)
print(p)
I have a ggplot graph defined like this:
x <- seq(0, 10, by = 0.1)
y1 <- cos(x)
y2 <- sin(x)
df1 <- data.frame(x = x, y = y1, type = "sin", id = 1)
df2 <- data.frame(x = x, y = y2, type = "cos", id = 2)
df3 <- data.frame(x = 2, y = 0.5, type = "constant", id = 3)
df4 <- data.frame(x = 4, y = 0.2, type = "constant", id = 4)
combined <- rbind(df1, df2, df3, df4)
ggplot(combined, aes(x, y, colour = interaction(type, id))) + geom_line() +
geom_point(data = subset(combined, type == "constant"))
This works very well as illustrated below:
Now I would like to extract the interaction in a variable to reuse it later (e.g. customize the legend style or labels).
I did that in a very naïve way:
my.interaction <- interaction(combined$type, combined$id)
ggplot(combined, aes(x, y, colour = my.interaction)) + geom_line() +
geom_point(data = subset(combined, type == "constant"))
But then I have an error:
Error: Aesthetics must be either length 1 or the same as the data (2):
x, y, colour
Edit:
Here is the kind of manipulation I could do: edit the linetype of the legend
displayed <- levels(factor(my.interaction))
line.style <- rep(1, length.out = length(displayed))
line.style[grep("constant", displayed)] <- 0
That works:
ggplot(combined, aes(x, y, colour = interaction(type, id))) + geom_line() +
geom_point(data = subset(combined, type == "constant")) +
guides(colour=guide_legend(override.aes=list(linetype = line.style)))
That does not:
ggplot(combined, aes(x, y, colour = my.interation) + geom_line() +
geom_point(data = subset(combined, type == "constant")) +
guides(colour=guide_legend(override.aes=list(linetype = line.style)))
In the end, I could also edit the shapes or the legend labels (e.g. "Id: 1 / Type: sin" or any other advanced transformation of the labels based on the interaction values).
This'll work. What's wrong with adding a column to your data frame?
combined %>% mutate(my.interaction = paste(type, id, sep='.')) %>%
ggplot(aes(x, y, colour = my.interaction)) + geom_line() +
geom_point(data = subset(combined, type == "constant"))